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DYNAMIC PROGRAMMING, SYSTEM IDENTIFICATION,
AND SUBOPTIMIZATION*

RICHARD BELLMAN
1. Introduction. The problem we start with appears to be quite spe-

cialized. Given a function u(t) defined over the interval [0, a], we wish to
find a polygonal approximation which is a best fit in a mean-square sense.
(See Fig. 1.) The analytic problem for N is that of minimizing the function.

N--I

ftti+l(1.1) b t) dr,
i=0

over the quantities ai, b, and ti. Here to 0, tN a.
This can be treated in a number of direct fashions, using search ad

gradient techniques. We wish, however, to employ dynamic programming,
which appears to be superior even in this case, and then gradually to
enlarge the scope of the problem until it covers a question in the identi-
ficatio of systems and a version of the general problem of considering
suboptimal policies in control processes. Results related to what follows
have been presented in [1], [2], [3].

2. Adaptive curve fitting. The foregoing problem can be considered to
fll within the new area of sequential computation. In place of choosing
the t in advance, we allow the structure of the function u(t) to determine
their positions. Similar techniques can be applied in connection with the
numerical integration of ordinary and partial differential equations. Write

(2.1) rain R fN(a),
ai,bi,t

defined for N 0, 1, 2, and a >= 0. Introduce the function of two
variables,

(2.2) A(s, s) min (u(t) a- bt) dr,
a,b

for 0 -<_ s <= s. < . That this happens in this case to be explicitly cal-
culable is of no particular significance at the moment. In general, this
function will be obtained via numerical methods.
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t t a
FIG. 1

Then

(2.3) fo(a) A(0, a),

and the principle of optimality yields the recurrence relation

(2.4) fly(a) rain [A(t, a)

for N > 1.
This leads to a quite simple and efficient computational algorithm.

3. Discussion. Perhaps the first point to note in connection with what
has been given above is that the computational feasibility of the algorithm
inherent in (2.4) is not strongly dependent upon the mean-square norm in
(2.2). We could just as easily use

(3.1) A(sl, s.) min max u(t) a bt I,
a,b t s2

or allow approximation by polynomials of higher degree. This brings us
into contact with the theory of spline approximations, but we shall not
pursue that here; see [4] for an extensive set of references.
As soon as we start pursuing the idea of approximating to u(t) over the

interval [sl, s2] by a function of simple analytic form, we enter the domain
of differential approximation [5]. We recognize that a polynomial of degree
M satisfies the differential equation

d(M+)y
(3.2)

dtM+
O,

that the exponentiM polynomial = ake
t satisfies the differential equa-

tion

d(M)y d(M-)V
(3.3)

dt(M b dt(_
b,v O,

and that = ak cos (}, - ) satisfies a similar equation of degree 2M.
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It follows that a substantial extension of straight-line approximation is the
following. Determine the parameters a and initial conditions ci so that

is minimized, where u is given and v is determined by the ordinary dif-
ferential equation

(3.5)
dt(M

t, v, dt(M_l) al a

()(0) c, i 0, 1, M 1. Here, we can use a mean-square norm,
or some other convenient norm.

Problems of this nature can be attacked by means of quasilinearization
and other techniques [5].

4. Identification of systems. The foregoing remarks and techniques
allow us to approach an interesting problem in the identification of sys-
tems. Suppose that we know that a function u(t) is generated in the fol-
lowing manner. In the interval t =< <- t+l, to =< t1 -< =< tn+l, to 0,
t+l a0, it satisfies the equation

dM ( d(-) )(4.1)
dtu+

g t, v, dt(u-) a

v()(t) c, j O, 1, ..., M 1.

Given the values of u(t) in [0, a], we wish to determine the vector param-
eters a, the parameters c., and the switching points t, and, occasionally,
N itself. This is a particular type of pattern recognition problem.
We begin by introducing the function

(4.2) A(, ) rain ( v) dt,
a,c

where v(t) satisfies (4.1), 0 <- s -< s. =< a. Our assumption is that we can

compute this function of two variables. This will, in general, however, be
a nontrivial task. If then we introduce the function

(4.3) fn(a) min (u v) dt,
{ai,cii}

a >- 0, allowing N switch points, or transition points, we obtain exactly
the same recurrence relation as in (2.4). If u(t) is actually determined by
(4.1), we will have f(ao) 0 for the correct choice of t.

5. Suboptimization. For analytic, economic, and engineering conven-
ience, it is often useful to consider the approximation of optimal control
policies by simple, feasible control policies.
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Thus, for example, in the minimization of
T

U(5.1) J(u) g(u, dt, u(O) c,

we may wish to consider as admissible functions only those for which

(5.2) u’(t) b,, s, <= <= s,+,

with So 0, su+ T, where the b and s are to be chosen.
Let us define

(,5.3) f(T, c) rain J(u),

where the minimum is now over the class of suboptimal policies defined
above. Then, as before, the principle of optimality yields the relation

(5.4) fu(T, c) min g(u(bo, t), bo) dt + fr-l(T s, u(bo, s))
bo,s

for N ->- 1, with
T

f0(T, c) rain [ g(u(bo, t), bo) dt.
bo J0

Here u(bo, t) denotes the function over the relevant t-interval determined
by the nature of the suboptimal policy and the initial state c. In this case,
u(bo, t) c + bot.

6. Reduction of dimensionality. One of the purposes of using suboptimal
policies is to bypass some of the analytic and computational difficulties of
the original optimization problem. This is particularly the case when we
hvc u control process involving either u high-dimensionM state vector, or
an infinite-dimensional vector.

In this situation, we can often replace the actual state vector at time
by a record of the control policies used, and thus obtain more manageable
computational Mgorithm. Furthermore, we can use new types of pproxi-
mation methods. For a detailed discussion of this technique, see [6].
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PROGRAMMING AND CONTROL PROBLEMS ARISING FROM
OPTIMAL ROUTING IN TELEPHONE NETWORKS*

V. . nFNE
1. Introduction. A telephone connecting network invariably provides

many paths on which a prticular call could be completed. Thus there nat-
urally arise problems of optimal routing, that is, of making choices of
routes so as to achieve a maximum of some measure of system performance,
such as the loss (probability of blocking).

It is the aim of this work to formulate, study, and (in part) solve a ten-
eral class of optimal routing problems for telephone networks. The formu-
lation of these problems is undertaken insofar as possible within the classical
dynamical theory of telephone traffic initiated by A. K. Erlang, that is,
in terms of Markov processes based on the assumptions of (i) negative
exponential distributions for mutually independent holding-times, and (ii)
randomly originating traffic. To these assumptions is added a description
of how attempted calls are accepted and assigned routes.
The problem of choosing "good" routes for information flow in a com-

munications network is vastly complicated by the difficult questions sur-
rounding the collection, updating, and relevance of information (about the
state of the system) on the basis of which routing decisions are to be made.
Thus, one of the items to be chosen in designing a routing scheme is the
information on which the routing is to be based. Indeed there is a whole
spectrum of possible choices for this information, from no information at
all (except what is unwittingly discovered in making call attempts) to the
opposite extreme of full knowledge of the state of the connecting network.
Clearly, a practical compromise between total ignorance and a very
expensive, complex scheme based on many data must usually be made.
Our considerations in this work will be limited to the case of perfect in-

formation, in which the microscopic state of the connecting network is
assumed known and available for making routing decisions. This case is of
course very far from realistic: few existing or envisaged systems utilize
even a small fraction of this possible information for routing. Indeed, much
of it is likely to be of very little relevance. Nevertheless, it is important to

* Received by the editors August 5, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 15, 1965.

The present text, intended as part of the Proceedings of the Conference, is only a
prolonged abstract, formulating the problem and giving sample results. The full
version of the paper will be submitted for publication to the Bell System Technical
Journal.

] Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey.
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know what would be good routing if we could implement it and could afford
it, so the full information case to be considered here forms at worst a limit-
ing situation for which some theory is available, and a natural starting point
for investigation.

In this discussion of the involved problem of routing calls, one of the
difficulties that arises deserves special mention. At first sight, the problem
of routing with full information seems to boil down to the question, "Which
of the paths available for call c in state x should be used?" This form of the
problem overlooks the possibility that perhaps the best thing to do is not
to put c in at all when the state is x! In other words, it assumes that, nat-
urlly, c will be put up in state x if it is ttempted in x nd is not blocked.
Previous uses of the stochastic model for telephone traffic which we employ
hve lwys mde this ssumption [1], [2].

Conceivably, then, it is better to reject cll c that is not blocked in
state x. Thus the problem of routing should be phrased, "Should cll c,
free nd not blocked in state x, be completed; nd if so, by which route?"

It turns out that nswering the first prt of the question, as to which
clls should be completed in which states, is often the hrdest prt of the
problem. Examples cn be given in which it is firly esy to solve the route
selection prt of the problem, but for which the question of whether
cll should go in or not is not settled, nd seems fr from being settled.
That this question hs substantial practical import is pprent from the
simulation studies crried out by Weber (3), which clearly show how
prohibition of circuitous routes (nd thus rejection of certain unblocked
clls) cn improve system performance.
We conclude this introduction with brief summry of the entire pper.

As is customary in telephone traffic theory, Mrkov process is used to
describe the operation of the connecting network under study. The Kolmo-
gorov equations for this process then constitute set of linear differential
equations describing the controlled system; in these the control functions
expressing the routing method being used pper among the coefficients.
It is natural to restrict attention to asymptotic behavior; this leads to a
problem of maximizing a bilinear (or linear fractional) form subject to
linear constraints; this problem is equivalent to a linear programming
problem. An alternative approach first shows that minimizing the proba-
bility of loss, and maximizing the fraction of events that are successful
call attempts, are equivalent. This fact permits a classical dynamic pro-
gramming approach. The remainder of the paper attempts to use this
approach to establish relations between the combinatorial properties of the
network and the policy (or policies) optimal for given criteria of perform-
ance. In particular it is shown that for connecting networks having certain
"hereditary" properties, optimal policies for minimizing loss correspond
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closely to the heuristic advice, "Prefer those states in which as few calls
are blocked as possible."

It must be stressed that the problem is far from fully understood, and
that much remains to be done.

2. States, events, and rules. The elements of the mathematical model to
be used for our study of routing separate naturally into combinatorial
ones and probabilistic. The former arise from the structure of the connect-
ing network and from the ways in which calls can be put up in it; the latter
represent assumptions about the random traffic the network is to carry.
The combinatorial and structural aspects are discussed in this section;
terminology and notation for them are introduced. The probabilistic aspects
are considered in the next section.
A connecting networtc , is a quadruple (G, I, t, S), where G is a graph

depicting network structure, I is the set of nodes of G which are inlets,
is the set of nodes ot G that are outlets, and S is the set of permitted states.
Vriables x, y, z, at the end of the alphabet denote states, while u and v
(respectively) denote a typical inlet and a typical outlet. A state x can be
thought of as set of disjoint chains on G, ech chain ioining I to 2. Not
every such set of chains represents a state: sets with wastefully circuitous
chains may be excluded from S. It is possible that I gt, that I l t

null set, or that some intermediate condition is obtained, depending on
the "community of interest" aspects of the network .
The set S of states is partially ordered by inclusion =,< where x =< y means

that state x cn be obtained from state y by removing zero or more calls.
If x nd y satisfy the same assignment of inlets to outlets, i.e., are such that
all and only those inlets u I are connected in x to outlets v 2 which
are connected to the same v in y (though possibly by different routes),
then we sy that x and y are equivalent, written x y.
The set S of states determines another set E of events, either hangups

(terminations of calls), successes (successful call attempts), or blocks
(blocked call attempts). The occurrence of an event in a state may lead
to a new state obtuined by dding or removing a call in progress, or it may,
if it is a blocked call or one that is rejected, lead to no change of state.
Not every event can occur in every state" nturally, only those calls cn
hang up in a state which are in progress in that state, and only those inlet-
outlet pairs can ask for a connection between them in a state that are idle
in that state. The notation e is used for a (general) event, h for a hangup,
and c for an attempted call. If e can occur in x we write e x. A call c x
is blocked in a state x if there is no y S which covers x in the sense of the
partial ordering __< and in which c is in progress.
We denote by A the set of states that are immediately above x in the

partial ordering __<, nd by Bx the set of those that are immediately below.
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Thus

A [states accessible from x by adding a call},

B {states accessible from x by a hangup}.

For an event e x, the set A, is to consist of those states to which the
network might pass upon the occurrence of e in x. Thus, if e is a blocked
call, Ax Ix}; also

cEx
not blocked in

The number of calls in progress in state x is denoted by Ix l. The number
of call attempts c x which are not blocked in x is denoted by s(x), for
"successes in x." The functions]. and s(. defined on S play important
roles in the stochastic process to be used for studying routing.

It will be assumed throughout this work that attempted calls to busy
terminals are rejected and have no effect on the state of the network;
similarly, blocked attempts to call an idle terminal are refused, with no
change of state. Attempts to place a call are completed instantly with some
choice of route, or are rejected, in accordance with a routing matrix.
A routing matrix R (ry), x, y S, has the following properties: for

each x S, let II be the partition of A induced by the equivalence rela-
tion of "having the same calls up," or satisfying the same assignment of
inlets to outlets; then for each Y II, r, for y Y is a possibly improper
probability distribution over Y (that is, it may not sum to unity over Y)

YAx

and r 0 in all other cases.
The interpretation of the routing matrix R is to be this: any Y

represents all the ways in which a particular call c not blocked in x (be-
tween an inlet idle in x and an outlet idle in x) could be completed when the
network is in state x; for y Y, r is the chance that if this call c is at-
tempted in x, it will be completed by being routed through the network
so as to take he system to state y. That is, we assume that if c is attempted
in x, then with probability

(1) 1- r
YEAcx

it is rejected (even though it is not blocked), and with probability r it is
completed by being assigned the route which would change the state
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X to y, for y Acx. The possibly improper distribution of probability
rxy, y Y} indicates how the calling rate k due to c is to be spread over
the possible ways of putting up the call c, while the improper part (1) is
just the chance that it is rejected outright.

This description of routing matrices is a generalization of that used in
[1] and [2] in that it permits, in the nonvanishing of (1), the rejection of
unblocked calls, forbidden in the cited references.
Thus a routing matrix R is any function on S with rxy >= 0, ry 0 unless

y A or y x, and such that

E
yEAz

and

ry =< 1,
Y Acx

for all c x not blocked in x. A routing matrix corresponds to a fixed rule
if r. 0 or 1 for x y; otherwise it corresponds to a randomized rule.
The convex set of all possible routing matrices is denoted by C.
The routing rules and doctrines that might be considered here are of

course more numerous by far than those we have introduced above. In
particular, time-dependent rules and history-dependent rules are natural
generalizations. However, since we will be considering only time-invariant
traffic and ergodic Markov processes as representations of operating net-
works, such generalizations add very little of any significance.
An important point, however, is that the routing methods considered here

are based on a complete knowledge of the state of the system, i.e., we postu-
late that we arc in the case of "perfect information." This postulate is
grossly urealistic for present day electromechanical telephone systems;
for an electronic system with a very large and very cheap memory, it be-
comes realistic: the state of the network can actually be stored and the
routing rule in use represented by a giant translator. Such procedure
overcomes the obvious impracticality of determining the state by examina-
tion of the actual network, and is actually used in the Bell System’s No. 1
ESS (Electronic Switching System) (see [4] and the references therein).
The routing matrices R used in [1], [2] have the property that if a call is

not blocked in a state, then it is completed in some way; only blocked
attempts or attempts to busy terminals re rejected. Thus none of these
rules for routig resembles the methods that are at present likely to be
used in practice. However, since C contains rules that reject certain calls
in certain states, even though these calls are not blocked, it turns out that
a large class of routing rules which do mirror what might happen in practice
is included in C.
Some of the simplest routing rules are not based on an.y knowledge
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about the current state of the network. Given a call c that has been
tempted, they provide a list of routes to be tried in order; the first route
found available is used for the call. The list may include all possible routes
for c, or only some of them. It is easy to construct a routing matrix to
represent such a rule. Let rl, r., rn be the routes to be tried for a call c.
For each state x in which c can occur, let rxy 1 if use of the first ri that
is available in x takes the system from x to y, and let rxy 0 for all other
y Acx. If no route for c that is available in x is among rl, rn, then
c is rejected in x even though it may not be blocked, simply because the
"sieve" for finding routes is too coarse.

It was assumed in the previous paragraph that no information about the
state was used. If it is known, e.g., in which element A of a partition II of S
the state currently is, a similar rule can be represented by a class of lists
(of routes to be tried in order), one for each A II. The same kind of con-
struction then yields the appropriate R. Here the A such that xt A is
acting as the "information state."
Thus many R from C which reject certain calls in certain states describe

a rule which closely resembles what is done in practice, e.g., in the trans-
lator of the Bell System No. 4A Crossbar Switching System.

3. Probabilistic assumptions and stochastic processes. A Markov
stochastic process xt taking values on S is used as a mathematical de-
scription of an operating connecting network subject to random trafSc.
It is assumed that this operation is in accordance with one of the routing
matrices R of 2. The rest of the process xt is based on two simple proba-
bilistic assumptions:
(1) holding-times of calls are mutually independent variates, each with
the negative exponential distribution of unit mean;
(2) if u is an inlet idle in state x, and v u is any outlet, there is a (condi-
tional) probability,

Xh + o(h), X > O,

that u attempts a call to v in (t, -- h) if xt x, as h -- 0.
The choice of unit mean for the holding-times merely means that the

mean holding-time is being used as the unit of time, so that only the
traffic parameter X needs to be specified.

It is convenient to collect these assumptions and the chosen routing
matrix R into one transition rate matrix Q (qx,) characteristic of xt:
this matrix is given by

(2)

1 if y B,,
Xrx if y A,

q Ixl X[s(x) rxx] if y x,
0 otherwise.
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In terms of the transition rate matrix Q it is possible to define an ergodic
stationary Markov stochastic process {xt, real} taking values on S. The
matrix P(t) of transition probabilities,

p(t) /x x0

satisfies the equations of Kolmogorov,

d_d_ P(t) QP(t) P(t)Q, P(O) I,
dt

and is given formally by the formula

P(t) exp tQ.

Since the zero state (the state with no calls in progress) is accessible from
any state in a finite number of steps with positive probability, the process
has only one ergodic class, and there exists a unique nonnegative row
vector

p= {p,,x S}

such that as - ,
and p satisfies the "statistical equilibrium" or stationarity condition
prQ O, which can be written out in full in the simple form

[I x I+ ,(x) ,r]p _, p, + , _, p,r,, ,.
YEAx YEBx,

It is possible that confusion might arise in the mind of the reader as to
whether we are talking about central office connecting networks or large
trunk networks such as the toll system. For in telephone traffic theory these
two areas of application are often described by different models: a "finite
source" model like the present one, in which the conditions of the inlets
and outlets form a significant part of the state of the system, is commonly
used for the former; an "infinite source" model, with groups of customers’
lines reduced to Poisson sources of traffic, is frequently used for the latter.
The reason for this difference is that it has simply turned out to be suffi-
cient, in the toll case, to restrict attention to the trunking network as the
object of principal interest, and to use the simpler Poisson description of
sources.

In principle, of course, the model to be used here serves to describe either
are listed above, although in the toll case it naturally demands use of a
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very large number of states. Thus in the sequel we make no attempt to
distinguish the toll case from the central office case. This viewpoint is
justified by the fact that the results to be obtained are robust under passage
from finite to infinite source models, or they can be reformulated and re-
proved in the infinite source context.

4. Formulation of the routing problem. The most common figure of merit
used by telephone traffic engineers for evaluating connecting networks is
the probability of blocking, the fraction of call attempts that are blocked.
It is natural, therefore, to use this quantity as the objective function in our
optimization problem of routing. It has been shown [2] for the process xt
to be studied here that if no unblocked call is rejected, then the probability
of blocking (in the mnemonic form Pr{bl}) is given in terms of the sta-
tionary state probability vector p by the formula

Pr {bl}

where 5, is the number of idle inlet-outlet pairs that are blocked in state x
and a, is the number of idle inlet-outlet pairs in state x.
By the same methods it follows that for a process xt defined in terms of

an R C the fraction of attempted calls which are not completed (are
"lost"), be it because they are blocked or simply rejected, is given by

p’(5 q- r)
ida

where r {r,x, x S} is the diagonal of the routing matrix R.
We can now replace the informal problem of minimizing, by suitable

routing, the fraction of call attempts that are lost by a precise problem of
mathematical programming, as follows: choose R C so as to achieve

(3) min
p’ (5 q- r)

subject to p’Q 0, p’l 1, and p >- 0. (The "1" in "p’l" is the vector
with all components 1.) Of the constraints, the first is the equilibrium condi-
tion on p, the second states that the components of p sum to one, and the
third says that p is nonnegative. It is understood, of course, that Q is to
be related to R by (2) or, what is the same, by

Q H q- kR -+- diag( Ix + ks(x) 2Xr,x) Q(R),

where H (h,) is the "hangup matrix" such that hx
as y B, or not.

1 or 0 according
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5. Optimality of fixed rules. If a routing matrix has any entries other
than integers, its use introduces a certain amount of additional randomness
into the operation of the network, over and above that due to the random
traffic, and may be said to represent a "mixed" strategy. It is a natural
intuition that since minimizing the probability of loss is a game played
against nature, rather than against an intelligent adversary, there can be
no real gain from this additional randomization, i.e., that a fixed rule can
be found that is as good s any "mixed strategy." To this effect we prove
THEOREM l.

min
p’( -4- r)

subject to R C, p’Q O, p’l 1, p >- O, Q Q(R), is achieved by a

fixed rule.

6. Reduction to linear programming problems. It is possible to describe
linear programming problems which are equivalent to our nonlinear problem
of optimal routing [5]. One such reduction will be given s an example.
Consider the "adjoined" linear problem of finding R C and >= 0 such
that

q’( -f-r) min,

Qsubject to q O, q O, q’l O, qa a, and Q Q(R) as before,
where a is a given positive number. (To see that this problem is indeed
linear, we change variables to u qr.) We can then prove"

THEOREM 2. For any a > O, R and are a solution of he adjoined linear
problem if and only if R is a solution of the routing problem (3).

7. Trying to get closer to the optimal routing roles. It is particularly
important to try to verbalize, and eventually to mechanize, routing strate-
gies that are optimal, near optimal, or by some yardstick just "good."
In this endeavor, the fact that the original routing problem (3) can be
formulated as a linear programming problem, while interesting theoretically
and perhaps reassuring, is nevertheless of limited usefulness. For this
reason we have attempted to take advantage of some of the special prop-
erties of the problem that are due to its telephonic origins, and to describe
at least part of the optimal policy in terms of combinatorial properties of
the connecting network.

In order to illustrate one possible approach we limit our discussion to a

very simple example; once the idea is understood, the principle involved
can be abstracted, and a general theorem proved.

It can be shown that minimizing the probability of blocking is equivalent
to maximizing the fraction of events that are successful attempts, where
an event is either a hangup, a blocked attempt, or a successful one. This
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TRUNKS TO
DE STINATION

LINE GROUP -,- i x

LINE GROUP 2 )

2 3

/

CROS,POINT

maximal fraction is the limit, as n becomes large, of

1 E(n),
n

where E(n) is the expected number of successful calls in n events, if the
network starts in state x and an optimal policy is followed. We shall base
our approach on the vectors E(n).

For our example we choose the overflow system or grading depicted in
Fig. 1. There are two groups of lines, one of two lines, the other of three
lines. Each has access to one primary trunk to which the other does not
have access, and they share a single common overflow trunk. The possible
states of this system form the partially ordered system shown in Fig. 2.
Alternative ways of putting up particular calls are marked with "ch",
for "choice."

After inspecting the system and its state diagram, intuition tells us that,
as a first guess, calls should use the primary trunks whenever they can, so
as to leave the overflow open as much as possible. Let us, on this basis,
formulate some preferences for certain routes.

Clearly, in state 0 a call from group 1 should go on trunk 1, so in state 0
we prefer state 1-1 to (1-3) similarly we prefer (2-2) to (2-3). The same
principle should apply if certain calls are already in progress. Thus in state
(2-2) we prefer (1-1) (2-2) over (1-3) (2-2), and in state (1-1) we prefer
(1-1) (2-2) to (1-1) (2-3).
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TWO CALLS
BLOCKED

(1-1) (1-3)(2-2)’// "(1-)(2-2) (2-3)

(,- 1(I-31 (-3112-2) 1-) 12-2) 1-)(2-3) 12-2112-31

(I-I) (I-3) (2-2) (2-3)

TATES
HAVE NO CALLS
BLOCKED

0

(m-n)

THIS NOTATION INDICATES A CHOICE IS POSSIBLE
BETWEEN TWO DIFFERENT WAYS OF PUTTING
UP A PARTICULAR CALL

A CALL FROM GROUP m IS ON TRUNK n
FIG. 2. State diagram for overflow system

If taken seriously a[d followed, the preferences listed above define a
policy for putting in calls. We shall show that this policy differs from the
optimal policy oly i1 theft the latter may reject some calls, while the former
accepts all unblocked calls. To do this write xPy if state x is preferred to
state y. Thus the relation P is defined by the conditions

(1-1) P (1-3),

(2-2) P (2-3),

(1-1) (2-2) P (1-3) (2-2),

(1-1) (2-2) P (1-1) (2-3).

We let E(n) be the expected number of successful call attempts in n
events, if the system starts in state x and an optimal policy is used. It must
be explained here that by "use of an optimal policy" over n steps we mean
simply that we use a policy which will maximize the average number of
successful attempts among those n events; the policies that achieve this
may, for all we know at this point, be different for different n.
A slight departure from the probabilistic model of 3 is necessary here:

we assume that an idle line generates calls to the trunk destination at a
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rate k > 0, instead of assuming that an idle inlet-outlet pair generates
calls at . Also, we let a be the number of idle lines in x, rather than that
of idle inlet-outlet pairs, and s(x) that of idle lines that are not blocked.
THEOREM 3. If xPy then

E(n) >= E(n),

Proof.
()

n 1, 2, 3, .-..

Ixl +
and xPy implies s(x) >= s(y), so the theorem is true for n 1. Assume
that the theorem holds for some n _-> 1. There are four cases, corresponding
to the four conditions defining P. We shall give the argument for the case
where

x (1-1)(2-2), y (1-3)(2-2),

and (as we know) xPy; the others are similar.
Now pparently,

1E(_l)(_)(n -]- 1)
2 -- 3X

{E(_)(n) -]- E(_l)(n)}

max E(_)(_) (n), 1 + E(_)(_)(.) (n)

2
2q-3k

max {E(_)(_)(n), 1 + E(l_)(_)(_.)(n)},

and

E(_)(._) (n + 1) 1
2-t-- 3k

{E(_)(n) -]-E(_)(n)

2q-3X
max {E(_)(._)(n), 1 -t- E(_)(_)(._)(n)

q-
2q-3h

By the induction hypothesis,

E(1_1) (n) >_- E(1-3) (n),

E(1_l)(2_)(n) E(l_)(2_)(n);

hence,

E(n q- 1) >= Ey(n q- 1),

for the given x und y.
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The point is that each event that can occur leads to a "worse" state in
y than it does in x. Thus the hangup of the group 1 call leads both to the
state (2-2), a standoff; hangup of the group 2 call takes x into (1-1) and
y into (1-3), and (1-1)P(1-3); one of the possible new calls leads both
x and y to the state (1-1) (1-3) (2-2), another standoff; the other two
possible new calls are blocked in y but not in x, so that by the induction
hypothesis, rejecting one of them and staying in x is at least as good as
having one of these blocked calls make an attempt in y.
We conclude from Theorem 3 that in the optimal policy the calls which

are not rejected are put on the primary trunks if these are available, and
on the overflow only if the primary trunk appropriate to the call is already
busy. This is entirely in agreement with our original intuition.
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FURTHER INVESTIGATION INTO THE GEOMETRY
OF OPTIMAL PROCESSES*

A. BLAQUI3RE

This pper is a continuation of the work developed prticulrly in
[1], [2], nmely, it is further investigation into the geometry of optimMly
controlled systems. In order to limit the length of our ccount, we will
refer the reder to these ppers, chiefly to 1-8 of [2] which contain the
basis of our theory. Here we shM1 suppose that the reder is cquMnted
with the primary concepts. We shll start from [2, 9] nd investigate from

different viewpoint some locM properties of limiting surfaces Z (whose
definition is given in the bove references). We shall limit our discussion
to the cse of interior points of 2;.

Indeed we shll use the sme notations, except for the fct that / nd
will be replaced by / nd respectively. Moreover (P(x), or (P(x()),

will denote the hed of vector x in E+1. Also we shM1 comply with the
following classical notations. If is any set in a topological space, then
2 is the largest open set contained in 2 and is the topological closure of
2.
Most of our derivations will be based on the concept of separability

without recourse to the concept of convexity. More precisely we will meet
with two kinds of properties, some of which will rely on the separability,
others on the nonseparability, of tangent local cones which we shall next
define. By the way, as pointed out in [1], [2], the maximum principle appears
as a consequence of this geometrical analysis. However, in this paper, we
will not lay stress upon its derivation.

1. Local properties of Z surfaces. First of all we will define the tangent
cone $(x) and the regions A/S(x), B/S(x), at my interior point (P(x)
of Z.

1.1. Regions A/(x) and B/8(x). Consider the region A/Y,, namely,

A/Z (A/Z) O Z, (A/Z)f] (B/Z)=

and let n be any bound vector at point (P(x).
As a first basic assumption let us assume that there exists > 0 such
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emy, Colorado, April 15, 1965.
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search was supported in part by the National Science Foundation under Grant
GP-803 and has been reported in [1] and [8].

19



that, for every e such that 0 < e < z, (p(x + e n) belongs to one of the

two regions A/, B/.
Now let us introduce the following definitions.
DEFINITION l. n A/S(x)if .’:la > 0 Ve: 0 < e < a, ,(x + en) A/Y,.
DEFINITION 2. n B/S(x) if 3 > 0 e: 0 < < , (P(x + en) B/Y,.
A/$(x) and B/$(x) are sets of vectors emanating from P(x). Namely,

A/$(x) and B/$(x) are local cones"

A
A/S(X) {n:n obeys Definition 1},

A

B/$(x) {n:n obeys Definition 2 }.
1.2. Interior vectors of A/$(x) and B/$(x). First of all we shall define

interior vectors of A/$(x) and B/S(x).
Given n’ln] 1, n A/$(x), for instance, let us consider a conic

ttineighborhood A of n in E+ A is composed of vectors n, 1, ema-
nating from (P(x). We shall say that n is an interior vector of A/$(x) if
there exists a conic neighborhood A A of n, in E+, such that

Vtt AA la > 0 Ve" 0 < e < a, 6’(x + en) A/Y,.
Likewise we shall say that, is an interior vector of B/8(x) if there

exists a neighborhood A A of n, in E"+-, such that

V. A > 0V" 0 < < , 6’(x + ,) B/.
Then we define

(A/g(x)) {kn: tt 1, n is interior vector of A/g(x), k > 0},

(B/S(x)) {kn: n 1, n is interior vector of B/g(x), k > 0}.

As a second basic assumption, we shall assume that, if n is at interior
vector of A/g(x) (or B/S(x)), ]hi 1, then there exists a A (or A.)
such that

inf a a, a > 0
ti AA

(or
inf , > 0).

ttiAB

Now let us prove the following property.
PnOeEIT:C 1. If n (A/*(x)), then

a > 0V: 0 < < a, (x+ ,) A/.

Proof. Obviously, we can assume without loss of generality that n 1.
Consider a neighborhood A of a in A/g(x), and the ball S defined by
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Then the set of points

belongs to A/Z,, gnd for every e such that 0 < e < a, (P(x + en) is an

interior point of f, so it is an interior point of A/Y,, which proves Prop-
erty 1.

1.3. Cone $(x) tangent to a limiting surface. As matter of fact, regions
A/$(x) and B/$(x) my be neither open nor closed regions, depending on the
local properties of 2. One can easily prove that they hve the following
properties.
PROPERTY 2.

(A/S(x)) I.J (B/S(x)) En+l.

Proof. This is due to the fact that, whatever n En+l, it belongs either
to A/$(x) or to B/$(x), which are the only two possible cases.
PROPEnTY 3. Let L_ and L+ be open rays emanating from (P(x), parallel

to the xo-axis, pointing into the negative xo-direction and into the positive Xo-
direction, respectively. Then

L+ c A/(x), L_ c B/(x).

Hence A/$(x) , B/$(x)
Proof. This property is a consequence of the definition of regions

B/Y‘, according to which

L+ > O, (P(x+ .) A/Y,,

and

Then Property 3 is a consequence of Definitions 1 and 2.
PROPERTY 4.

(A/8(x)) f’l (B/$(x))

Proof. In order to prove Property 4, assume that

and let

Then

(A/g(x)) VI (B/S(x))

. A/(x), . B/(x).

9> 0/e’0 < e < a, e(x+ en) A/,
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l>0V:0<<t, (x+,) B/.

Assume for instance that a < 5, then

/e" 0 < e < a, (x + en) A/ and (x + ) B/,

which would imply (A/Z) (B/Z) . But since this is not true,
Property 4 is established.
From Properties 2, 3, 4, one can conclude that the couple of regions

{A/$(x), B/$(x)} is a partition of E+. Hence

A/$(x) B/$(x).

DEFINITION 3. The local cone $(x) associated o at point @(x) is the
common boundary of A/$(x)and B/$(x), namely,

$(x) (/$(x) (B/$(X)).

1.4. Further properties of regions A/$(x) and B/$(x). By means of
Definitions 1, 2, 3, and Property 1 we can deduce:
LEMMA 1. Given a veclor n(e) from a poinl @(x) of , which is a conlinu-

ous funclion of parameler e, > 0; if
,(e) 1 as

and

(x+,()) A/ V<,
where is a positive number, then

J/s(x).

LEMMA 2. Under the same assumptions, if

(x + ,()) B/z V < ,
where B/ (B/) U , then

B/s(x).

Proofs. In order to prove Lemma 1, assume that our assertion is incor-
rect, namely,

A/s(x),

then

(B/a(x)) .
Then since ,(e) -- there exists a positive number < , such that
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< ,() < (B/(x)) ,() < B/(x).

Then in view of Definition 2 and of our second basic assumption, there
exists a positive number z, z < 8 < % such that

< (P(x + en(e)) < B/Y,,

which is in contradiction with our assumption.
To prove Lemma 2, assume that

B/$(x), say < (A/S(x)).
Then there exists a positive number 8 < % such that

e < 8 n(e) < (A/$(x)).

Then in view of Property 1,

.a > 0" o- <8 </e: 0 < < o-, (p(x+ e,,) { A/Y,,

which again contradicts our assumption.
The following corollary can be readily deduced from the above lemmas.
COROLLARY 1. If (P(x + en(e)) 2: Ve < y, then $(x).
Indeed

Y, (A/Y,) f’l (B/y,),

,(x + ,,()) < A/x < A/(x),

(P(x + ca(e)) < B/Y, 1 < B/$(x).

Finally, (A/$(x)) f’l (B/$(x))says that { $(x).

1.5. Cone of f vectors. Next we shall consider systems governed by the
set of differential equations [2, 5]

(1) 2s =fJ(xl, x,, ul, u,), j 1, n,

where ul, u,, are control variables.
Given functions of time u,(t), u(t), to _-< =< h, these equations

define a set of rules which govern the behavior of the system during time
interval [to, h].
We shall assume that vector u, whose components are u,, ...,

belongs to a prescribed subset U of E.
Moreover, following the assumptions of [1], [2], we shall consider the

functional

ft fo(g(t), u(t)) dt,

where u(t) transfers the system, in E", from initial state p0 either to pre-
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scribed terminal state p1 or to some other terminal state/1, in unspecified
time 6 to.
Then one can easily show that the equation of F, or , is

Xo() + fo((), u())& C,

whence

()

(3)

where

0 f0(, u).

If we combine (1) and (2) into a single vector equation, we g

f(x, u),

and

*(x, u)
f0(: u)-

Furthermore we shall assume that the functions

fj(xl, ..., x,, ul, ..., u,,), j O, 1, ..., n,

Of(x x,, u ...,
3x,

a 1, 2, n

are defined and continuous on E X U.
Consequently, given any constant vector u U, (3) defines a constant

ector field, namely a field of velocity vectors in E+, which has the follow-
ing properties"
(i) The lines of force of the field are integral curves of (3), namely, they
are continuous solutions in E+.
(ii) Through every point of E"+, there passes one and only one such tra-
jectory, whose tangent is uniquely defined at that point.
Now consider such an integral curves L whose running point passes

through (x) Z at any time t, which can be arbitrarily chosen, and let

" An (At) a hx’
at’ " (at)= at’

where

Ax’ Ax(t’)
a Ax" t"x(t + at) x(t), ax( x(t- at) x(t),

t+ At, t" t-- At, At > O,

$ Contrary to P or , L has neither initial point nor endpoint, since the vector
field stretches throughout the whole space.
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(P(x+ Ax’) L, P(x-f- Ax") L,

n’(At) and n"(At) are continuous functions of At > 0, and

. (t) f(x, u ),

. (At) -- --f(x, ub), as At 0;

and, as a consequence of the global properties of 2-surfaces (see [2, Theo-
rem I])

6’(x-+- ,Sx’) (P(x-+- /t .’(At)) A/,

(P(x -+- /x") (P(x -4- At ." (At)) B/Z, VAt.

Then from Lemmas 1 and 2 follows"
LEMA 3. A any point 6 (x) of a -surface,

f(x, ub) A/$(x),

-f(x, u) B/(x), u U.

1.6. Cone ,(x). First of all let us introduce the following definitions"
DEFINITION 4. An n-dimensional separating hyperplane 3(x) of the closed

cone A/$(x), or B/S(x), at point (P(x) 2, is an n-dimensional hyper-
plane through (x) such that all the vectors n of A/s(x), or B/$(x), lie
in one of the closed halfspaces determined by 3(x).

Let us call /A or /e, depending on the case which is considered, the
corresponding closed halfspace, and RA or Re, respectively, the correspond-
ing open halfspace.

DEFINITION 5. If there exists an n-dimensional separating hyperplane
of A/$(x) or of B/$(x), the cone A/$(xj or B/$(x) is separable.
When A/$(x) or B/S(x) is separable, let us consider any separating

hyperplane 3(x), and vector n(x), In(x)] 1, normal to 5(x) at point
(x).
(i) If A/$(x) is separable, we choose n(x) such that n(x) [/a
(ii) If B/$(x) is separable, we choose n(x) such that n(x)
Note that A/$(x) and B/$(x) are both separable at regular interior

points of 2. Then obviously assumptions (i) and (ii) are equivalent.
DEFINITION 6. (n (X) is the set of all vectors n(x)"

e.(x)
x

{n(x)}

Remark. It may easily be seen that, if 2/$(x) is separable, then B/$(x)
is nonseparable and conversely, except if 6(x) is a regular interior point
of .
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On the other hand it may be that, at some points of 2:, neither A/s(x)
nor B/$(x) is separable.

2. Linear transformations. To each optimal trajectory 1*, generated by
control u*(t), to <- <= tl, we have associated a linear transformation,
defined by the variational equation

o(4) a
.()

Equation (4) defines a nonsingular linear operator A (t, t) such that

t’ < t<tl,n(t) A(t, t)n,

where n(t) is defined at point (x*(t)), and a’ n(t’) at point (x*(t’)).
Some properties of this lineur operator huve been given in [1], [2]. Here

let us only recall the most important ones which will be useful for the fol-
lowing arguments"
(i) The equation adjoint to variational equation (4) is

*()

or given inigial eondigion (0) 0, ghe solugion of () is unique and
continuous on [0, ].
(ii) ().() eonsg., N N .
Moreover one can prove he following lemmas. Le

(,), ("), " (’, ,,)’, ,, ’.
La 4. U ’ A/g(x*(’)), he " A/g(x*(")).
L. If " B/g(x*(")), he ’ B/g(x*(V)).. Theorems of separability; attractive and repulsive subsets of .

Now we shall prove ghe following gheorems. Leg V’ > ’.
o 1. If B/g(*(V)) i eparable, he B/g(x*(")) i eparable.

Proofs. In order go prove Theorem 1, leg (x*(’)) be an -dimensional
separating hyperplane of B/g(x*(V)) ag poin (x*(’)), which degermines

ghe closed halfspaee R and ghe open halfspaee (following ghe noga-
gions of 1.6), namely all ghe veegors of B/g(x*(V)) belong go .

Leg g(*(")), o, and be ghe gransforms of (*(’)), R, and, respeegively, ag poin (x*(")), by ghe linear gransformagi0n

(’,").
Because ghe gransformagion A (, is linear and nonsingular, ghe com-

mon boundary of o and is (x*() ).
Consider any veegor ", " B/g(x*(V)) a poin (*()), and sup-
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pose that it belongs to p". Then it is the transform of vector n’ at
(P(x*(t’)) such that

Moreover, because of Lemma 5,

n’ < B/$(x*(t’)).

Since this is impossible we conclude that

n < p, <B/$(x*(t")).

Accordingly,
(i) B/$(x*(t")) is separable,
(ii) II(x*(t")) (x*(")) is sepsrsting hyperplne of B/(x*(t")),
nd
(iii) p7
Theorem 2 cn be readily proved by similar rguments, using Lemm 4.
From Theorems 1 and 2 follow"
COROLLARY2. An optimal trajectory I’* cannot join points
(P(x*(t’)) and (P(x") (P(x*(t")), t" > t’, if B/(x*(t’)) is separable

and B/$(x*(t")) is not separable.
COlmLLAV 3.. An optimal trajectory F* cannot join points d (x’)
(P(x*(t’)) and (P(x") (P(x*(t")), t" > t’, if A/(x*(t’)) is not separa-

ble and A/$(x*(t")) is separable.
Now let us define attractive and repulsive subsets of
DETON 7. An attractive subset of is a nonregular interior subset

Ma , at all of whose points B/$(x) is separable, and indeed A/$(x) is
not separable.
DEFNTO 8. A repulsive subset of is a nonregular interior subset

M, 2, at all of whose points A/$(x) is separable, and indeed B/$(x) is
not separable.
The names attractive and repulsive are explained by the following corol-

laries which are straightforward consequences of Corollaries 2 and 3.
COROLLAnY 4. If a point of an optimal trajectory F* belongs to an attractive

subset Ma of , then F* cannot go from M,, to a regular interior point of
or to a point on a repulsive subset.
However apparently, an optimal trajectory which starts at a regular

interior point of 2 or at a point on a repulsive subset can reach an attrac-
tire subset.
COnOLLanY 5. An optimal trajectory F* which starts at a regular interior

point of , or at a point on an attractive subset, cannot reach a repulsive subset.
However apparently, an optimal trajectory which starts on, or belongs

for a nonzero interval to, a repulsive subset can leave it.
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4. Regular subsets, antiregular subsets of 2. As pointed out earlier, at
regular interior points of 2: both A/$(x) and B/$(x) are separable. Con-
versely if, at a point (e(x) of 2;, A/$(x) and B/$(x) are both separable,
(P(x) is a regular point of 2:. Moreover one can prove the following.
COROLLARY 6. If (P(x*(t’)) and (P(x*(t")), t" > t’, are regular points

onan optimal rajectory F* whose poings are interiorpoins of , then (P(x*(t)),
ttt’ <- <- is a regular point of Z.

Indeed since A/$(x*(t")) is separable, A/$(x*(t)) is separable, and
since B/$(x*(t’)) is separable, B/$(x*(t)) is separable; accordingly,
(P(x*(t)) is a regular point.
We shall also consider the case of interior subsets of 2; at all of whose

points neither A/(x) nor B/$(x) is separable. We shall call such subsets
aniregular subsets. Properties of antiregular subsets are codified by the
following corollary.
COIOLIAR 7. If a poin of an optimal rajectory F* belongs o an anti-

regular subset of , then F* cannot go from his subset o a regular interior
point of X or to a point on a repulsive subset. An optimal rajectory F* which
stars at a regular interior point of X, or at a poinl on an attractive subset,
cannot reach an antiregular subseL
Again this Corollary is a straightforward consequence of Theorems 1

and 2.

5. Symmetrical subsets of $(x).
DEFINITION 9. A symmelrical subsel, I(x), of $(x) is defined by"

I(x) =x {n". (x)nd . ,(x)}.

Consider points 6’(x*(t’)) and 6’(x*(t")), t" > t’, along optimal ra-
jeetory P*, and assume that A/s(x*(t")) is separable; then, according o
Theorem 2, A/8(x*(t’)) is separable.
Le a(x*(t’)) and 5(x*(t")) be separating hyperplanes at 6’(x*(t’))

and 6’(x* (") ), and R--7’, Ra", he dosed halfspaees which they respectively
deermine, following he definitions of 1.6, namely,

A/8 x t’ c -ff-
A/$(x(t")) c ".

On the other hand consider any vector ,’ n(t’) at (P(x*(t’)) such that

,’ I(x*(t’)).
This implies

.’ < (x*(t’)).
a(x*(t")) is the transform of a(x*(t’)) due to A (’, ").
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and, according to Lemma 4,

. A/8(x*(t")),

then

Now if

which implies

, A(t, )n’.

." (A/$(x*(t"))),

--" C k-7".
But this is impossible since

)) ER.’=*- .-- E (x*(t’ -.’ " "
Consequently

Moreover, since
vector n, say,

Accordingly,

." s(x*(t")).
I(x*(t’)), the above result also applies to the

-,," (x*(t")).

." I(x*(t")).
We reach the following conclusion.
LEMMA 6. Along a piece of optimal trajectory at all of whose points

A/$(x*(t)) is separable,

." t",,’ I(x*(t’)) < (x* ))

where

" t" t" > t’n A(t, ),,

By similar arguments one can easily prove the following.
LEMMA 7. Along a piece of optimal trajectory at all of whose points

B/g(x*(t)) is separable,

n" I(x*(t")) n’ < I(x*(t’)), t" >= t’.
As a matter of fact these conclusions trivially apply to the case of zero

vectors.
From Lemmas 6 and 7 one can easily deduce the following theorems.
TnEOnEM 3. Along a piece of optimal trajectory at all of whose points
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A/$(x*(t)) is separable, the dimension of I(x*(t)) is a nondecreasing func-
tion of t.
THEOREM 4. Along a piece of optimal trajectory at all of whose points

B/$(x*(t)) is separable, the dimension of I(x*(t)) is a nonincreasing func-
tion of t.
THEOREM 5. If I(x*(t’) and I(x*(t") are hyperplanes at points

(P(x*(t’)) and 5)(x*(U)), U >= t’, of optimal trajectory F*, where
A/$(x*(t’)) and A/$(x*(U)), or B/$(x*(t’)) and B/$(x*(U)), are separ-
able, and if I (x* (t’)) is of the same dimension as I(x* (t") ), then I(x* (t")
is the transform of I x*( t’) due to the linear transformation A

6. Degenerated case.
DEFINITION 10. A subset of 2; at all of whose points

(i) either (B/$(x)) 2;,
(ii) or (A/$(x)) ,
is called a degenerated subset.

In case (i) the degenerated subset will be called a B-degenerated subset,
and in case (ii) it will be called an A-degenerated subset.

In this section we shall investigate some properties of an optimal tra-
jectory a portion (or a point) of which belongs to a degenerated subset.

First of all let us consider the case of a B-degenerated subset, namely

Assume

and let

(B/(x*(t) 2;.

(B/(x*(t’)

n’ (B/$(x*(t’) , where n’ n(t’).
Then n’ is the transform of vector n n(t) due to the linear transformation
A (t, t’). Moreover, as a straightforward consequence of Lemmas 4 and 5,

n (B/$(x*(t))) ,
which contradicts the assumption. Accordingly (B/8(x*(t’))) .
Hence"
THEOREM 6. If point (P(x*(t)) of optimal trajectory F* belongs to a B-

degenerated subset and 5)(x* (t’)) is an interior point of , then 5)(x* (t)
belongs to a B-degenerated subset, whatever t’ >= t.
Now consider vector n’ such that

.’ (x*(t’)).
According to Lemma 5, it is the transform of vector n(t), <t such
that
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n B/$(x*(t));

and since we assume

(B/S(x*(t) ;,
it follows that

,, (x*(t)).
Hence"
THEOREM 7. Along a piece of optimal trajectory F* which belongs to a B-

degenerated subset,

,,’ (x*(t’)) ,, (x*()),
),n n(t),n A(t, )n, >_- t.where n n(t’ t’ t’

Moreover, along a piece of optimal trajectory which belongs to a B-
degenerated subset, Lemma 3 has the following corollary.
COROLLARY 8.

-f(x*, u) Vu U.

By similar arguments one can prove the following.
THEOREM 8. If point (P(x*(t)) of optimal trajectory F* belongs to an A-

degenerated subset and (P(x*(t")) is an interior point of Z, then 5)(x*(t’)
belongs to an A-degenerated subset, whatever ’ <-_ t.
THEOREM 9. Along a piece of optimal trajectory F* which belongs to an

A-degenerated subset,

"wheren n(), n n(t), n A(t t)n," <= t.
Coaon 9.

f(x*,u) 8 Yu U.

At last from Property 3 it follows that if B/$(x) , then L_ $;
and if A/S(x) , then L+ S.

7. The maximum principle. As an example, consider an optimal tra-
jectory I’*, no point of which belongs to a repulsive subset of Z.
Let (p0 En+l and (pl EL+ be its starting point and its endpoint (namely,
the target) at times to and tl, respectively. (p0 may be regular or nonregu-
lar; in any case, B/$(x*(to)) is separable.

Let 5(x*(t0)) be a separating hyperplane, and the closed halfspace
which contains B/$(x*(to)) (following the notation of 1.6).
From Theorem 1 we know that B/$(x*(t)) is separable for every

such that to <- <- tl, and from remarks (ii), (iii) of 3 we know that
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the transform 5(x*(t)) of 5(x*(t0)) due to the linear transformation
A (to, t) is a separating hyperplane of B/g(x(t)), and that

B/$(x*(t)) c Rs,

where Rs is the transform of R.
Let n, n 1, be the vector normal to 5(x*(t0) at point (o such that

and let us choose X(to) hn, h > 0.
From remark (ii) of 2, it follows that X(t) is normal to 3(x*(t)) and

(t) .
At last, from Lemm 3,

-f(x*(t), u) B/$(x*(t)) u U,

--f(x*(t), u) u U.

Hence,

(6) .(t).f(x*(t), u) 0 Vu U.

A more complete discussion would lead to the further conditions that

(7) .(t).f(x*(t), u*(t)) 0 Vt [to,

and

(8) 0(t) const. -< 0.

Conditions (6)-(8) embody the maximum principle of Pontryagin for
the case of optimal trajectories along regular or nonregular attractive sub-
sets of 2.
The same conclusions hold for pieces of optimal trajectories along non-

regular repulsive subsets of 2. They can be easily obtained by similar
rguments.

8. Trivial maximum principle. From the nalysis of the degenerated
case it follows that if
(i) the starting point (x), x x*(t0), of optimal trajectory F* is
B-degenerated point,
(ii) $(x)

_
T(x), where T(x) is an n-dimensional hyperplane through

X and
(iii) all the points of F* are interior points of 2,
then there exists a nonzero continuous vector function (t) which is a solu-
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tion of adjoint equation (5), such that

0(t) o,
.(t).f(x*(t), u) 0 Vu U,

for all on [to, h] along optimal trajectories (or pieces of optimal trajec-
tories) which belong to degenerated subsets of 2;.
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A NEW ALGORITHM FOR A CLASS OF QUADRATIC
PROGRAMMING PROBLEMS WITH APPLICATION

TO CONTROL*

M. D. CANON AND JAMES H. EATON:
Abstract. The control problem considered is that of determining an input which

will take a linear sampled system from a specified initial state to a desired terminal
state in minimum time, subject to amplitude constraints on the input. The problem
is reduced to solving a sequence of simple quadratic programming problems; a new
algorithm is presented for solving this class of problems. Preliminary computational
results for a fourth-order system are favorable.

1. Introduction. Numerous techniques for obtaining solutions to the
time optimal control problem for linear discrete systems are now available
in the literature [1], [2], [3]. The practicality of many of these techniques
is severely limited by the computational time required which precludes
their employment in a feedback mode. The primary justification for
further consideration of this problem lies in reducing the computation time
required.

In this paper the control problem is reduced to a specific quadratic pro-
gramming problem (QPP) and a new algorithm is then developed for
solving this class of problems. For a fixed number of sampling periods, a
quadratic function of the controls is minimized, subject to the constraint
that the control sequence takes the sampled system from a given initial
state to the desired target state. It is shown that if a solution to this QPP
exists, the solution can be written in closed form. As a result, a canonical
representation is obtained for terminal states which can be reached in a
fixed number of sampling periods. The time optimal control problem is
then solved by finding the smallest number of sampling periods for which
the target state can be expressed, in the canonical form.
There are physical reasons for using a quadratic cost function of the

controls in solving the minimum time problem. For a large class of systems
this cost function is a measure of the amount of energy supplied by the
controller. Since the time optimal control problem does not, in general,
have a unique solution, it is desirable to find that time optimal control
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which, among all time optimal controls, also minimizes the energy supplied
to the system. In addition, when considering feedback implementation, it
may be desirable to obtain a solution for which the unsaturated controls
tend to appear at the end of the control sequence. This can be done by a
proper choice of the quadratic cost function.

2. Description of the system. We shall consider an nth order, time
inwrint, linear discrete system x whose statex E t time N is given by

(1) x(u, u, u) ru,
i=l

where r E", i 1, 2,... are known constant vectors and the scalr
control variables u are constrained in magnitude by -1 u 1,
i 1, 2, .... For given input sequence u, u, it is sumed that
the energy supplied to the system x is given by

1
(lb) J(u) u.

i=l

Note that no difficulties re introduced by considering J(u) u,
h > 0; however we choose (lb) for notational simplification.

DEFINITION. A control sequence (u, u) u of length N is sid
to belong to the constraint set if ]u 1, i 1, ..., N. If u ,
then u is clled n admissib control.

Let v E", N 1, 2, ..., represent moving trget t time N.
The system x intercepts the trget at time N, if there exists an admissible
control sequence u, u for , such that x(u) v. Roughly spek-
ing, the problem is to find n dmissible control for which minimizes the
intercept time, N. If there is more than one admissible control sequence of
nimum length N stisfying the relation x(u) v, then choose that
control sequence which minimizes the energy delivered to , i.e., minimizes
J(u).

DEFiNiTiON. Let be the set of states of which cn be reched t
time N with n dmissible control sequence, i.e.,

(2) = x" x=ru,ua
i=l

Observe that is a compact convex set since it is the image of the
compact convex set under a continuous linear map. Clearly, the target
can be intercepted in time N if and only if v . We shall assume that
v for some finite N.

The formulation is easily extended to the multiple input case.
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3. Statement of the problem. For the system : and the target , find
the smallest integer N with v 6t and an input sequence u 2 which
minimizes J(u), subject to the constraints v x(u) and u 2.

4. A canonical representation of points in 6t. The principal result in
this section is stated in the following theorem.
THEOREM 1. Each point xv 6 can be represented in the form

N

(3) x ri sat (ri, c ),
i=l

for some vector c En. Furthermore, the control sequence sat (r,
i 1, 2, N, satisfying (3) is the solution to the quadratic programming

u, which minimizeproblem (QPP)" Find N real variables ul, u2,

1(4) J(u) 2 u:
i=l

subject to the n N constraints
N

(5) ru x
i=l

(6) u .
Remark. J(u) is continuous, strictly convex function and the con-

straints (5) and (6) form a nonvoid (since x 6t) compact support for
J. Consequently, a solution to the QPP exists and is unique.

Proof of the theorem. Define the function (u, c) by

(u, c) -(x, c) + J(u)
(7)

[-(r, c)u + u ].
i=l

It hs been shown by Cnon [4] that necessary and sufficient condition
for u to be a solution of the QPP is that for some c En,
(8) 5C(u, c) minSC(u, c).

uEN

Using (7) and (8) it follows directly that u sat (r, c}, i 1, 2, N,
is the solution to the QPP. Since a solution to the QPP exists for every
x 6t the proof of the theorem is complete.
To summarize, the moving target problem can now be stated as follows"

Find the smallest integer N and a vector c E such that
N

(9) v rsat (r, c} =A f(c).
i=l

sat(y) y if Y --< 1, sat(y) Y/I Y ifl Y > 1.
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For each integer N, f is a vector function which maps E onto 6. How-
ever, the map is not one-to-one; hence, the inverse function is not defined.
We will now show that it is possible to restrict the domain of f to a subset
of E in such a manner as to make f a bijective bicontinuous function.
Since our ultimate goal is to find an algorithm for determining if v ,
i.e., if there exists a c such that vN f(c), the continuity of the inverse
function is of major importance.

5. The vector function f. For each c E, let I(c) /1, 2, N}
be an index set such that if i I(c), then I(r, c)l > 1, and let/(c) be
the complement of this set relative to {1, 2, N}. Using this notation,
f(c) can be written as

(10) f(c) rsat (r, c} + r(r, c}.
iEIN(c iE N()

Whenever f and I occur together, we shall drop the subscript N on Iv in
order to simplify notation.

DEFINITION. For each integer N, let e be the set of points c E for
which the vectors {r i i(c)} span En.

Assumption 1. The vectors r, i 1, 2, n, span E.
In. the remaining lemmas of this section we will prove that the map

f -- (, N >- n, is bicontinuous, one-to-one, and onto. In the state-
ment and proof of the lemmas it will be assumed that N >= n.
LEMMA 1. The map f is continuous and onto.
Proof. The continuity of f is obvious. Let x be arbitrary. Using

Theorem 1, there exists some vector c E such that

(11) x= r, sat(r,,c )+ r,(r,,c).
iE/(c) iE T(c)

Suppose the vectors {r" i i(c)} do not spunE", i.e., c a. Then
there is a unit vector c’ E which is orthogonal to r, i E i(c). Since
the r, i 1, 2,...,n, span E there is at least one vector, say r,
/c E /(c), which is not orthogonl to c’. Hence, there is a scalar such
that I(r, c + zc’)] 1 and therefore k i(c + c’). If the
{r i i(c + zc’)} do not span E the process can be repeated, thus we
can construct a c such that f(c) f(c).
LEMMA 2. The map f, ---> v is one-to-one.
Proof (By contradiction). Suppose there are two distinct points c and

c in with

N N

(12) r, sat (r,, c) r, sat (r,, c’).
i=1 i=1

Any sample data system which is controllable will satisfy this assumption.
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Since the solution of the QPP is unique, the condition expressed in (12)
implies

(13) sat (r, c) sat (r, c’), i 1, 2, N,
and in particular this means (r, c) sat (r, c’) for all i i(c), thus
I(r, c)] _<_ I(ri,c’)l for all i i(c). By hypothesis, the vectors
{r i C i(c)} span E and c c’. Consequently there is at least one
index k i(c) with [(rk, c)] < ](rk, c’)l therefore c < c’ II. But,
using the same argument, replacing i(c) by i(c’) it can be shown that

c’ < c I[. Therefore, we must conclude that for each x 6t there is
one and only one c N with f(c) x.
Thus far it has been established that the map f --, (R is continuous,

one-to-one, and onto. To prove that fl is continuous we need one further
lemma.
LEMMA 3. The set is compact.
Proof. We show first that a is bounded. For each c , N >_-n,

the n X n matrix

(14) r,>(r
E (c)

is symmetric and positive definite. Let min (C) be the smallest eigenvalue
of the matrix in (14). Then we have the inequality

(15) 0 < IIXmi-(c) ----< (C, (
E (c)

for every c in aN with I] o. There can be at most a finite number of
distinct scalars hmi, (c), c . Hence let

h* min {brain(C)" C

Using (15) and recalling that if i i(c) then I(r, c}l -< 1, we have

iET (c)

(16) (r,c}2 =<N.
iE(c)

Therefore, c _<_ N/x* for each c
To prove that is closed it is sufficient to show that for any arbitrary

c ( N, there is an open set Vc0, containing c, which is disjoint from
a. If c ( aN the index set /(c) is nonvoid. Choose > 0 such that
I(r, c>l > 1 +e for each i /(c) and let max {ll r II i I(c)}.
The set V {c" c < e/r} is an open neighborhood of the origin. Hence,
V0 {cWc’c V} is an open neighborhood of c If c0+c is an

Here <r denotes a row vector and r> column vector, thus r><r is an
n X n square mtrix.
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arbitrary element of Vc0 then for each i I (c) we have

I(r, c + c)l >- I(r, c)l ](r, c)l

>= [(r,cl-- r ]]. ]] c > (1if- e)-- 1.

Therefore, if i /(c), then i /(c - c); hence/(c) c/(c -c) and
consequently i(c) i(c+ ). This means, since by hypothesis the
vectors {ri i i(c)} do not span En, that the vectors {ri i ](c q- c)}
do not span E and c -k c eN. Thus we have the desired result, that
Vc0 fq eN is empty.
The following theorem states the main result of this section.
THEOREM 2. For each finite integer N, N >= n, the function fN with domain
N and range 6tN is a homeomorphism.

Proof. From Lemmas 1, 2, and 3, fN is a continuous bijection from the
compact set N onto fftN. It remains for us to show that fl is continuous.
To do this, it is sufficient to show that the image of any closed subset of
aN under fN is closed. Let A be a closed subset in N. Then, since eN is
compact, A is compact and hence fN(A) is compact since fN is continuous;
therefore, fN(A) is closed.

6. The algorithm. It will be assumed in this section that N is fixed,
that N ->- n, and that vN is given. We shall develop an algorithm which, if
vN 6tN, can be used to solve the equation vN fN(c) for c aN, and
we shall prove that the algorithm converges in a finite number of steps. If
vN 6tN, then it will be shown that the algorithm terminates in a finite
number of steps. A brief description of the algorithm follows" We choose
some c N as an initial estimate of c and let v be the corresponding
point in fftN, i.e.,

(17) v r st (r, c) + r(r, c).
iEz(c0) iE(c)

v e"Let the error vN be denoted by We next construct a vector c and
a scalar z such that for each O<z=<z, (c 4-zc’) aN and

V cov q-e= f( c’). Thus, as increases the point v moves
directly along the error vector e. Note that if _>_ 1 we may set 1
and a solution has been obtained. If 0 < z’ < 1, then the new error is
(1 )e; and the procedure is then repeated.
We now give the algorithm in full. First we will show how to construct

z’c’ by determining the relationship between changes in v and c in a smM1
neighborhood of v. If we assume that vN (R then, since v 6tN and
fftN is convex, v q- zPe fftN for all 0 <- z -<_ 1. Using Theorem 2, there is
some vector [e q- c(’)] aN for which



40 M. D. CANON AND JAMES H EATON

v + a’e r sat (r, c
(18) Io+(’)

+ +iE[c (’)1

q/ V VClearly, as tends to zero, + ’e tends to therefore, since f is
homeomorphism, c c(’) tends to c. Referring to (17) and (18),
can be chosen sufficiently small (but positive) such that (i) each of the
saturated terms in (17) is also saturated in (18), with sat

sat (r, c + c(a’)}, and (ii) if I(r, c}l < 1, then I(r, c + c(z’)}l --< 1.
The only terms which have not been accounted for are those on the bound-
ary, i.e., the terms in (17) for which I(r, c}l 1. There are two possi-
bilities for the terms with index/c in (18), either [(r, c + c(z’)}1 --< 1,
or I(r, c -t- c(z’)}[ > 1. In the second case, we may choose ’ such that
sat (r, c + c(z’)} (r, co}. Roughly speaking then, we choose a’ such
that [c + c(z’)] (c), where the "difference" between the index sets
is accounted for by the terms on the boundary in (17) which, now, in (18)
are saturated. Subtracting (17) from (18) we obtain

(19) a’e= ( E
E T [cO+c(o

Since the vectors {r" i _(c -{-c(a’))} span En, the n X n matrix in
(19) is nonsingular. Thus,

(20) C(a’) or’( E ri>(ri)-le.
i T [c0+c(’)

Note that c(z’) depends linearly on a, and for this reason it is easy to see
that the constraints which were previously imposed for choosing a’ are
satisfied for any scalar (0, a’]. Consequently, v + ae fN(c -t- c(a))
for all 0 < < ’. To be consistent with the notation used at the be-
ginning of this section, let c’ c(a)/a. We then obtain

(21) v + e fN(c + ac’), 0

where c + zc’ with

(22) C’--- ( E ri><ri)-le.
E T (cO+o’c

Henceforth, we shall denote (c+ c’) by and refer to the set
{ri i }, or more simply to , as the basis; S denotes the complement
of relative to {1, 2, N}. To reiterate, at each step of the algorithm
we must determine the basis , solve for c’ in (22) and select ’. These
quantities are determined in accordance with the constraints previously
imposed. The constraints are restated below in more compact form.

P1. The index set " A necessary and sufficient condition for index/c to
belong to S is that rk satisfy either
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() I(r, c)l < 1
or
(b) I(r, c)l 1 nd sgn (rk, c) -sgn (rk, e’), where c’ is obtained
from (22).

P2. The scalar ’: ’ is the lrges vlue of , 0 < -< 1, such that
() [(r, c + c’)l 1 for k ,
(b) l(r, c + c’)l 1 for k S.
In other words, once the bsis hs .been chosen, none of the controls re
llowed to cross the boundary.
Remark. Computtionlly, there is no problem determining which of

the terms on the boundary t the end of step m re to remain in the bsis
t step m + 1. For, s the lgofithm progresses, one is able to deduce from
the previous step the proper choice. For example, if t the str of step m,
u < 1 and at the end of the step u 1, the vector r is removed from

the basis at step m + 1, if this is the only control on the boundary. If
more than one control is on the boundary at the end of step m + 1 (which
computationally is unlikely), then one must guess whether the vector r
remains in the basis. After computing c, one then checks the second condi-
tion in P1. Several examples are worked out in the Appendix.
THEOREM 3. If V with v f(c), then the algorithm can be used to

determine c in a finite number of steps.
Proof. Let c be the initial estimate of c, and let e= v- v

denote the error. Since v we can use P1 and P2 to determine
at each step in the Mgorithm. Thus if c is the estimate of c at step
m, the error e at step m is

(3) e H ( )e f() (c),
i=l

where a, 0 < a 1, i 1, 2, m, is that scMar determined by P2 at
step i. As m tends to infinity, = (1 -a) converges to some scalar,
sy a*. Consequently, the algorithm converges to some c*. Without loss of
generMity assume that c c* and a* 0. We now show that the Mgorithm
converges to c in u finite number of steps. Since both f(c) and f(c)
belong to , we can use P1 und P2 to find a scalar ’, 0 < ’ 1, und
vector c’ such that for each (0, ’] it is true that c c’ and

(24) v e f(c + c’).
Choose an integer m such that 0 < =1 (1- a) ’; then setting= (1 ) and using (23) and (24) we hve

f(c + c’) v- e v- (v f(c))
(25)

f(c)

This implies c e + c’. Now, since (24) holds for all 0 < ’, the
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error at step m - 1 can be reduced only if -fc’ is that vector obtained at
step m 1 using P1. Furthermore, the maximum reduction in the error

roW1at step m -1 is obtained in accordance with P2 by setting a 1.
Consequently, at step m - 1 we have c+1 c- fie’ , hence
f(c"+1) V.

COnOLLAnY. If V 5 then the algorithm terminates in a finite number
of steps.

Proof. Let , 0 < < 1, be the largest scalar for which v 5. By
Theorem 3, the algorithm converges to v in a finite number of steps, say
m. At step m W 1 it will be impossible to construct a’c’ in the prescribed
manner; the lgorithm then terminates.
The following lemma will be useful in determining when the computation

should be terminated.
LEMMA 4. Let c be a vector in with

f(c) rsat (r,
iEM

where M c {1,2,...,n} is an index set defined as follows: i M if
](r, c}l >_- 1; _7 denotes the complement of this set. Then, if the vectors
{r :i } do not span E, f(c) belongs to the boundary of

Proof. For each scalar a > 1, ac does not belong to . By hypothesis
c , consequently, c belongs to the boundary of . Thus, f(c)
belongs to the boundary of 5 since f is a homeomorphism.
One possible technique which can be used to solve the time optimal

control problem is the following. Using the algorithm developed in this
section, suppose that for a fixed number of sampling periods N it has been
determined that v ( (. Let f(c) be the point at which the algorithm
terminated. We then increase N by one and seek a solution to the equation
v+l f+l(C). As an initial estimate of c we can use c, since if c ,
then c (+. Now depending on the magnitude of (r+, c}, the
vector r+ is placed in or out of the basis. The new error is V+l f(c)

sat (r+, c} and the algorithm is initiated at this point. Example 2
in the Appendix illustrates this technique.

7. Conclusions. This paper presents a simple algorithm for solving a
class of quadratic programming problems as well as minimum time problems
which are reducible to a problem in quadratic programming. To test the
computational efficiency of the algorithm, the authors have used it in
conjunction with an IBM 7090 computer to solve the following problem"
For a simple data system of the fourth order (i.e., the vectors r Ea),
time-optimal controls were computed for trgets which could be inter-
cepted in at least 20 sampling periods. The maximum computation time
was 0.3 seconds. Results indicate that computation time will be roughly
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proportional to the order of the system. In addition, the computations were
carried out in single precision and no difficulties were encountered per-
forming the required matrix inversions. Note that when the dimension of
the system becomes large it is computationally efficient to use formula for
inverting a matrix plus a dyad, where the inverse of the matrix is known.

Appendix. We present here two numerical examples. In Example 1,
the number of sampling periods hr is fixed and the algorithm is used to
solve the equation v f(c) for c . Example 2 illustrates how the
algorithm can be used to solve a minimum time control problem.
Example 1. Let N 3, n 2, and take rl col (0, 1), r col (1, 1)

and r3 col (0, 2). Let the target be v3 col (1, 4). We seek a solution
to the equation v f(c) and, as an initial estimate c of c, we choose
c col (0, 0). The initial error is then e col (1, 4).

(i) The basis S 1, 2, 3}, and from (22) we have

C’ ( ri >< r,)-le - co] (2, 3).

The scalar ’ is now chosen to be the largest value of , 0 < -<_ 1, such
that

](r,, c + c’)l "t-1 =< ,
I<r=, c + c’>l 111 1,

I(r,, c + c’>l "1-] <= .
This gives The new estimate of c and the new error are respectively,
(c + (/c’) -co1(2,3) and (1 z’)e col(1,4).

(ii) To keep the same notation as used in P1 and P2, we denote, am-
biguously, the new estimate of c and the new error as"

c =-col(2, 3), e col(1, 4).

The vector r must be removed from the basis used in (i) in order to
reduce the error. Thus, the new basis is q {1, 2}, and

C (Eri>( ri)-le -col (--2, 3).

Again z is chosen to be the largest value of , 0 < a _-< 1, for which

](r,,c + c’>l= <1

](r, c - c’)[ <1

I(r,c+c’>[ I1 +1 >= 1.
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We find that t 1, hence a solution has been obtained with c c +
col (0, 1) and

sat (rl, c} 1,

u sat (r2, c} 1,

u3 sat (r3, c} 1.

Example 2. Let r col (0, 1), r2 col (1, 1), r3 col (0, 2), r4
col (2, 0), and let the target state v at time N be given by v v
v v4 col (3, 3). The problem is to find the smallest integer N l,

2, 3, 4} and a vector c C such that vN f(c).
i. Starting with N 2 we try to solve the equation v f(c), and as

an initial estimate c of c we take c col (0, 0) the error is e col (3, 3).
Proceeding as in Example 1"

--I
0
.I _.....(i) q {1,2}; c (:-’ri><ri) e col (3,0);

The new estimate of c is z’c col (1, 0) and the new error is (1 ’)e
col (2, 2).

(ii) Using Lemma 4, it follows that we are on the boundary of , conse-
quently, the target is not reachable in N 2 sampling periods.

II. Increasing N by one, we seek a solution to the equation v3 f3 (c).
As out initial estimate of c we tke c col (1, 0); the new error is then

e col (2, 2) r sat <r, c} col (2, 2) -0.col (0, 2)

col (2, 2).

(i) Noting that (r, c 0, (r, c 1, and (r, c 0, the vectors
r and r must remain in the basis. Let us assume that r also remains in
the basis, checking this assumption after c’ is computed (see, e.g., condition
(b) in P1). Taking S {1, 2, 3} we find that c’ 1/2 col (10, 0) and hence
(r., c} sgn (r2, c’}. Thus r. must be removed from the basis if the error
is to be reduced. However, the remaining vectors rl, ra do not span E and,
therefore, we are on the boundary of fit3. Consequently, the target is not
reachable in N 3 sampling periods.

III. Again increasing N by one we try to solve for c in the equation
v4 f4 (c), taking c col (1, 0) as the initial estimate of c. This results in
an error given by

e col (2, 2) r4sat (r4, c col (2, 2) col (2, 0)

col (0, 2).

(i) Since (rl, e} 0, (r2, e) 1, (r, c} 0, (r4, o} 2, we assume
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the basis to be {1, 2, 3}. From (22), c’ col (-, -) and sgn (1"2, c)
--sgn (r, c’); therefore r. remains in the bus.is. Choosing to be the

largest scalar , 0 < =< 1, such that

I(rl, c -+-o-c’)l Io-I__< 1,

I(r2, c + ac’)l I1 / o I,--< ],

I(, c + c’>l Il --< 1,

l(r,, c / c’>[ 12 1 >-- ],

we find that r’ 1, nd therefore, solution hs been obtained with
c c + c’ col (, ]). The time optimal control is given by

u=st(r,,c)=], u=st(r,c)=l,

u=st(r,c)=, u,=st(r,,c)= 1.
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GENERAL THEORY OF OPTIMAL PROCESSES*

SHELDON S. L. CHANGer
In the present paper a general version of the maximum principle is formu-

lated and proved. Pontryagin’s maximum principle [1] and various exten-
sions [2]-[9] thereof become special cases which can be readily derived
from the general version. Of special interest are the following generaliza-
tions" (1) discrete systems, (2) systems with multiple merit criteria, (3)
restriction of the control function u to a special class of functions, and (4)
systems with bounded state variables.

Operative addition and convexity. Let e denote an infinitesimal quantity
and (t) a given function defined on T It" tl <= <= t}. A function u(t)
is said to vary infinitesimally from (t) if

II <

where A is a positive constant. Obviously if () is different from () for
a finite amount, it can be only for an infinitesimal interval of time. In
the present paper, one needs only to consider infinitesimal variations of the
following form"

6u(t) =-- u(t) a(t) a on T’ {t" t( < < t( -+-
(2)

u(t) (t)on T- T’, T’= [J Ti’,
where i may range from 1 to any finite number, ti’ T, and a, A and
(t) are finite numbers and function, respectively.

Operative addition is denoted by @ and is defined as follows" let 6ul(t)
and 6u(t) denote two infinitesimal variations from (t). If the two sets
of t have no element in common, the two sets T’ are disjoint for sufficiently
small e. Then

(3) tiu (t) @ tiu (t) ul(t) -- 6u(t).

If finite variations occur at the same instant, the variations are rearranged
in sequence in itu(t) @ 6u(t). For instance, given

6u a t <-_ < t +
* Received by the editors June 29, 1965. Presented at the First International Con-

ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 15, 1965.

f Depurtment of Electrical Sciences, State University of New York at Stony
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then
u(t) ak", tk’ <= < t’ -- eh",

ul(t) @ u.(t) ak’, tk’ <= < t’ -- eA’,
u(t)

A variation from a to b can be considered as a variation from b to a for a
negative interval.
A set of functions C is operatively convex if it has the following property:

given any u and infinitesimal variations u and tu such that all three
functions u, u -- tiu, and u -- tiu belong to C, then

u - [h/tu @ (1 h)u2]

belongs to C for all values of h in the interval 0 < h < 1.

The control problem. The controlled system is described by the following
set of differential equations:

dx(4) d--- 2i f (x, u, t), i 1, 2, ..., n,

where x and u are the state vector and the control vector, respectively, and
f is a vector function having continuous and bounded first derivatives in
x and being continuous in u. From known existence theorems, given x(t)
and u(t) on T It: tl <= <- t2}, x(t) is completely determined.
The control function u(t) is required to satisfy three conditions:

(a) u(t) belongs to an operatively convex set of functions C on T,
(b) the x(t) resulting from u(t) stays within an allowed region X, x(t) X
for allt T,
(c) the path terminates at a point x(t.), where t may be fixed or arbi-
trary, t2 <- T.
A set u(t) satisfying (a) and (b) is called an admissible control. When

all three conditions are satisfied, u(t) is called an allowed control. The merit
of an allowed control is judged by a set of variables y, where

(5) yi(t) g(x, u, t) dt, i 1, 2, ..., N.
tl

An allowed control A is said to be inferior to B if

(6)

and the inequality sign holds for at least one value of i. An allowed control
is said to be noninferior if it is not inferior to any other allowed control
in the sense defined above.
The noninferior controls are generalizations of optimal controls for a

system with multivalued criteria.
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First variations of state and merit variables. Due to the infinitesimal
variation in u(t) (see (2)), x(t) and y(t) are different from (t) and (t):

x(t) 2(t) eAx(t) -- 0(e),
(7)

y(t) (t) cAy(t) -t- 0(e),

where Ax(t) and Ay(t) are finite and are called the first variations of x(t)
and y(t), respectively.

Let z denote the (n -k- N)-dimensional vector

and h(x, , ) denote the ( + N)-dimensional vector funegion

Equagions (4:) and (5) can be combined as

(8) h(x, u, t).

The first variation in z for ( T’ is readily shown to be

Ax A (t, tk )[h(2, u, tk h(2, a, t’)]AAz
Ay kwith tk’<t

()
zr- A (t, t’) Oh(2, a, t). Ot

(t’) dt’,

where A (t, t’) is an (n + N)-dimensional square matrix satisfying

(10) OA (t, t’) Oh(2, ,a, t) A (t, t’),
Ot

OA (t, t’)
(11) or’

A (t, t’) Oh(2, t, t’)
O2

A(t,t) 1,

and Oh/Oz is an (n -t- N)-dimensional square matrix with

Since the vector function h is independent of y, the last N columns of the
matrix Oh/Oz are identically zero.
The following theorem is obvious from (9).
THEOREM 1. Let (6u) (6u) and (6u) represent infinitesimal variations

about it(t) related by
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(u) (u) (u).

Let (Az)l, (Az)2 and (Az)3 denote the first variations in z resulting from
(u)l (u)2 and (u)3 respectively. Then

(z)(t) + (z)(t) (/z)(t).

COROLLARY. The set of admissible first variations about any terminal
point z t2 is convex.

General theorems on optimal control.
THEOREM 2. Given fixed points x(h) and x(t2), and letting X be the x-space

(unbounded), a necessary condition for a control and path pair it(t), 2(t)
to be a noninferior control is that there exists a set of vector functions (t)
and H(, 2, it, t) satisfying

(12) H(, 2, it, t) i(t) fi(2, it, t) cgk(2, it, t),
i-----1 k----1

(13) 0 ft t2

H(, 2, it, t) dt <- O,

and

(14) di(t) O__H i 1 2, ..., n,
dt 02

where

(15) C >_- 0,

and the equality sign in (15) cannot hold for all values of ]; O is the first
variation of the subsequent integral due to an infinitesimal variation of u(t),
with , 2 and considered as fixed.

Note that there is no restriction on the infinitesimal variation tiu except
that it +tiu belongs to C. In this and later theorems O, is interpreted in the
same way. From the definition of 0, (9) can be written as

A (t, t’)h(2, it, t’) dt’.

Before proving Theorem 2 some geometrical notions in z-space will be
established. A point p in z-space is called accessible if there exists an ad-
missible u(t) which brings the system from z(h) to p at some time t.. The
set of all accessible points at fixed t2 and at t =< T are denoted by 2(t2)
and 2, respectively.
The set of allowed terminal points is an N-dimensional plane, P, at

x x(t). The intersection of gt with P is denoted by I.
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LEMMA 1. The terminal point 2(t) of a noninferior control is a boundary
point of I and .
LEMMA 2. Let denote the set 2(t2) - eAz for all admissible first variations

Az. Then (t) is a boundary point of .
Lemma 2 follows intuitively from Lemma 1. It has also been proven

rigorously by previous authors [1, pp. 86-106].
LEMMA 3. There exists a vector such that

n-l-N

(16) /(Az) =< 0
i=l

for all allowed first variations Az,

(17) l =< 0, i= n+ 1, n-2, ...,nN,

and the equality sign in (17) cannot hold for all values of i.
Proof. Let P, denote a section in P which satisfies

z-- (t) <_- 0, i n+ 1, n-t-2, ...,n+ N.

Since 2(t) is the terminal point of a noninferior control, 2 and P do not
have interior points in common. Furthermore t is convex because of the
Corollary of Theorem 1. There exists a support plane S which separates
t2 and P,. Let be the normal to S. Points on the 2 side of S are repre-
sented by (16) and all the points on P satisfy

n-4-N

(18) l[z 2(t.)] => O.
./=n+l

By choosing

z.- . < 0 forj i,

z.- -= 0 for allji,

(18) leads to (17). Because S can coincide at most with one boundary
plane of S, the final assertion of the lemma is obtained.

Proof of Theorem 2. Let l’ represent the row vector (11, 12, l+N).
Inequality (16) can be written as

(19) l’Az(t2) <= O.

Since X is the entire x-space, the class of admissible controls is identical
with C. From (9),

(20) Az(t2) O A (t, t)h(2, a, t) dt.
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Substituting (20) into (19) gives

(21) O l’A(t, t)h(2, it, t) dt <_ O.
tl

Let ’(t) denote the row vector l’A(t, t), and let H(, x, u, t) be de-
fined as

(22) H(, x, u, t) =-- ’(t) h(x, u, t).

Inequality (21) is identical with (13). Multiplying (11) on the left by l’
gives

(23) d’(t) _, Oh
dt Oz

The first n components of (23) give (14). The last N components of (23)
give

b(t) const. l, i n + 1, ..., n -- N.

Let C l+. Equation (22) is then identical with (12).
TIEOnEM 3. Given fixed points x(h) and x(t), and letting X be an n-

dimensional smooth region in x-space, a necessary condition for a control and
path pair it(t), 2(t) to be a noninferior control is that there exist (t), (2, t)
and H(, 2, , t) satisfying 12 ), 13 ), 15 ), and the following:

(24)
dt

where

0 if 2 is an interior point of X,(25) (2, t) >= 0 if 2 is on the boundary of X,
and v is the normal to X at 2 pointing away from X.

Proof. The proof of Theorem 3 is identical with that of Theorem 2 up
to (19). Inequality (19) holds only for infinitesimal admissible variations
of u. Condition (2) defining admissible variations can be written as

(26)
i=l

where F is the prt of the pth 2(t) lying on the boundary of X. Thus
(19) is replaced by itself together with the side condition (26). Let
represent the (n + N)-component row vector with the i as its first n
components nd 0 for the remaining N components. Inequality (26) is
identical with

(27) P(2)/z(t) <- 0 on I".



52 SHELDON S. L. CHANG

From well-known result in variation calculus, (19) together with the
side condition (27) is equivalent to the existence of a (t) such that

(28) l’Az(t2) fr (t)n’(2)Az(t) dt <= O.

The integral is taken over periods of time in which x lies on the boundary
of X.
LEMMA 4. A necessary condition for t(t) and 2(t) to be a noninferior

control and path pair is that there exists a (t) such that (28) is satisfied by
all first variations A(z) resulting from u(t) with it + u belonging to C.

Let ’(2, t) ’(t) when 2(t) is boundary point, and equal zero when
2(t) is an interior point. From (9),

(t)n’(2)Az(t) dt (2, t)’(2)0 A(t, t’)h(2, , t’)dt’ dt

O r(2, t)vt(2)A (t, )h(2, a, t’) dt’ dt.

Changing the order of integration but integrating over the same area gives

dt’ dt dt dt’.
tl

Interchanging the notations and t’, one finally obtains

Subsgiguging (20) and (29) ingo (28) gives

(30) O l’A(t, t) (2, t’),’(2)A(t’, t) dt’ h(2, , t) dt O.

Let ’(t) be defined as

and leg H(, x, , ) be defined ghe same way as in (22); ghen (a0) is
idengieal wigh (la). rom (al),

(32) _, oh(, , t) + (, t)n’().
d2
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The first n components of (32) give (24). The last N components give

,+k(t) --Ck, / 1, 2, ...,N,(33)

and (12).
The condition (25) is proved in a previous paper for a less general prob-

lem (10). It also follows from the intuitive notion that y(t2) can be re-
duced if the path x(t) is allowed an excursion beyond X.
The following theorem is the well-known transversality condition, and

will be stated without a proof.
THEOREM 4. Let u(t), tl <= <-_ t2 be an admissible control which transfers

the phase point from some position x(tl) SI to the position x(t2) S,
where S and S are smooth regions of points satisfying the following equations

S F(x O,

G(x) <= O,

S2 F’(x) O,

G((x) <-_ O,

and inequalities:

i 1,2, ...,t <= n,

i 1,2, ,m,

i 1,2, ...,k’ <= n,

i 1,2, ...,m’.
In order that u(t) and z(t) yield the solution of the noninferior problem
with variable endpoints, it is necessary that there exists a nonzero continuous
vector function b(t) which satisfies the conditions of Theorem 3 and, in addi-
tion, the transersality condition at both endpoints of the trajectory z(t),

OFt OGt(34) g’i(t) at -- b-

’ ,OF’ ,OG’

where a and a’ are arbitrary constants, and b and b/ are nonnegative con-
stants such that

b=0 if
(36) b 0 ff

Gt(x) < 0 or if X(tl) is an interior point of $1,

Gt(x) 0 and the equation actually defines the boun-
dary of $1 at x (t),

and similar conditions hold for bj’. In (34), (35) and (36) the values of
the functions and partial derivatives are evaluated at the corresponding end-
points.
THEOnEM 5. Consider a control problem satisfying the following conditions:

(37) f(x, u, t) A(t)x + B(t)u - f(t),

(38) g(x, u, t) p(x, t) - q(u, t),
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where A (t) and B(t) are matrices, f(t), p(x, t), and q(u, t) are vector func-
tions, p(x, t) is convex in x, and q(u, t) is convex in u,
X, $1, S., and the class C are convex.

If for an allowed control and path pair, (t) and 2(t), a set of functions,
H(, 2, t, t), (t), (, t), and C > O, i 1, 2, ..., N, can be found
such that (12), (13), (24), (25), and the transversality condition are satisfied,
then t(t) is a noninferior control among all admissible controls which transfer
the phase point from a point on SI at tl to a point on S. at t.

Proof. Let C’ denote the row vector (C, C2, CN). From (12), (37),
and (38),

(39) H(b, x, u, t) ’A (t)x + b’B(t)u d- b’f(t) C’p(x, t) C’q(u, t)

From (24),

d , -,’A (t) -k-
OC’p(2, t) + (2, t)v’(2)(0) d--t O

Consider any other allowed control and path pair u(t), x(t) which satisfy
the same terminal conditions. Evaluate the following total derivative:

(41)

d [’(2 x)] ,’B(t)( u)
dt

d-
OC’p(2,- t) (2 x) d- (2, t)n’(2)(2 x).

Subtracting C’p(2, t) + C’q(it, t) C’p(x, t) C’q(u, t) from both sides
of (41) and integrating from t to t2 give

’(2 x)l t= C’[$(t2) y(t)]

’B(t)( u) -oC’q(, t) ( u) dt

(42) dt

On the right-hand side of (42), the first integral is nonnegative because
of (13) and the convexity of the class C. The second and third integrals
are nonnegative because of the convexity of the functions p(x, t) and
q(u, t), and Ci > 0, i 1, 2, N. The last integral is nonnegative be-
cause of (25) and the convexity of X. On the left-hand side of (42),
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x)

is nonpositive because of the transversality condition and convexity of
$1 and $2. Therefore

C’[$(t2) y(t)] _<_ 0.

Examples of ppliction of the theorems to discrete systems nd other
special cses re given in companion pper.
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LINEAR CONTROL tROCESSES AND MATHEMATICAL
PROGRAMMING*

GEORGE B. DANTZIGf

Linear control process defined [8], [14]. We shall consider an "object"
defined by its n 1 coordinates X (x0, xl, x), whose "motion"
described as a function of a parameter, "time" (t), can be written as a
linear system of differential equations

() dX
dt

AtX + Btu,

where A B are known matrices that may depend on and

u (ul, us, up)

is a control vector that must be chosen from a convex set, u U(t) for
every 0 -< =< T. The time period 0 -<_ -<_ T is fixed and known in
vance. The coordinate Xo xo(t) represents the "cost" of moving the
object from its initial position to x0(t). For this purpose it may be assumed
that x0(0) 0. Defining

() 2 (0, x, x ,..., x),

the object is required to start somewhere in a convex domain (0) So and
to terminate at T somewhere on another convex domain (T)

Problem. Find u U(t) and boundary values .(0) So, .(T)
such that x0(T) is minimized.
Assuming u U(t) is known, the system of differential equations can be

integrated to yield an expression for X(T) in terms of X(0) and u U(t).
This is true in general but will be illustrated for the case when A and B do
not depend on t; in this case

T

(3) X(T) erAZ(0) + ] e(r-t)’Bu(t) dt,,
where u(t) U(t) is a convex set and where we assume the integral exists
whatever be the choice of the u(t) U(t) for 0 =< _-< T.

Generalized linear program [2]. Our general objective is to illustrate

* Received by the editors January 12, 1965, and in revised form March 25, 1965.
Presented at the First International Conference on Programming and Control, held
at the United States Air Force Academy, Colorado, April 15, 1965.

Operations Research Center, University of California, Berkeley, Californiu.
This research has been partially supported by the National Science Foundation under
Grant GP-2633 with the University of California.
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how mathematical programming and, in particular, how the decomposition
principle in the form of the generalized linear program can be applied to
this class of problems. An elegant constructive theory emerges, [10], [11],
[12], [13].
A generalized linear program differs from a standard linear program in

that the vector of coefficients, say P, associated with any variable u need
not be constant but can be selected from a convex set C. For example:

Problem. Find max , t => 0 such that

(4) U0-t-P Qo, 1,

where U0, Q0 are specified vectors and P C convex.
It is assumed that the elements of C are only known implicitly (for

example, as some solution to a linear program) but that particular choices
of P can be easily obtained which minimize any given linear form in the
components of P.
The method of solution assumes we have initially on hand m particular

choices P C with the property that

(5)
U0 - Pltl + P2#2 - -- Pm Qo,

+/... +,= 1,

has a unique "feasible" solution; that is to say, X X ,# 0 => 0and
the matrix

(6) B= [ U0 Pll ..-""
is nonsingular (i.e., the columns of B form a basis). Because P C, the
vector pO po constitutes a solution P p0 for (4) except that
h },0 may not yield the maximal
To test whether or not p0 is an optimal solution one determines a row

-0vector # such that

(7) #B (1, 0,’", 0),

(8)

where we denote

and then a value and a vector P+I C such that
-0P,+ rain #o/5,

(9) P

If it turns out that 0, then P p0 is an optimal solution.

This is not restrictive ssumption since there is an analogous method for ob-
taining such a starting solution, see [2].
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If p0 is not optimal, system (5) is augmented by Pm+l. After one or
several iterations ] the augmented system takes the form of a linear pro-
gram"

Problem. Find max , t >= 0,

(10) U0X+ P- Q0, 1.

Letting B denote the basis associated with an optimal basic feasible solu-
tion to (10), is defined analogous to (7) and ti+1 and Pm++
analogous to (8). If it turns out that i 0, the solution

(11) P P
is optimal. If not the system is augmented by P++ and the iterative
process is repeated.

It is known under certain general conditions, such as C bounded and the
initial solution nondegenerate (i.e., 0 > 0), that # - #* and P ---> P* on
some subsequence k and that P P* is optimal. The two fundamental
properties of #* are

(12) #* 0 and #*/5 >__ #*/5* 0 for all P C.

The entire process can be considered as constructive providing it is not
difficult to compute the various P+k+ from (8) with # #+k. For ex-
ample, if C is a para]lelepiped or more generally a convex polyhedral set,
then rain #/5 constitutes the minimization of a linear form with known
coefficients # +k subject to linear inequality constraints in the un-
known components of/5, i.e., a linear program. In this case the iterative
process terminates in a finite number of steps and P,+k constitute ex-
treme solutions from it. In M1 cases an estimate is available on how close
the kth solution is to an optimal value of X.

Application of the generalized program to the linear control process. Let
us denote

T

P fo e(r-t)’Bu(t) dt,(13)

and note that P is an element of a convex set C, generated by choosing
all possible u(t) U(t). We specify that U0 (1, 0, ..., 0), and denote
by X -X0(T), where X0(T) is the coordinate of X(T) to be minimized.
Then

(14) X(T) --Uoh -t- X(T).
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We further define Q0 by

(15) f((T) er’4Z(O) + Qo.

Substitution of these into (3) formally converts the integrated form of
the control problem into generalized linear program (4).
Each cycle of the iterative process yields known row vector, which we

partition

(16) [r, el,

where r represents its first n -]- 1 components corresponding to P nd 0 its
last component. Since r is known, our choice for P++ is

(17) vP+k+l rain re(r-t)’4Bu(t) d rain e(r-t)Bu(t)}dt,
uEV(t)

where clearly the minimum is obtained when, in (17), the integrand for
each is selected to be minimum.
Note that

(18) 4), re(r-)B

is row vector that can be computed for each t. For example, Ct, cn be
represented by finite sum of vectors whose weights depend on nd the
eigenvalues of A. The new extreml solution P+k+l is obtuined by choosing
the control which minimizes the lineur form in u for ech t; i.e., find

(19) rain (4)t,u), u U(t).

For example, if U(t) is polyhedral set then (19) is u linear program. If
U(t) is the same for all t, then only the objective form, Ct,u, varies for
different t; except for the objective form the lineur programs re the same
for all t.

If optimul r is used, then the optimul control u (except for u set of
measure zero) satisfies

(20) rain [*(t)u], u U(t),

where *(t) v*e(r-t)aB. Pontryagin refers to this as the maximal prin-
ciple. It is, as we have just shown, also a consequence of the decomposition
principle of linear programming.

Conclusion. In our approach the general control obtained for each cycle
is a linear combination of exactly n -k- 1 special controls obtained by mini-

Actually Qo is not given but is an element of a convex set. To simplify the dis-
cussion which follows we assume Q0 is a fixed vector.
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mizing for each t, the linear expression (19) in u for n -- 1 choices of .
These special controls may be referred to as extreme controls. The latter
each in themselves do not maintain feasibility, that is to say, guarantee
that the object will move from (0) to (T). Each new linear combina-
tion of these special controls will, however, generate a new feasible control
with a lower value for the total cost X0(T). Under the conditions stated
this iterative process is known to converge.
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AN ITERATIVE PROCEDURE FOR COMPUTING THE
MINIMUM OF A QUADRATIC FORM ON A

CONVEX SET*

ELMER G. GILBERT

1. Introduction. This paper presents an iterative procedure for com-
puting the minimum of a quadratic form on a compact convex set C. The
sole characterization required of C is the availability of a method for
solving linear programs on C. This characterization differs from the usual
set of functional inequalities given in quadratic programming problems
[6], and is particularly appropriate to the solution of problems in optimal
control. In fact, some of the results presented here arose from an attempt
to provide a convergence proof for the extension by Fancher [5] of a pro-
cedure due to Ho [8]. Section 8 and [1] give several direct applications of
the iterative procedure to problems in optimal control. By using the al-
gorithm of this paper as a means of projecting points into convex sets it is
possible to develop additional algorithms for solving other problems in
programming and control [1], [7].

It should be noted that the iterative procedure of this paper is very
similar to that given in the latter part of the paper by Frank and Wolfe
[6]. However the emphasis and setting of the two papers are quite different,
and the overlap is small.
The paper is organized as follows" in 2 notation, definitions, and a

basic problem (BP) are considered; in 3, 4, and 5 the algorithm for BP
is described, error bounds are derived, and convergence is proved and
investigated in detail; in 6 the algorithm is related to a gradient method
for solving BP; in 7 the previous results are extended to a general quad-
ratic programming problem GP; and in 8 the connection with problems
in optimal control is made.

2. Preliminaries, the basic problem. The following notation is em-
ployed" z (z, ,z) a vector in Euclidean n-space E y.z
i=l Yizi /2

open sphere at x with radius ; f(x; 0) {Yll Y x =< }, the corre-
sponding closed sphere; L (x; y) z z x + o (y x), < <:. },
x y, the line passing through x and y; Q(x; y) Iz z’y x.y}, y O,

* Received by the editors June 30, 1965. Presented at the First International
Conference on Programming and Control, held at the United States Air Force Acad-
emy, Colorado, April 15, 1965.

Information nd Control Engineering, University of Michigan, Ann Arbor,
Michigan. This reseurch was supported by the United States Air Force under Grant
No. AF-AFOSR-814-65.
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the hyperplane (dimension n 1 through x with normal y; OX, the bound-
ary of the set X.
Now consider some notation and results applicable to a set K c E,

which is compact and convex. Let s(y) maxzK z.y denote the support
function of K. Since K is compact, (y) is defined for all y. Furthermore,
it can be shown that (y) is a convex function on E, a result which implies
that s(y) is continuous on E [3]. Let P(y), y 0, be the hyperplane
{xlx.y (y)}. Sincez.y (y) for allz KandP(y) Kis not
empty, P(y) is the (unique) support hyperplane of K with outward normal
y. For each y 0 the set S(y) P(y) K is called the contact set of K.
It follows that S(y) is not empty, S(y) OK, S(y) S(y) for > 0.
If for every y O, S(y) contains only single point, then K is strictly
coye.

DESOlaTiOn. A function, s(y), defined on E is a contact function of K if
s(y) S(y), y # O, ands(0) K.
From the preceding it my be concluded that s(.) is bounded; s(y)
s(y), > 0; nd v(y) s(y).y. Furthermore, on the set {y ] y[ > 0}

ech of the ollowing is true if nd only if K is strictly convex" s(-) is
uniquely determined, s(. is continuous. The continuity result is proved
in [10].

If for every y there is method for determining point x(y) K such
that x(y).y mxe z.y v(y), then this method my be used to
evaluate contact function of K. Such n evaluation, which corresponds
to the solution of linear programming problem on K (see 1), is essential
to the computing procedure which follows. Consider now the bsic problem-
BP. Given K, a compact convex set in E, find a point z* K such that

Since K is compact nd ]z is continuous function of z, solution z*
exists. The following dditionl results hold"

Solution properties. (i) z is unique, (ii) 0 ff and only if 0 K,
(iii) for z* > O, z* OK, (iv) for z* > O, z z*ifandonly if
z P(-z) K S(-z).

Properties (ii) and (iii) are obvious. Property (i) is proved by contra-
diction. Suppose z and z are distinct solutions. Then by convexity

* $
2 z*Wz= K, whichmens[l z z= But this implies

]which can be written ]z* z 0, n inequality which is only true
for z* z. Consider (iv). The condition z P(-z) K ira-
plies z P(-z) Q(z; z). But Q(z; z) is the support hyperplne for the
closed sphere (0; ]z ) whose outward normal is z nd whose contact
point is z. Therefore Q(z; z) is (separating) support hyperplane for K



MINIMUM OF A QUADRATIC FORM 63

and (0; z I). Thus K l N(0; z I) is empty. Since z K VI _(0; z [),
this implies z z*. The steps of this argument may be reversed to obtain
the converse result.

3. The iterative procedure for the basic problem. In this section the
iterative procedure for computing the solution to BP is described.
As a first step, let s(. be a specific contact function of K and consider

(z) _fz-- s(--z)l-2z.(z-- s(--z)) if z-- s(--z) 0,(3.1) \o if z s(--z) O,

and

(3.2) \o if z 0 or Izl O,z.s(--z) <- O.

Thus (.) and v (.) are functions which are defined on K. Their geometric
significance is as follows: x z + (z) (s(-z) z) is the point on the
line L(z; s(--z) with minimum Euclidean length; v(z)z is either the point
L(0; z) P(-z) or the origin, depending on whether or not L(0; z)

P(-z) is on the line segment connecting z and the origin. The func-
tions (.) and (.) have the following properties.
TEOREM 1. Let K be the set described in BP and restrict z to K. Then

(i) (z) => 0,

(ii) (z) 0 if and only if z z*,
(iii) 0 <= (z) -<_ 1,

(iv) if 0 K, "(z) O,

(v) if 0 K, ,(z) 1 if and only if z z*,

(vi) " z is continuous.

Proof. In this paragraph z always denotes a point in K. In 4 (inequality
(4.5)) it is shown that 0 =< z. (z s z) ). Hence, (i) and (iii) follow
from (3.1) and (3.2). For the time being assume z* > 0. The conditions
/(z) 0 and ,(z) 1 both imply z-(-z) s(-z).(-z) v(-z)
which requires z P(-z). Sincez ff K, solution property (iv) yields z z*.
Reversing these arguments completes the proof of (ii) for z*l > 0 and
of (v). Now take z*l 0. Inequality (4.4) then implies s(-z).z <- 0
which by (3.2) yields (iv). If fl(z) 0, then it must follow from (3.1)
thats(-z).z Izl Because ofs(-z).z -< 0thisimpliesz 0 z*.
Since z z* 0 also yields/(z) 0, the proof of (ii) is complete. For
zl _-> z*l > 0, the continuity of (z) follows from (3.2) and the eonti-
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FIG. 1. Geometric interpretation of the iterative procedure (0 origin)

nuity of the support function (y) s(y).y. For z* 0, it is trivially
true from (iv).

It is of interest to note that (. may be discontinuous on K, even
though s(. is continuous on K. See Example 3, 5.
The iterative procedure defines a sequence of vectors {z} by

(3.3) zk+l z + a(s(-zk) z), t O, 1, 2,...,

where z0 is an arbitrary point in K and the scalars a are selected arbi-
trarily from the closed interval I (z),

I(z) [min {t(z), 1}, min{(2 t)(z), 1}],
(3.4)

0 < fixed number =< 1.

Fig. 1 gives the geometric interpretation of the iterative procedure for the
case wherei 1 anda I(z) reduces toak sat(zk) (sate0 o,
0 -<- o -<- 1;sat o 1, 0 > 1). If (z) > 0 an improvement is obtained
on the kth step, i.e., z+l < z l; if (z) 0, z z* and the iterative
process is finite, i.e., the solution has been obtained in k steps. From Fig. 1
it is also clear that ]zk ’(z) -<_ ]z*l =< ]z I. Thus on each step upper
and lower bounds on z*l may be computed. Notice that in applying the
iterative procedure it is not necessary to know beforehand whether or not
0 K. A more precise and complete statement of results is contained in
the following theorem.
THEOREM 2. Let s (.) be an arbitrary contact function of the set K specified

in BP. Take Zo C K and, by neans of (3.3) with a I(z), generate the
sequence {z}. Then for tc >= 0 and k ---> "
(i) zk

_
K,

(ii) the sequence {I z I} is decreasing and lz --+ z*l,
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(iii) z -- z

(iv) z I’Y(z) <- z*l and z ’(z) "-->

(v) zk z* <= "V/1 "),(zk) z land "Vq ")’(z) z "-- O,

(vi) s(-z) z* <= s(-z) "(z)z

Since the bounds given in parts (iv), (v), and (vi) are computable as
the iterative process proceeds, they may be used to generate stopping cri-
teria for the termination of the iterative process. Example problems show
{I z ,(zk)} is not necessarily increasing. Thus
is more satisfactory as an upper bound for

z I/(z). Since examples also show that {] z z* I} and
{I s(-z) z* I} are not necessarily decreasing, it is not possible to im-
prove similarly the bounds given in (v) and (vi).

Suppose ]z* > 0 and s(. is continuous in a neighborhood of -z* (the
latter is certainly implied if K is strictly convex). Then it follows from the
continuity of ,(. and (iii) that the upper bound in (vi) converges to
zero. Thus {s(-z)} may be used as an approximating sequence, an ap-
proach which may be advantageous in some situations (see 8). In addi-
tion it is clear from (iv) that

(-z)l z*l _-< (-z)l m_ z (z),

where the right side converges to zero. Therefore meaningful stopping
criteria are available.

4. Proof of Theorem 2. First, some basic inequalities are stated. From
z P( ), 0 K, and s(-y)
definition of P (.) that

(4.1) z .z <__ z.z

(4.2) s(--y).y <= z.y,

These inequalities lead to

(.3)

(4.4)

(4.5)

(4.6)

(4.7)

P(--y), y O, it follows by the

z*l <= s(-y).z*, 0 K,y En;
s(--y).y <= z*.y, y E;
s(-z).z <= z[, z K;

Y--Z*l2-t-z*’(y-z*) <=y.(y--s(--y)), yE’;

z z*l <- z’(z s(--z)), z K, 0 $_ K.

Inequalities (4.3), (4.4), and (4.5) are deduced from (4.1) and (4.2) by
obvious substitutions. From the identity
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Y z* [2 + z*. (y z*) + y. (z* s(--y)) y. (y s(--y)),

(4.6) follows by (4.4). Inequality (4.7) follows from (4.6) by use of (4.1).
Part (i) of the theorem depends on ak I(zl) which insures 0 =< ak -<_ 1.

Thus from (3.3), s(-z) K, and the convexity of K, z K implies
Zk-+-I K.

Consider now the inequalities in (iv), (v), and (vi). From (4.4) and
the Schwarz inequality, s(-y).y <= Y ]’lz*l Thus (iv) follows from
(3.2). The proof of the inequalities in (v) and (vi) makes use of z z K.
For s(-z).z > O, z. (z s(-z)) z (1 -,(z)) and from (4.7) the
inequality in (v) is true. Now consider s(-z).z <-_ O, which corresponds
to ,(z) 0. Forz* 0, ,(z) 0 (Theorem 1) and (v) holds as an
equality; for z* O, the inequality in (v) follows from (4.1) which insures

Iz- Izl -ez. +el -I _-< Iz
If z* 0 the inequality in (vi) is trivially true. Consider now z* O.
If s(-z).z <- O, (vi) reduces to -2s(-z).z* + z* <- 0 which is true
by (4.3). The following identity is easily verified"

(-z) * s(-z) .(z)z + z I-(s(-z).z)

Assuming s(-z).z > 0 and
]z l-2(s(-z).z) =< z* . Thus

using s (-z). z

+ z* 2s(-z).z*.
--< zl’lz*l yields

(-z) z* <= I(-z) .(z)z + 2(I z* s(-z).z*)
and by (4.3) the inequality in (vi) follows.

In order to complete the proof of the theorem, the function

(.S) r(z) [z z* z z* + *. (z z*)
is introduced. For 0 ( K inequality (4.1) gives

(4.9) 0 -< Iz--z*l -< r(z), z K,

a result which is obviously true for 0 K. In the following paragraphs it
will be shown, that P(z)} is decreasing and r(z) - 0. By (4.8) and (4.9)
this proves (ii) and (iii). The remaining results in (iv) and (v) follow from
the known value of /(z*), the continuity of /(. ), and (iii).
For simplicity let

(4.10) a(z; ) r(z) r(z + (s(-z) z)),

and assume tacitly in what follows that z K. Then from (4.8),

(4.11) A(z;a) 2a( z 12 s(--z).z) a z s(--z)].
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Because the coefficient of a is not positive, minex(z) A(z; a) is attained
at one of the end points of I (z). It is readily shown that

(z; (z)) (z; (2 )(z)).

Thus from the definition of I(z),

f(z; (z)) if (z)=< -,
(4.12) min A(z;a) [A(z; 1) if (z) > -1.aEI(z)

Equation (4.12) is now used to obtain a lower bound on A(z; a), a I(z).
From (4.11) and (3.1) it follows that

(z; (z)) z s(-z)l-[z (z s(-z))]( ).(4.13)

Let

(4.14)
Zl,z2EK

denote the diameter of K and recall that 0 < 5 -< 1. Then

(4.15) A(z; (z) >= t-:[z (z s(--z) )]:.
From (4.8) and (4.6),

(4.16) F(z) --< 21z z* -+- 2z*. (z z*) <= 2z. (z s(--z)

(for z* 0 this may be sharpened to P(z) <= z. (z s(--z))). Thus

(4.17) A(z; (z)) =>. t-2F(z).
For (z) =>- 1, z. (z s(-z) >= z s(-z)l and consequently

A(z; 1) 2z.(z s(-z)) -Iz- s(-z)] _>- z.(z s(-z)).

Therefore (4.16) yields

(4.18) A(z; 1) => -F(z), (z) =>- 1.

Finally, utilizing (4.17) and (4.18) in (4.12) yields

(4.19) A(z; a)li( => rain {}tt-F(z), 1/2F(z)}.

Letting z z in (4.19), using (3.3), and returning to (4.10), it is seen
that

(4.20) r(z) r(z+) => min{-}-"tr"(z), 1/2r(z)} => 0.

Therefore the sequence {F (z)} is decreasing and, since it is bounded from
below by zero, has a limit point. Thus passing to the limit on the left side
of (4.20) gives zero and therefore from the right side Y (z) -- 0.

5. Nature of convergence. This section gives further results on the
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convergence of the iterative procedure. Theorem 3 establishes upper bounds
cn the elements of the sequences {I zk I} and {I zk z 1}. Several example
problems are analyzed to demonstrate still more fully the nature of con-
vergence. Finally, a few numerical results are given. Emphasis is on the
case 0 K, since it appears that it is most important in applications.
THEOREM 3. Let

(,.) 0o(1 + ,-a00z)-, 0o zo z* ,
and assume that Zo 12 <- z* - 2ta-1. Then if {zkl is generated by the
iterative procedure, the following inequalities hold for k >= O"

(.2) z =< v/o + I* ,
(5.3) z-z I_<_
The assumption on z0[ is often met in practice. For example, it is easily

shown that it must be satisfied if z* <- 1/2 2-1 1)g. In any case, z0 may
be interpreted as a suitable intermediate point in the iterative process, and
inequalities (5.2) and (5.3) may be used to estimate the subsequent rate
of convergence.

For z* > 0 and lc >= 1 inequalities (5.2) and (5.3) imply

(5.4) zk z*l < 2g z* -1-]c-1,
Z* 2#-1/]C-1/2,(5.5) z- <

results which conform closely to (5.2) and (5.3) for ]c sufficiently large. In
Examples i and 2, which appear later in this section, it is demonstrated that
within a constant multiplicative factor it is impossible to obtain bounds on

zk z*l and zk z which approach zero more rapidly than those
given in (5.4) and (5.5).

Proof of Theorem 3. Since z0 ]2 =< ]z* 12 -t- 2ti-1, it follows from the
previous section that F(zk) _--< F(z0) _--< 22i-1, ] _--> 0. From (4.20) thi
implies

F(zk+i) --<_ F(zk) t-2tiF(zk), / _>-- 0.

Since

for all r >__ O, it is possible to write

(5.6) F(zk+l) =< F(zk)(1 + g-tiP(zk))--1,

But substitution shows that Ok is the solution of
--2 --1

0k-4-1 Ok(1 + itOk)
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with 00 z0 12- z* 12 F(z0). Thus comparison of (5.6) and (5.7)
yields F(zk) =< 0k, l 0. Finally, (5.2) and (5.3) follow from (4.8) and

The complexity of the difference equation (3.3) makes it difficult to ob-
tain more specific analytic results than those obtained in Theorem 3. Thus
the remainder of this section is limited to the presentation and discussion
of three, somewhat specialized, example problems and a few numerical
results.
Example i. Take I and let K be the convex hull of three points in

2-space, (1, ), (--1, ), (0, 1 ), where 0. Clearly z (0, )
and z*] . Simple inspection shows that the iterative process is finite
(Zl z*) if and only if z0 is on the line segment connecting (1, u) and
(-1, ). Moreover when the process is not finite, zk, ]c >= 1, is determined

--1by the scalar Ck zk I(zk Thus the second order nonlinear difference
equation (3.3) may be replaced by a first order difference equation in k.
It is not difficult to show that

(5,8) Ck+l k(1 )(1 + ’k + 2k2)-1 /C > 1

For 1 this equation is approximated by k+l (1 - 2k)-1, an
equation of the same form as (5.7). These observations and some tedious,
but straightforward, computations lead to (the notation o() means

--1lim0 o() 0)

(5.9) z*l +
z (2])-1%//1 + 2 + o(]-).

Equation (5.9) demonstrates that it is impossible to obtain an upper
bound on z z* which approaches zero more rapidly than (const.)
For large/ the upper bound in (5.4) is conservative by a factor of sixteen.
This factor can be traced to two sources each of which contributes a factor
of four: in (4.15), t is an unsatisfactory estimate of zk s(-zk)l, in the
derivation of (4.6) the term y. (z* s(y)) has been omitted. For this
example the upper bound in (5.5) is a poor estimate because it is order
/c-1/2 rather than order/-1.

It is also possible to show that

(5.11)

(5.12)
z*l (z)l z (2pk)-1 -- o(]-1),
%/1 --’(z)lz tc-1/ + o(lc-1/)

By comparing (5.11) with (5.9) and (5.12) with (5.10) it is seen that in
Theorem 2, part (iv) provides a reasonably good stopping criterion while
(v) does not.
Example 2. Take ti 1 and let K be the convex hull of three points in
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3-space, (1, 0, ,), (--1, 0, ,), (0, 1, ), where > 0. Thus z* (0, 0, )
and z*l . The iterative process is much the same as in Example 1, the

--1points zk K, /c => 1, being determined by the scalar Ck z ](z
The first order difference equation for is (5.8) with , 0. By using the
fact that 0(1 + 40k)-/ is the solution of + (1 + 4)-1/

and that (1 + 4)/ 1 + 2 for 1, the following results cn be
derived"

(5.13) z z* (8)- + o(-),
(2/ - (-1/),(5.14) ]z-- z + o

(5.15) z* (z) z 3(8k)- + o(-1),

(5.16) i --(z)Iz (2k)-/ + o(-/:).

Equation (5.14) shows that the asymptotic behavior of z z
mtches the bound given in (5.5), except for a multiplicative factor of
eight. The bound given in (5.4) is conservative by multiplicative factor
of 64. Comparison of (5.15) with (5.13) nd (5.16) with (5.14) shows
that (iv) and (v) of Theorem 2 both provide reasonable stopping criteria.
Example 3. Tke 1 and in n-spce let

1 ix2--I
Z(5.17) K= {zz + (z)h 2,}, ,,h,...,X>0.

i2

In the neighborhood of z* (, 0, 0, ..-, 0), OK is the elliptic hyperpa-
raboloid

1 (z)h

where , h re the principal rdii of curvature t the vertex z*. For
mny convex sets K, OK in the neighborhood of z* my be closely pproxi-
mted by such an elliptic hyperprboloid. Thus this example is of more
general interest thn the previous examples.
Fory < 0nd

kY i(Y) < ,
2 i----2

it is easy to show that

1 -, -2(Y) h(y:)
(5.1s)

\--1.
s (y) i ,...(y) hiy,

Let max,=:...... {h} and assume the conditions
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(5.19)

are satisfied, which in turn imply

1 (yl)-2(y)2 < ,.
2 i-2

Thus (5.19) defines a set on which (5.18) is valid. Using this fact, z =>
for z K, and (3.1)gives

(5.20)

(z) ((z--)-f (z--)A-
i=. (1 + l(zl)-lh) (z)

(z- )+ 2 [ + (z)-x + (z)-x + (z)-x’]

(5.21)

(z) >

z #z*,z K, Iz < .
( ) + ()

i-2

5 X--2 p--2(Z1 p)2 .. (1 -- XP-1 + E (Zi)
i--2

=t, z # z*,z K, z < .->- 5 X-2 -21 +X- +
Because (z*) 0 this inequality implies that (z) is discontinuous on K
at z
By starting with (4.13) and repeating the derivation of 4 with

[z. (z- s(-z))]lz- s(-z)l- (z) _-> ,
it can be shown that

(5.22) F(zk+) =< r(z)(1 1/2_), z Z*.
For z z*, F(z+l) 0 and (5.22) is trivially true. Thus

F(z) =< F(Zo)(1--1/2ti), k->_ 0, Zo K, Zol <i’.

Using (4.8) and (4.9) this leads to

(5.23) zk z* =< 1/2 -0o (1 1/2ti),
k/2(5.24) z z* < %//; (1 ti)
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TABLE 1

Number of iterations to satisfy error criteria

First column" first k for which zkl z* <=
Second column: first k for which z* "(zk)l z <=

Case

X...

10-3
10-
10-5
10-6

3
5
5
5

28
31
38
41

20
27
30
37

100

100

59 18
59 35
74 58

111 58

1000

1000

216 83
250 88
290 162
340 215

100

27
52
73
81

14
26
51
51

229
267
298
359

1000

82
125
167
218

where 00 is given as before in (5.1). Since > 0 inequalities (5.23) and
(5.24) guarantee that the convergence of {1 zk ]} and {] zk z ]} is geo-
metric. However, the guaranteed rate of convergence is not rapid if a3 << 1,
i.e.,
Table 1 presents some numerical results for Example 3, 1, n 3,

and z0 (6, 2, 2). Similar results are obtained for different z0. The extent
of K has been increased beyond z* 2 so that (5.18) is valid even though
(5.19) is violated. Note that convergence is slow when << X. Although
the bounds derived in the preceding paragraph follow the same pattern it
may be concluded from Table 1 that they are not sharp estimates of actual
convergence rate. Better estimates than (5.23) and (5.24) have been ob-
tained but their derivation is too lengthy to present here. It is interesting
to note that Cases 3 and 4 exhibit rates of convergence which are respec-
tively similar to Cases 5 and 6. Thus /X seems to be the key parameter
while X3/X2 has little effect. This is not true when the gradient method of
the next section is used (},3 >> X2 corresponds to a "ridge" of f(y)).

Fig. 2 shows the details of Case 5. The irregularity of the sequences
shown is typical. Various methods for accelerating convergence (based on
different rules for selecting a I (z), the results of the next section, etc.)
are being investigated and will be reported in a later paper.

6. Relation to a gradient method. The iterative procedure described in
the preceding sections is related to gradient method, which is similar in
pproch to certain gradient based methods which have been proposed
for the solution of a vriety of problems in optimal control [2], [4], [9],
[10], [11]. The purpose of this section is to illustrate both the differences
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10-

I0 20 30 40 50 60 K

FI(. 2. Numerical results for Case 5of6: (A) Izkl Iz*l, (B) zk-- z’I, (C)
z* mxi<= zi I’(z). For k <= 14, z z* --- z/ z* I.

and strong connections between the two approaches. For brevity the
developments which follow are presented somewhat superficially and
without proof.
THEOREM 4. Assume 0 K and let J {y y.s(-y) > 0}. Then for

y J the scalar function
(6.1) f(Y) Y 1-2(y’s(-y)) "r(Y)l Y
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is defined and has the following properties"

(i) 0 <f(y) <= ]z*l,
(ii) f(y) z*l if and only if y

Further assume that K is strictly convex. Then"

(iii) s(-oz*) z > O,

(iv) the gradient of f(y) exists and is given by

Vf(y) Y I-ls(--Y) ]Y I-3(Y "s(-y))y,
(v) Vf(y) 0 if and only if y pz*, p > O.

Theorem 4 forms the basis for the gradient method. A sequence of vectors
yk} is generated by

(6.2) yk+l yk + aVf(y), y0 J.

If K is strictly convex, 0 K, and the positive numbers a are appropri-
ately chosen, it can be shown that yk J, ] >= 0,/f(Y)} is increasing, and.
yk -- pz p > 0, for k -- . Strict convexity of K also assures that s(y)
is continuous on J. This, s(y) s(y) for > 0, and solution property
(iv) (2) guarantee that /s(-y)} is an approximating sequence for z

Z
$

i.e. s(--yk) -- Disadvantages of the gradient method, relative to the
procedure of 3, are" K must be strictly convex, methods for choosing the
values of a: may be cumbersome and time consuming, the selection of a

y0 in J may be difficult. On the other hand it is conceivable that the gradi-
ent method may yield more rapid convergence, particularly when variations
of (6.2) are employed.

Consider now a modified version of the gradient method. Since from
(iv) of Theorem 4, Vf(p-y) pVf(y), p > 0, the difference equation

(6.3) z+l p+lp-[(zk + o’p2Vf(zk)), Zo Yo C J,

with p0 1 and p > 0,/ > 0, yields a sequence {z} such that z py,
/ => 0. Thus s(-y) s(-zk), k >= O. By letting

I-1(1 (z))]

(6.4) ak o-pp+ ]z ]-1, ]c >= O,

it is easy to show that (6.3) becomes (3.3). Thus if z0 K 1 J, (3.3)
realizes the modified version of the gradient method, where the selection
rule for ak is (6.4) rather than (3.4). If the a as obtained from (6.4)
happen to be in I(z), lc >= O, then all the results of Theorem 2 follow; in
particular {z}, whose elements are in K, is also an approximating sequence.
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In any case the iterative procedure described in 3 takes "steps" in the
same direction as those indicated by the modified gradient method. The
"step size" prescribed by (3.4) may be much larger than that prescribed
by (6.4). Thus with (3.4) the sequence/f(zk)} is not necessarily increasing.

7. Extension to more general quadratic forms. The iterative procedure
for the Basic Problem can be extended without great difficulty to the
general problem"
GP. Given C, a compact convex set in E", and the quadratic form

(7.1) q(x) Ix la d- g.x,

where Ix I x.Gx, G is a symmetric nonnegative definite m X m matrix,
and g is an m-vector in the range of G, find a point x* C such that

q (x*) q* min q (x).

Clearly a solution x* exists. In order to obtain its essential properties
and derive the iterative procedure it is convenient to write q(x) as

(7.) q(x) Hx a + qo,

where H is an n X m matrix, n rank G, G H’H (the’ denotes matrix
transpose), a 1/2 (HH’)-IHg or equivalently g 2H’a, and

q0 lal minq(x).
xE Em

The existence of such a representation is a consequence of the hypotheses
in the statement of GP. Introducing the set K /z z Hx d- a, x C1
it is clear that

(7.3) q* rain z [2 d- q0 z* + qo,
zK

where z* is defined as before. Furthermore since z* K is unique it follows
that F {xlHx + a z x C} is the set of all solutions of GP. Since
F may sometimes contain more than a single point, x* is not necessarily
unique.
The iterative procedure for GP is developed from the results of 3 by

noting that for every point x C there is, by means of

(7.4) z Hx + a,

a corresponding point z K. Thus, for example,

max y.z max y. (Hx + a) sc(H’y).H’y + y.a y. (Hs(H’y) + a),
zEK E C

where so(. is a contact function of C. Therefore a contact function of K is

(7.5) s(y) Hsc(U’y) d- a.
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Using this result and H’(Hx -- a) Gx + 1/2g, it is further seen that the
equation

(7.6) x+ x + (s(-Gx 1/2g) x)

when transformed by (7.4) yields the same sequence as (3.3). Hence if
ak I(Hxk A- a) and x0 C, (7.6) yields a sequence {xd with elements
in C such that q(xk) converges downward to q*. This and other results are
summarized in the following.
TUEORE 5. Let so(. be a contact function of the set C specified in GP.

Define
(7.7)

(7.8)

(7.9)

(7.10)

(7.11) x+=x+(s(-v)-x), xoC, I.
By means of (7.11) generate {x}. Then >= O, t > 0; and 0 implies
x F. Furthermore, for t >= 0 and t -- "(i) xkC,

(ii) q (x) is decreasing and q (x) ----> q

(iii) there is a convergent subsequence of {x} and every convergent subsequence

of x} has its limit point in F,
(iv) ")’k2q(x) + (1 3,:)qo <= q* and 2q(x) + (1 2)qo q*,
(v) x--2la (1--,)(q(x)--qo) for all 2 F and

(1 v)(q(x) qo) O,
(vi) sc(--v) 21o N sc(-v) xlo + (1 )g.(sc(--v)
x (1 qo for all 2 F.

Proof. Part (iii) follows from (i), (v), the definition of F, and the com-
pactness of C. The remaining parts follow from Theorems 1 and 2 by
straightforward substitutions.

If C is strictly convex and q* > q0, the upper bound in (vi) converges
to zero and {sc(--v)} serves as an approximating sequence (see remarks
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after Theorem 2). Also the results of 5, 6 may be extended in an obvious
way. For most applications the hypothesis that g is in the range of G holds.
When it does not hold, by a different line of attack it is still possible to
derive a theorem similar to Theorem 5.
The approach taken by Frank and Wolfe [6] to the concave programming

problem can be extended to give a direct proof of (i), (ii), and (iii) of
Theorem 5. A lower bound for q(xk) is also obtainable but it is not as sharp
as (iv).

8. Application to problem in optimal control. Consider the dynamical
system

(8.1) 2 A(t)x + f(u(t);t), x(O),

where x is the m-dimensional state vector, 2 is its time derivative, x(0) is
the initial state; u(t) is an r-dimensional vector control function, admissible
if measurable on the control interval [0, T], 0 < T < , with range in a
compact set U; A (t) is an m X m matrix function continuous on [0, T];
f(.;.) is an m-dimensional vector function defined and continuous on
U X [0, T]. For every admissible control u(t) there is an absolutely con-
tinuous solution function, x(t)(t)= x(t), which satisfies (8.1) almost
everywhere in [0, T]. It is desired to find an admissible control u*(t) such
that q (x, (T)) q* <- q (x (T)) for all admissible controls u (t), where
q(. is prescribed in GP, 7. This optimal control problem has a number
of practical applications [1].
Under the conditions just stated, Neustadt [12] has shown that the set

C {xlx xu(T), u(t) admissible}

is compact and convex. Thus if a method for evaluating a contact function
of C exists, the iterative procedure of 7 can be used to obtain approxima-
tions for x, (T) x* and q*.
To obtain a contact function of C, so(" ), note that

(8.2) w.x(T) (0; w).x(O) + (z; w)f(u(z); z) dz,

where b(t; w), defined on [0, T] X E, is the solution of the adjoint differ-
ential equation

(8.3) -A’ (t), (T) w.

d
Equation (8.2) follows from (8.1) by integrating d ((t;w).x,(t)).

Suppose there exists an admissible control u(t; w) such that almost every-
where in [0, T],
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(8.4) (t; w).f(u(t; w), t) max (t; w).f(, t).

Then from (8.2) it is clear that w.x(t; o)(T) >-_ w.xu(t)(T) for every
admissible control u(t). Thus from the definition of C a contact function
of C is

(8.5) s(w) x(; (T).

This result agrees with the well-known fact that boundary points of the
reachable set C must "satisfy" the Pontryagin maximum principle. For
all but the most elementary systems (8.1), so(. is the only reasonable
means for numerically characterizing the set C.

In most practical problems it is not difficult to obtain a function u(t;w)
which satisfies (8.4). Consider, for example, the case wheref(u; t) B (t) u,
B(t) is an m X r matrix function continuous on [0, T], and U is the
unit hypercube {u lull =< 1, i 1, ..., r}. Notice that (8.4) may not
uniquely define u(t; w) almost everywhere in [0, T]; suppose for instance
that in the example of the preceding sentence B’ (t)(t; w) has at least one
component which is identically zero on [0, T]. This is of no concern, since
different choices for u(t; w) will at most lead only to different contact
functions of C. Previous computational procedures [2], [4], [9], [10], [11]
have required assumptions which correspond to a unique determination
of. u(t; w) by (8.4). Such "unique maximum" assumptions imply strict
convexity of C.
Computer evaluation of so(. entails three steps: evaluation of (t; w)

by solving (8.3) backwards from -: T to 0, determination of u(t; w)
from (t; w) by (8.4), solution of (8.1) with u(t) u(t; w) from t= 0
to T. Thus when the iterative procedure is applied to the optimal
control problem each iteration involves the sequential solution of two
differential equations. This situation is handled efficiently by a hybrid
computer which includes both digital and analog elements.
The details of applying the iterative procedure should be clear. There is

no difficulty in choosing x0 C, it is only necessary to set x0 x0(T)
where u (t) is an arbitrary admissible control. In the sense of Theorem 5,
{xk} and lq(xk)} (and if C is strictly convex and q* > q0, /sc(-v)} and
{q(sc(-v))}) re approximating sequences and error bounds may be
computed.
The issue of finding admissible control functions corresponding to x or

sc(-v) remains. The control corresponding to sc(-vk) is u(t; -v), i.e.
sc(-v) x(t;-v)(T).

Finding an admissible control which produces the terminal state x is
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more difficult. From (7.11) it follows that
k--1

+ x 0,
i-----1

where )i (}, 0 < i </c, and - },i 1. Suppose uk(t) is an admissible
control such that almost everywhere in [0, T],

k--1

f(uk(t), t) f(u(t; --v); t) + hof(u(t) t).
i=l

Then from the form of (8.1) it may be deduced that xuk(t)(T) x. If for
all [0, T] the sets f(U; t) are convex such a choice is possible. If this is
not the case an additional approximation process, the construction of
chattering control, is necessary [1]. For f(u, t) B(t)u and U convex it
follows that

u (t) x u(t; +  ouo(t)
i=l

or equivalently

U+l(t) u(t) + a[u(t, --v) u(t)], i 0, ...,/c 1.

For additional details on application of the iterative procedure to a
variety of problems in optimal control, see [1].

9. Acknowledgments. The author wishes to thank L. W. Neustadt and
Robert O. Barr for helpful comments during the development of the
material reported above. The computational results in 5 are due to Robert
O. Barr.
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MINIMIZING FUNCTIONALS ON NORMED-LINEAR SPACES*

A. A. GOLDSTEIN

Summary. This paper extends results of the author [1], [2] and of Vain-
berg [3] concerning steepest descent and related topics. An example is
given taken from a simple rendezvous problem in control theory. The
problem is one of minimizing a norm on an affine subspace of a Banach
space and is solved here in the "primal". A solution in the "dual" is given
by Neustadt [4].

1. Generation of minimizing sequences. Let E be a normed linear space,
x0 an arbitrary point of E, and f a functional defined on E. Let S denote the
level set lx E" f(x) <= f(x0)} defined at an arbitrary fixed x0 E. We
denote by f’(x) the Frchet or F-derivative of f at x. We call f uniformly
F-differentiable on S if f is F-differentible on S and if 5(e) in the definition
of the F-derivative is constant on S. The F-derivative of f t x will be de-
noted by f’ (x). If g E* the vlue of g at x will be denoted by [g, x], and if
h E** the value of h at g E*, by [h, g]. Recall that if E and F are
normed linear spces, A is a bounded linear operator from E to F, in short
A B (E, F), and if A is onto, then A-1 exists nd belongs to B (F, E) if
and only if for some m > 0 and all x E, Ax >= m x II; and further-
more, that m x <= Ax <= M x for all x in E implies that M-1

Y
<= A-IY <- m- Y for 11 y in F.
We observe that if E is a reflexive Banach space, A B(E, E*), and

lax, x] >= m x for all x E, then A is onto, and thus has an inverse.
The proof is via the Hhn-Banch theorem. For, on the contrary sup-
position, take f0 M rangeA. Choose g in E** such that g(fO)

dist (f0, M) > 0, g 1, and g(f) 0 for allfin M. Take in E so
that [g, f] [f, ] for all f in E*. Then 0 [g, Ax] lAx, ] for all x in E.
Thus [A, ] 0while g 1.

Let denote bounded map from S to E satisfying the two conditions
[f’(x), (x)] >=_ 0, and given > 0 there exists > 0 such that [f’(x),
(x)] < t implies f’(x)ll < e. Some examples of such mappings re the
following"

(1) Let A B(E*, E) such that [y, Ay] >= Y for all y E* and
some > 0. Let (x) Af’(x) nd choose 2. Then I!f’(x)ll < e.

* Received by the editors July 2, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 16, 1965.

Deprtment of Mathematics, Universit of Washington, Seattle, Washington.
This work was supported by the Boeing Scientific Research Laboratories and by the
United States Air Force under Grant AF-AFOSR-937-65.
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As a likely candidate for the operator A, supposefis twice F-differentiable
on E. Assume that for some t > 0 and some x in S the operator f" (x) in
B(E, E*) is onto and "bounded below", that is, the bilinear functional
satisfies [f" (x)z, z] >= t z II for all z in E. Then
showing thatf" (x) has an inverse [f" (x) ]-1 A B (E*, E). Since A has
bounded inverse, there exists a number z > 0 such that Ay z Y for
all y E*. Set z Ay. Then [f" (x)z, z] [y, Ay] #r Y showing the
candidacy of A.

(2) Suppose E is a reflexive Banach space. By the weak compactness of
the unit sphere in E it follows that for some z0, zo 1, [f’(x), z0]

IIf’(x)ll. Set(x)= zo IIf’(x)ll. Because[f’(x),(x)]
is the analogue of the gradient in Hilbert space. When E is anL space the
point z0 is obtained by considerations of equality in H61der’s inequality.

(3) Sincellf’(x)ll sup {[f’(x),z]’ll zlt 1},if0 <a < lapointz0
exists such that [f’(x), z0] >- a f’(x)ll. If for fixed a and all x S we can
find such z0, we may take (x) z0 f’(x)

In what follows let A(x, p) f(x) f(x p(x)) and g(x, p)
A(x, p)/o[f’(x), 4(x)]. Assume E is a normed linear space and S is the

level set of f at x0 in E. In what follows assume 0 < < 1/2.
THEOREM. Assume that on S, f is uniformly F-differentiable or that the

F-derivative f’ exists and is uniformly continuous. Set xk+l xk, when
[f’ (xk), (xk)] O; otherwise choose ok so that (r < g (xk ok) <= 1 when
g(Xk 1) < r, or Ok 1 when g(xk 1) >= r, and set xk+

a If S is bounded or f is bounded below, then {f’ xk converges to 0 while
/f(xk)} converges downward to a limit, L. If S is compact, then every cluster
point of lxk} is a zero off’. In addition, if (xk) -- 0 and f’ has finitely many
zeros, {xk} converges.

(b) IfS is convex and bounded andfisconvez, L inf {f(z)’z S} 0.
If, in addition, E is a reflexive Banach space, then every wealc cluster point of
IXk} minimizes f on E. If E is uniformly convex (u.c.) and f is the norm on
E, then {xk} converges to a unique minimizer of f.

(c) Assume that the Gateaux derivative f" exists on S and satisfies
z ]12 <-If" (x)z,z] <= M z ]t2forallx S,z E, andsomet > O. Assume

S is convex and E is complete. Then {xk} converges to a unique minimizer of
lonE.
The proof of (a) is given in [1]. The proof there is stated for E, a Hilbert

space, but the same proof works when E is taken to be a normed linear
space. Two comments might be made, however. S bounded andf’ uniformly
continuous on S imply that f’ is bounded on S. (See, e.g., [5, p. 19].) It

If the Gateaux differential f" satisfies f’ (x, h, h) =< [[hIlp0 for all h in E, x in S’
and some p0 > 0, we can choose p to satisfy <- p <= 20o with 0 < t =< pc. The
method of steepest descent could also be employed, see [9].
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follows by employing the mean value theorem thatf is bounded below on S.
The statements thatf is uniformly F-differentiable and that the F-derivative
f’ is uniformly continuous are equivalent. (See [5, p. 45].)

(b) Given e > 0 choose z’ E such that f(z’) <= 0 + /2. Because f’
exists at xk and f is convex, f z’ >= f xk + [f’ x z’ x]. Since
[f’(x)} --> 0 and S is bounded, for all c sufSciently large, f(x) f(z’)
+ /2 0 + , showing that L 0.

If E is reflexive and S is convex, closed, and bounded, then S is .weakly
compact. Since f is convex, the sets {x E" f(x) k} are closed, convex,
and weakly closed, for all k. Thus f is weakly lower semicontinuous. If
z is a weak cluster point of {x} then for an appropriate subsequence,
lim inf f(x) L f(z). Assume E is u.c. and f is the norm on E. By
[6, p. 113], if {x} converges weakly to z and f(x) z then {x} converges
strongly to z. It follows that every weak cluster point of {x} is a strong
cluster point of {x}. Since f’ vanishes at every weak cluster point of {x}
and f’ vanishes only once by the strict convexity of f, every subsequence of
{x} has the same cluster point z, showing that {x} converges to z.

(c) The hypotheses of (c) imply that f’ is Lipschitz continuous and that
the set S is bounded. Otherwise S would contain an unbounded sequence,
say {z}. By Taylor’s theorem if u S,

showing that f(z) f(x0) for large It, whence S must be bounded. We now
show that the sequence {x} is Cauchy. Again by Taylor’s theorem if s > k,

f(x.) f(x) [/’(x), x. x] +, x x e/2.
Since S is bounded, x x D, where D is the diameter of S. Thus

which shows that {x} is a Cauchy sequence. By the completeness of E,
{x} has a limit, say z, in E, and f’(z) 0. If z is not unique, then f’(z)

f’ (z) 0, z z. Thus

f(zl) f(z) - z z f(z2) f(zl),

a contradiction. Hence z is unique and is a minimizer of f.
Remark. Useful remarks may be found in [1], [3], and [9].

2. Newtonian steps and acceleration. Suppose that at the given point
x0 the function f satisfies the conditions of the first example, namely
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(x) f"-l(xo)f’(x), wherefl(x0) [f" (x0)]-1. The corresponding iteration
is x,+l x pnf"--(Xo)f’ (X). This algorithm, when p 1, is known as the
"modified" Newton’s method. (See [3, p. 259] or [7, p. 696].) In a similar
manner if fl exists and is "uniformly bounded below" on S, we may define
((Xn) ]ltl(Xn)f’(x,). We shall do this below. It is clear from what has
already been said that satisfies hypotheses of the above theorem. Our
object now is to formulate an algorithm usingfi(x,)f(x,) (x) which
will converge at a superlinear rate.

In the following we set A(x, p) f(x) f(x pf(x)f(x)) and
g(x, p) A(x, p)/py"-(x)f’ (x), f’ (x)].
THEOREM. Assume the level set S is a convex subset of a Banach space E.

For each x in S assune the F-derivative f" is continuous on S, f’ (x) is onto,
f" (x)ll <= M, and If" (x)z, z] >__. m z for some m > 0 and all z in E. Set

xlo+ xk pkfl(x)f’(x), where p is chosen so that for 0 < 1/2, 0 < 0

<= g(x, pk) <= 1 O, with p 1 if possible. Then:
a there exists a number N such that if k > N, then p 1;
(b) there is a unique minimizer of f and the sequence {x} converges to it

faster than any geometric progression.
Proof. We have for all x in S that M z >= (" (x)z, z] >= m z and
--1 t!
m y :>: [y, mi Y Thus if 0(x) (x), then
[f’(x), (x)] _>_ mM-2 f’(x)II, showing that satisfies the conditions of
the above theorem. Since f" is bounded on S, f’ is Lipschit continuous, by
the mean value theorem. By (c) above, {xl converges to a unique mini-
mizer of f.
Expand A(x, p) to two terms in the Taylor series with remainder

[f"()h, h], where h of(x)f’(x). Set f’() f"(x) + f" () f"(x).
Then

g(x, p) 1 P [(f"() f"(x))f"_(x)f’(x),f(x)f’(x)]
2 P 2[f’(x), f(x)f’(x)]

>- 1 --P p f" () f"(x) M2.
2 2m

Thus

Pg(x, p) 1 -- f" f" (x) M2
2m

Since (pk) lies between x and x+, x0, 0, x, is a Cauchy sequence;
and it, together with its limit z, is a compactum. Consequently on this com-
pactumf" is uniformly continuous, so that Ill f ((p)) f"(x)ll} converges
to 0, showing that the choice p 1 is eventually feasible.
To prove (b) we write
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xk+l z xk z pf(xk)f’ (xk)

x,- z- ]"(z)f" (x)(x- z)

+ pfl(x)[f" (x)(x z) f’(x)].
Thus - P f(xk)]l" 11 ftt (x) (x z) f’ (x)ll.
Since f’ is F-differentiable at x,

Thus
--1x+ ( ) x + z x .

Remark 1. Both sides of the inverse of f(x) are used in the proof.
Remarlc 2. The analogue of the modified Newton process, namely, choos-

ing (x) f(xo)f’(x), or f(x)f’(x) with fixed, will under the hy-
pothesis of the above theorem also generate a sequence converging to a
unique minimizer of f. Since

x+ x, z _x0 (z) (x z

when x z < 6, the rte of convergence is eventually geometric pro-,,
vided I pf:(Xo (z)]] < 1. Since

f(xo)f"() + f(Xo) f" (o) f" (z)
if f" (x0) f" (z) is sufficiently smll, p 1 will generate sequence con-
verging to z t the rte of geometric progression. A sufficient condition for
the global geometric convergence would be (M/m) < , since f" (x) M
nd f(x)[ m-.
Remark 3. Pertinent remarks my be found in [3].

3. Example.
() We consider the following problem which rises from linerized

rendezvous problem. See for example [8], [9], nd [4]. In [4] this problem is
solved in the "dul". We consider here construction in the "primal". In
[8] nd [9], we hve discussed this problem in the spces nd ;we now
discuss the problem in for p > 1. Let denote the direct sum of
n L[0, 1] spces. Thus point x if x (x, x) ndx L[0, 1];
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the norm in 2 will be Ilxll,

[--1 z?(t)]x2. Since
[fo x(t) dtl1/ where

%/,max {xi(t)" 1 <- i =< n} >= x(t)l,

11 is well defined. Let {u" 1 _<_ i _<_ m} be a linearly independent set in
Set lip -t- 1/q 1. Since q < p, uis also in2q. Given numbers
1 =< i -< m, define the affine subspace

M {x 2"’[u,x] a,l -<_ i-<_ m}.

We shall consider the problem of minimizing f(x) x on M. The
limits p -- 1 and p -- correspond to the cases of rendezvous with mini-
mum fuel and minimum thrust amplitude, respectively. In what follows
we shall assume for simplicity that n 2. There are no further difficulties
in the general case.
We first observe that if the Gateaux differential (G-differential) of f

exists, it is given by

f’(x)h pfo Ix(t)I-[x(t)h(t) + x(t)h(t)] dt

Fx,t) x(t)
p Ix(t) "- h(t) + h(t) dt

k x(t) x(t)

p x 11/[1 h I1 h

.ere HSlder’s inequMity hs been employed on the function ]x() -ho be]og to L[O, ], W hw ]o ued II" II for t om n L[O, 1],
hus the G-derivative of f exists.
Observe now that if the second G-differentiM exists, it is given by

if" (x)h, l] p(p 2) fo Ix(t) I-(x(t)h(t)

-t- x(t)h.(t) (x(t)l(t) -t- x(t)k(t) dt

4- p fo Ix(t)1- (k(t)h(t) nt- k(t)h2(t)) dt

<= p(p ) f. z(t) I- h(t) !’1 (t) gt + p

fo Ix(t) 1"- h(t) I’1 (t) Idt.
If x E L, y E .Lq, and z E L,., and lip -Jr- 1/q -Jr- 1/r 1, then

fo X(t)y(t)z(t) dt <= x II, Y II z I1.
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Since the function - Ix(t) - belongs to Lp, where p’ p/(p 2),
and 1/p’ 2/p 1, it follows that

[f"(x)h, k] <= (2p 3p) x [l- h lip [I/ lip.

As before, let S denote the level set of f at x, where x0 will be subsequently
chosen in M. Thus if x S,

x (- [f()](-) If(x0)](-),
showing that [f" (x)h, k] is uniformly bounded on S, if h and k are confined
to the unit sphere. It follows by Taylor’s theorem that f’ is F-differentiable
on S. By the generalized mean value theorem it further follows that f’ is
Lipschitz continuous on S, and f is uniformly F-differentiable on S, if
p 2. The inequality

[a[:r-M2(r) a- b[:,where [a[ > bandM(r) < ,andadirect
computation show that the F-derivative f’ exists and is Lipschitz con-
tinuous for all p > 1.
We now construct x0 on M. Let x0 cu. Thus x0 lies on M if and only

if E c[u, u] a. We show that the null space of the matrix {[u, u]}
consists only of the 0 element so that c is uniquely determined. If for some
c 0, c[u, u] 0, then

E o,
contradicting the linear independence of the set {u- 1 i m}. Let

N= {x2.[u,x]=0,i= 1,.--,m}.

We now choose h to maximize [f’(x), h] subject to h v 1 and h N.
The maximum is achieved because the sphere meets N in a weakly com-
pact set and the linear function If(x), is weakly continuous. The maxi-
mization can be accomplished by the method of Euler multipliers [10],

v I and i(h) [u, hi. Then a necessary condition[11]. Let(h) h
that h maximize f’ (x, h) subject to (h) (h) 0 is that there exists
c, 1 i m+ 1, suchthat

m+l

f’(x)k cp ]h(t) "- (h(t)k(t) + h(t)k(t)) dt + c[u’-,k]

for 11 k 2. It follows that

x(t) ’-x(t) pc] h(t) -h(t) + cu(t) + + c+u (t).
Let

fi(t) (pVx)--l[p[ x(t) p--2x(t) cu(t) c+u (t)],
nd observe that

h(t) - fl(t) + f(t).
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Therefore,

hi(t) [f12(t) -- f(t)
(f2(t) + f(t))’’

showing that h L. Solve the nonlinear equations (h) 0, 0,
1 _-< i _-< m, for c, cm+l, and replace h by -h if necessary so that
[f’(x), h] > 0. Because of the strict convexity of 2p, [f’(x),.] achieves a
unique maximum at h.
Moreover the space is uniformly convex. This follows by a theorem

of Smulian [12], which states that if the norm in a Banach space is uni-
formly F-differentiable on the unit sphere, then the conjugate space is
uniformly convex.
The subspace N is also an space. Minimizing f(x) on M is equivalent

to minimizing f(y -- x0) onN, with x y -- x0. Clearly the gradient of the
function f restricted to N is h[f’ (x), h]. (See (2) of 1 above.) It follows
therefore if (x) h[f’(x), h], conditions (a) and (b)of the theorem of
1 are satisfied.

(b) The above processes require that at each cycle a nonlinear system
be solved to determine the gradient. This can be circumvented by imbedding
the problem into a Hilbert space. Specifically, assume that the components
of u are bounded and measurable. Let denose the direct sum of L2[0, 1]
analogously to the above, and define

M’ /x 2.’[u,x] a,1 -<_ i =< m}.

MLetf be now defined on Since f achieves a minimum on M and M M,
M"f also achieves a minimum on Because M is dense in M’ the minima are

M’equal. The gradient of f on is merely the restriction of the gradient of f
in to M’ and is obtained by orthogonM projection. See [9]. In general
f’(x) does not exist. But if x is bounded and measurable, i.e., x ,
f’(x) * and Vf(x) 2. The set S is bounded in and this implies
S is bounded in , since x 11. <= x I1 if p >= 2.

Since f is convex and continuous, S is closed, bounded and convex;
furthermore, the derivatives of f are densely defined on S. Assume x M’,
x and u , 1 __< i =< m. Then x+ is well defined and is also
in . To see this, verify that Vf(x.) 2 and the projection of Vf(x)
on the set {x " [u, x] 0, 1 -< i =< m} is also in 2. Becausef is
strictly conve it achieves a unique minimum at, say, z. Therefore by the
theorem of 1, {f(x,)} converges downward to f(z) and {Xn} converges
weakly to z.
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A MAXIMUM PRINCIPLE OF THE PONTRYAGIN TYPE FOR
SYSTEMS DESCRIBED BY NONLINEAR

DIFFERENCE EQUATIONS*

HUBERT HALKIN
1. Introduction. In this paper we consider some optimization problems

for systems described by nonlinear difference equations. The present paper
is a generalization of Halkin [1]. In [1] it was assumed that the difference
equations are linear with respect to the state variables (but not necessarily
linear with respect to the control variables). In the present paper we make
no assumption whatsoever on the linearity of the difference equations with
respect to either the state variables or the control variables. In the present
paper however we make the same assumptions, concerning the convexity
of some sets, as in [1]. These convexity assumptions, which are stated pre-
cisely in 2, are always justified in the case of a system of nonlinear differ-
ence equations which approximates a system of nonlinear differential
equations (a justification of that statement is given in 5 of the present
paper) but they are not necessarily justified in the case of a system of
nonlinear difference equations describing a control process which is basically
discrete. We remark also that in the present paper we consider more general
intial and terminal conditions than in [1].
The present paper should be compared with the papers of Holtzman [2],

Rosen [3], Jordan and Polak [4] in which other classes of problems are
successfully treated. The reader should realize that [1]-[4] together with
the present paper are not the first papers concerned with the optimal con-
trol of systems described by difference equations: the same problems have
been considered in a vast number of papers and books concerned with the
optimization of chemical processes. These papers and books are generally
incorrect.

2. Problem statement. In the present paper the state vector will be an
element x of a Euclidean space E, the control vector will be an element
u of a Euclidean space Er, and the time will assume the discrete values
0, 1, 2, /. The evolution of the system will be described by the dif-
ference equations

(2.1) xi+l xi fi(x, u), i O, 1, 2, k 1.

* Received by the editors May 17, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 15, 1965.

Bell Telephone Laboratories, Incorporated, Whippany, New Jersey. Now at
Department of Mathematics, University of California, La Jolla, California.
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A certain subset a F is given and all the control vectors will be required
to belong to this set 2. For every i 0, 1, 2, ,/c 1 the vector valued
function fi(x, u) is given and satisfies the following conditions:
(a) the vector valued function fi(x, u) is defined for all (x, u) E >(

() for every u C a the vector valued function f(x, u) is twice continu-
ously differentiable with respect to x,
(,) the function fi(x, u) and all its first and second partial derivatives
with respect to x are uniformly bounded over A X 2 for any bounded set
A c En,
(ti) the ina,trix I + Ofi(x, u)/Ox is not singular on E X a,
(e) the set {fi(x, u):u C 2} is convex for every x En.
The conditions (a), () and (,) correspond to the usual "smoothness"

assumptions. The conditions (ti) and (e) are of another nature: they are
always justified in the case of a system of difference equations which
proximates a system of differential equations (see [1] and 5 of the present
paper), but they are not necessarily justified in the case of a system of
difference equations describing a control process which is basically discrete.
We shall now define an initial set

(2.2) /: h,(z) 0, 1, 2,...,

a terminal set

(2.3) {x: g,(x) O, i 1, 2, ..., m},

and an obiective function go(x). The functions hi(x), h2(x),..., h(x),
go(x), gl(x), g,(x) are given twice continuously differentiable map-
pings from E into E such that for every x E the vectors

o h(x) o o
o- h(x),

Ox
h(x)

are linearly independent and the vectors

0 (_0 (x),... 0

o- ’X’ ox o-
are linearly independent.
Two sequences 0, 1, - and 0, , & are said to be opti-

mal if they satisfy the conditions

(2.4) hi(x0) 0 fori- 1,2,...,1,

(2.5) x+-xi =f(xi,ui) for alli 0,1,2,...,/c- 1,

f Added in proof. J. M. Holtzmun hus considerubly released condition (e) in a
forthcoming paper [10].
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(2.6) for all i 0, 1, 2, ,/ 1,

(2.7) gi(xk) 0 fori 1, 2, -..,m,

and if go(2k) is the maximum value of go(x) subject to these constraints.

3. Maximum principle. If the sequences o, 1, "", -1 and 20,
21, 2 are optimal then there exists a sequence of nonzero vectors
Po, $, P such that1"

(1) Maximization of the Hamiltonian.

(3.1)
f(, ).$+ >__ f,(, u).$+

for alli 0,1, 2, / landallu t.

(2) Adjoint equations.

(3.2) 15 /3i+
0

fi(x, ti)I= for all i 0, 1,2, ...,/- i.

(3) Transversality conditions. There exist real
a,, o, , such that

0
(3.3) o ai hi(x)

numbers a, a2, ...,

.= i- gi(x)Ix=,

(3.5) o ->_ 0.

4. Proof of the maximum principle. The proof given here is similar to
the proof of the maximum principle for systems described by differential
equations given in [5].

Let us assume that 20, al, 2 t0, 1, , t_ is an optimal solu-
tion. We shall prove that the maximum principle holds for that optimal
solution.
We define the set W of all states x corresponding to all sequences

x0, x, x u0, u, u_ satisfying (2.4), (2.5), and (2.6). The
set W is called the set of reachable states at time/c. Next we define the set
S(2) as the set of all states satisfying (2.7) and for which the objective
function takes a greater value than at 2k. Formally we have

(4.1) S(2) {x" g(x) =0, i= 1, ,m; go(x) >g0(2)}.

We remark immediately that the sets W and S(2) are disjoint (i.e., have
no point in common). Indeed if the sets W and S(2) had a point in corn-

The scalar product of two vectors a and b is denoted a.b.
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mon then the solution 0, 1, "", k-1; 0, 1, "’’, k would not be
optimal and we would have a contradiction.

In the case of the linear problem considered in [1] it is easy to prove that
the sets W and S(k) are convex, hence separated since we proved earlier
that they are disjoint. When the sets W and S(k) are separated the proof
of the maximum principle is easy, as we shall show at the end of the present
section.
For a nonlinear problem of the type considered in this section the sets
W and S(x) are not necessarily convex, and hence not necessarily sepa-
rated. The difficulty is turned by considering a certain linearized problem
around the solution 0, t, "", - ;0, 2, "", e-. This linearized
problem is defined as follows:
(a) the functions h(x) are replaced by the functions

(o )(.) h(0) + h(z)I=0 (z 0),

() the functions g(x) are replaced by the functions

(o )(.a) () + ()I= (x ),

(7) the functions f(x, u) are replaced by the functions

(4.4) f( u) + f(x, )l,=

We note immediately that the sequences 0, , -1 0, ,
constitute Mso a solution (but not necessarily an optimal solution) for the
linearized problem defined above.
We define now the sets W+() and S+() in the same way as the sets
W and S() defined earlier but with respect to the linearized problem
defined above and not with respec to the initial nonlinear problem which
was used in the definition of W and S(). It is easy to prove that the sets
W+() and S+(2) are convex. We shall now state a resul which is in-
tuitively obvious but which is nevertheless long to prove (see Appendix D).

LINEARIZATION LEMMA. If the sets W and S() are disjoint then the sets
W+() and S+() are 8eparated.

Two sets A and B of E are separated if there exists a hyperplane P such that A
is contained in one of the closed halfspaces determined by P and B is contained in the
other closed halfspace determined by P. There exist disjoint sets which are not sepa-
rated and separated sets which are not disjoint.

In 6 we show by an appropriate counterexample that a superficial understanding
of the Lineariation Lemma can lead to incorrect results.
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With the help of this Linearization Lemma we shall now prove the maxi-
mum principle.
We have proved earlier that the sets W and S(2) are disjoint. From the

Linearization Lemma we conclude that the convex sets W+(2) and S+(2)
are separated, i.e., there exists a nonzero vector r such that

(4.5) (x- 2).r >= 0 for allx S+(2),

(4.6) (x ).r -_< 0 for allx W+(2).

We define the sequence of nonzero vectors P0, i1, i as the solution
of the difference equation (3.2) with the terminal condition

(4.7) i .
We conclude by proving that relations (3.1), (3.3), (3.4) and (3.5) are

satisfied. Note that (3.2) is satisfied by definition.
For any given i in {0, 1, k let W+ be the set of all states reachable

at the time i for the linearized system (4.4) from all initial states defined
by (4.2) and with all admissible control sequences. We have then
W+ W/().
We shall first prove that for every i 0, 1, k and all x W+ we

have

(4.8) (x- ). _<_ o.
Indeed let us assume that for some j {0, 1, k}, . W, and e > 0
we have

(4.9) (- ).iO e > O,

and show that we are led to a contradiction. We define .+, .+,
by the relations

:+ --f(: ) -[- - f(x, a)[= (-
(4.a0)

for/ j,j + 1, l 1.

From the previous definitions we have immediately

(4.11) (2- i)"i- (i+1- i+1)"i+l 0,

hence

(4.12) ( 51)./% e > O,

which contradicts (4.6) since/3 r und W+().
We shall now prove (3.1) by contradiction. If there are a j {0, 1,
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/c i}, a it and an e > 0 such that

(4.13) f’(, ’)"/’+1-" f(g", )’/’+1

then the state + W+, defined by

(4.14) + g f(, ),

is such that

(4.15) (2s+- ]+1)’Pi+1 e > O,

which contradicts (4.8).
We shall now prove (3.3). We have

(4.16) (x 0).P0 o
for all x W, i.e., for all x such that

(.17) (z o) h(z)= O, i 1, 2, ..., 1.

rom (4.16) and (4.17) we obgain furthermore

for all z sagisfying (4.17). rom (.17) and (4.18) we obtain ghen (g.).
We shall now prove (a.4). We have

(.1) .(z ) 0

for all x such that

(4.20) (x 2k)" xgi(x)lx= O, i 1,...

and

(4.21) (x ) - go(X)lx.=

Relations (4.19), (4.20), and (4.21) imply that

p.(x ) 0(4.22)

for all x such that

(4.23) xx g(x)lx= "(x ) O, i O, 1,..-, m.

From (4.22) and (4.23) we obtain then (3.4).
We conclude the proof of the maximum principle by proving (3.5). We
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have

(4.24)

i.e.,

(4.2)

(x- 2e).$ >_- 0,

(x- ). xi=0
for all x S+(2k), i.e., for all x such that

(4.26) (x ). -x g(x) i 1,"" ,m,

)(4.27) (x 2). - go(X)lx= > O.

The set S+(2) is not empty, hence from (4.25), (4.26), and (4.27) we
obtain/0 >= 0.

5. Convexity and relaxed variational problems. The aim of the present
section is to show that the convexity requirement,

the set {f(x, u): u } is convex

for every x E and every i 0, 1, ,/ 1,

which was given in the statement of the problem is always acceptable in
the case of a system of difference equations which approximates a system
of differential equations.
Our claim is based on the theory of relaxed variational problems which

is due to L. C. Young, R. V. Gamkrelidze and J. Warga (see, for instance,
[7] and [8]). Given a control system

(I) 2 f(x, u, t), u 9,

we introduce its relaxed form,

(II) 2 convex hull {f(m, u, t) u }.

Under some fairly general conditions Warga has proved that .any absolutely
continuous solution x(t) of (II) can be uniformly approximated by bso-
lutely continuous solutions of (I).

Let us now introduce a first order approximation of each of the systems
(I) nd (II). We obtain

(I*) x(t q- h) x(t) f(x(t), u(t), t)h, u(t) < ft,

and

(II*) x(t q- h) x(t) convex hull {f(x(t), u, t)h: u }.



A MAXIMUM PRINCIPLE 97

The approximation (I*) is perhaps the most "natural" approximation
of the given system (I). However the approximation (II*) is much more
convenient due to the convexity, and is as accurate since
(i) (II*) is as good an approximation of (II), as (I*) is of (I)
(ii) we know, from the theory of relaxed variational problems, that (I)
and (II) are essentially equivalent.

Convexity is the fundamental concept in the theory of optimal control
for systems described by differential equations and for systems described
by difference equations. In the case of control systems described by differ-
ential equations the time, by its evolution on a continuum, has a "con-
vexifying" effcct which frees us from the necessity of adding some con-
vexity assumptions to the data of the problem. In the ease of control sys-
terns described by difference equations the time, by its evolution on
finite set, has no "eonvexifying" effect and, in order to obtain a maximum
principle, we must add some convexity assumptions to the data of the
problem.

There is a close relationship between the theory of relaxed variational
problems and the convexity of the range of some vector integrals (see [5]
and [6]).
The "convexifying" effect of the time, by its evolution on a continuum,

is shown most simply by the following theorem [6].
If f is a piecewise continuous function from [0, 1] into E and if ( is the

set of all subsets of [0, 1] which are the union of a finite number of intervals,

In contradistinction let us consider a function g from {0, 1, .-.,
into E and the set Pk of all subsets of {0, 1, ...,/c}. The set
s g(i): S Pk} is not convex (unless the function g is identically zero).

6. Linearization Lemma and constraint qualification. In 4 we have
stated:

Linearization Lemma. If the sets W and S(2) are disjoint then the sets
W+(2) and S+(2) are separated.
The aim of the present section is to persuade the reader that the follow-

ing result is false:
First Naive Linearization Lemma. If the sets W and S(2) are disjoint

then the sets W+(2) and S+(2k) are also disjoint.
A second and equivalent form of the First Naive Linearization Lemma

is implicitly accepted in the great majority of the engineering papers de-
voted to optimal control.

Second Naive Linearization Lemma. The optimal solution of a nonlinear

Unfortunately this last remark applies also to many papers devoted to optimiza-
tion of systems described by differential equations.
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optimization problem is also the optimal solution of the linear optimization
problem obtained by limarizing arout_d that solution the given nonlinear
problem.

Let us give a counterexample to these Naive Linearization Lemmas. We
have n k 2 and r 1. The two state variables are denoted by x and
y and the control variable is denoted by u. We have the constraint u --< 1.
The initial manifold is the point x0 y0 0 and the terminal manifold
is the line y,. 2. The objective function is x2. The evolution of the sys-
tern is given by the difference equations

xi+l xi u, i 0, 1,
(.)

Y+I-- Y- 1 (xi) 2, i 0, 1.

It is an easy matter to visualize the set W, see Fig. 1. The optimal solu-
tion is

0 0, zl q-l,

(6.2) 20 0, 21 0, 22 q-l,

)0 0, $1 +1, . +2,

and S(1, 2) is the set I(x, y): y 2, x > 1}. We verify easily that the
sets W and S(1, 2) are disjoint.
The linearization of the system (6.1) around the solution (6.2) leads to

x+l x u, i 0, 1,
(6.3)

y+l- yi 1, i 0, 1.

We have then

W+(1, 2) /(x, y): Ix --< 2, y 2},

S+(1, 2) {(x, y): x > 1, y 2}.

The sets W+(1, 2) and S+(1, 2) are not disjoint but they are separated
by the line y 2 which contains both of them.
The reader who is familiar with the mathematical programming litera-

ture will recognize immediately the close relationship between the preced-
ing counterexample and the classical example (see [9, p. 229]) showing the
importance of constraint qualifications in mathematical programming.
At the end of this section we want to stress the fact that the maximum

principle given in 3 is valid even when the Naive Linearization Lemma
is not valid. A stronger form of the maximum principle is obtained by
replacing the inequality 0 >= 0 of (3.5) by the strict inequality 0 > 0.
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-3 -2 -I +I +2 +3 X

--I

FIG. 1. The set W for the given example

This stronger maximum principle is valid only when the Naive Lineariza-
tion Lemma is valid. A very difficult problem in optimization theory is to
determine beforehand if the Naive Linearization Lemma is valid or not.
This last question is closely related to the problem of normality in classical
calculus of variations. A solution for which there are no vectors
/30,/31, ,/3k with 0 > 0 satisfying the maximum principle is called an
abnormal solution. Such a situation indicates that, from an engineering or
economic point of view, the problem was ill-formulated.

Appendix A. A simple characterization of nonseparated convex sets.
In this appendix we state and prove a simple property of nonseparated
convex sets. This result will be used in Appendices B and D.
PUOPOSITION A.1. If K1 and K are two convex nonseparated subsets of

such that 0 K-- i 1, 2, and 0 $ K K then there exist an integer q
with 1 <-_ q <- n and n -- 1 vectors el, e. e,+l such that
(i) e Kl ,for i 1, 2, q,
(ii) e K,fori q + 1,...,n + 1,
(iii) any n vectors among the n -- 1 vectors el, e, e+l are linearly
independent,
(iv) e.ei, the scalar product of e and ei, is positive for all i and
j- 1,2,...,n+1,
v the sets A1 and A2 defined by

(A.1) A1 uie"
,

ui < 1, ui > 0for 1,2,...,
i=1 i=l
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(A.2) A.2 ie" ti<l, tj>Oforj=q+l,...n+l
i=q+l i=q+l

are nonseparated and satisfy the relations A c: Ki, i 1, 2.

The proof of Proposition A.1 follows from the following well-known theo-
rem.
SEPARATION THEOREM. Two convex subsets Kt and K2 of E are non-

separated if and only if the two following conditions are satisfied"
(i) the smallest linear variety containing K1 and K2 is the entire space E’,
(ii) there exists a point e* rint Ki, i 1, 2.
By rint Ki we mean the interior of K with respect to the smallest linear

variety containing K.
Proof of Proposition A.1. From the Separation Theorem we know that

there exists a point e* rint K, i 1, 2. By assumption we have
0 K1 K2 which implies that e* 0. From the Separation Theorem we
know also that the smallest linear variety containing Kt U K is the entire
space E. Hence there exist n linearly independent vectors at, a., a
inK1 U K. We may always assume that e is one of the n vectors
a, a, an and that for some integer q with 1 N q __< n we have

ai Kt, fori 1, 2,

aq --e
ai K fori q, q -- 1, n.

Let Pt be the smallest linear variety containing 0, at, a,..., aq, and
let P2 be the smallest linear variety containing 0, aq,..., an. Let
K* K Pi, i 1, 2. By construction we have e* tint K*, i 1, 2,
and the smallest linear variety containing K* [J K* is the entire space
E. Hence, by the Separation Theorem, the convex sets Kt* and K* are
nonseparated.

Since e* tint Kt*, then there exist q linearly independent vectors
et e2, eq in Kt* such that e* rint At, where A1 is defined by (A.1).
Similarly since e* rint K*, then there exist n q -t- 1 linearly inde-
pendent vectors eq+l en+l in K* such that e* rint A, where A is
defined by (A.2). By construction any n vectors among the n -t- 1 vectors
el, e., e+l are linearly independent and the smallest linear variety
containing A1 [J A. is the entire space E. Hence, from the Separation
Theorem, we know that the sets At and A are nonseparated. There is no
loss of generality by assuming that e.e. > 0 for all i and j 1, 2,

e*n+ 1. Indeed for any) (0,1),letei(X) e*-l-X(e- );forXsmall
enough we have e()).e.(X) > 0 for all i and j 1, 2, ..., n + 1, and
none of the other properties are violated. This concludes the proof of
Proposition A.1.
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Appendix B. A topological property of nonseparated convex sets. In
this appendix we prove a single proposition which plays a fundamental
role in the proof of the Linearization Lemma to be given in Appendix D.

PROPOSITION B.1. Let K1 and K2 be two nonseparated convex sets in E.
We assume that the origin 0 belongs to K1, the closure of K1, and to K2 the
closure of K2. Let L be a positive constant. We are given a continuous mapping
1 from K1 into E and a continuous mapping q2 from K2 into En. We assume
that for i 1, 2 we have

(B.1) l(e) e Lie [2 for all e K
Then the set 1 K1) 2 K2 is not empty.
Before proving Proposition B.1 we shall state and prove Proposition B.2

which is a particular case of Proposition B.1. (One of the given convex
sets is merely a one-dimensional linear segment and the mapping corre-
sponding to this linear segment is the identity mapping.)
PIOPOSITION B.2. Let K be a convex set in E. We assume that the origin

0 belongs to [, the closure of K, and that there exists a point x interior to the
set K. Let L be a positive constant. We are given a continuous mapping
frown K into E such that

(B.2) I(e) e] -< Lie[2 for alle K.

Then there are an a > 0 and a point y interior to the set K such that

(B.3) q(y) ax.

Proof of Proposition B.2. Since x is an interior point of K we know that
there exists an > 0 withN(x, e) c K. By N(x, e) we mean the set
{x*’lx x*] <= e}. Let a be a positive constant such that

(B.4)
-4

and

(B.5) a =< 1.

Since the set K is convex, 0 /, and N(x, ) K, we have then im-
mediately N(ox, ae/2) c K. Let h(e) e (e) -4- ax. The function h
is continuous and maps N(ax, ae/2) into itself since

(B.6)

for all e N(ax, as/2). Hence, by Brouwer’s fixed point theorem, there is
y N(ax, as/2) such that h(y) y, i.e., q(y) ax. The point y belongs

to the interior of the set K and Proposition B.2 is proved.
Proof of Proposition B.1. The two convex sets K1 and K are nonsepa-
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rated and we have 0 ff K., i 1, 2. If 0 ff K1 fl K2, then Proposition B.1
is trivially satisfied, since 1(0) 2(0) 0 and 0 (K) fl 2(K2).
Let us assume that 0 $ K 1 K. Then, from Proposition A.1, there exist,

an integer q with 1 __< q _<_ n and n -- 1 veeto.rs e, e, en+l such that
conditions (i)-(v) in Proposition A.1 are satisfied. From now to the end
of the proof we shall restrict our attention to the sets A1 and A2 and prove
that

(B.7) I(A) l (A2)

is not empty which a fortiori implies that (K) [’l (K) is not empty.
Since the sets A and A are nonseparated then there exists a point

(B.8) e rintA, i 1,2.

In other words there exist n - 1 positive numbers
that

(B.9) e*
i=1

n+l

(B.10) e*= E
i=q+l

q

(B.11) Xi < 1,
i-1

n+l

(B.12) X < 1.
q--

Let xl, x, .., xn+l be vectors in En+l determined by

(B.13) x-- e,

(B.14) xi= --e (n + i q) X

kn+ such

fori 1,2,... ,q,

for/ q - 1, n - 1.

It is easy to prove that the vectors x, x.,
pendent and that

(B.15) Xx (0, 0, ..., 0, 2).
i=l

Let A be the subset of E"+ defined by

.., x+ are linearly inde-

(B.16) A x" i< 1, i >0forj= 1,2,...,n-t- 1
k= =

and let x* (0, 0, 0, 1). We have x* riat A.
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Let be a continuous mapping from A into En+l defined by

(B.17)
(1

i=l

+
\=+1 =+ (n+ 1- q)X

The mapping is well defined since the representation
unique (the vectors Xl, x2, Xn+I are linearly independent) and since
E,q"=l ,te < A1 and E=+:+I/.tie < Az. W have

(B.18)

Hence

(B.19)

g2 tti ei tti ei 0
i----q+1

n+l

ti Xi E ].ti Xi
i=1

Since the vectors x, x2,

constant N < + m such that
n+l

(B.20) E I.+ 12 -< N
i=l

n-F1 {2E i Xi
i=l

for all Pl /2,2

(B.21)

Un+l. From (B.19) and (B.20) we obtain

i Xi
i=l

(1 )nq-1]Ai Xi E I’ti Xi
\i=1 i=1

where

(B.22) L* L max [ejl N.
j-----l, ,n-F1

The relation (B.21) can be written

(B.23) I(e) e __< L*le 12 for alle A.
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By Proposition B.2 there are an 2 ff rint A and an a > 0 such that

(B.24) (2) az* (0, 0, ..., 0, a).

We have then 2 .+ x, for some , ,--., + such that

= < +1, and > 0 forj 1, 2, n + 1. This implies that

(o,o, ,o,) ()

+ Pi i

(C.I)

(c.2)

(c.3)

(c.4)

Then

)i ei fl2
k,i=q+l

Let e = ie and e ’+
i=q+l piei. We have then el(el) 2(e2)

with e A1 and e A2. This concludes the proof of Proposition B.1.

Appendix C. A Gronwall inequality for difference equations. In this
appendix we prove a single result.
PROPOSITION C.1. Let L, ao a a o 1, - be real num-

bers such that

a+i-- a La+, i 0, 1,2, ...,k-- 1,

L0,

0, i 0, 1, 2, .,., k- 1,

a 0, i 0, 1, 2, ..., k.

(C.5) a <- (1 + L ao + (1 + L)-’-I, i 0,1,2, k.
3.=0

Proof of Proposition C.1. We prove (C.5) by induction. For i 0 we
have identically a0 _-< a0. Let us assume that (C.5) is true for
i 0, 1, 2, and prove it for i -}- 1. We have

a,+i a, <= La + ,
(c.7) O/+1 <- (1 Zr L)a + ,
and

(C.S) a, __< (1 -t-L) s0 + (1 + L)-3.-1/1
3"=0
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(c.9)

From (C.7) and (C.8) we obtain

< (1 +L)+I(ao -4- (1 + L)--Ij

This concludes the proof of Proposition C.1.

Appendix D. Proof of the Linearization Lemma. In this appendix we
prove the Linearization Lemma which has been stated in 4 as follows.

LINEARIZATION LEMMA. f the sets W and S(2) are disjoint then the sets
W+(2) and S+(2k) are separated.
Proof of the Linearization Lemma. We shall assume that the convex sets

W+(2k) and S+(2) are nonseparated and show that this implies that the
sets W and S(21) are not disjoint.
There is no loss of generality in assuming that

(D.1) 2o 21 2 O.

We shall have accordingly

(D.2) h(0) 0, i 1, 2, ..-, l,
and

(D.3) g(0) 0, i 1, 2, ..-, m.

In order to simplify the notation we shah write W+, S+ and S instead
of W+(2), S+(2) and S(2).
From the previous definitions and assumptions we know that the sets

W+ and S+ are convex and nonseparated, that 0 belongs to the closure of
W+ and to the closure of S+, and that 0 $ S+. Hence, from Proposition
A.1, there exist an integer q with 1 q <= n and n + 1 vectors
el, e, en+l such that
(i) e W+,fori 1,2,...,q,
(ii) e S+,fori= q+ 1, ...,n+ 1,
(iii) any n vectors among the n -t- 1 vectors e, e, e+l are linearly
independent,
(iv) e.e. > 0 for all i andj 1, 2, n + 1,
(v) the sets A1 and A defined by (A.1) and (A.2) are nonseparated and
satisfy the relations A1 W+ and A S+.
From now to the end of the proof we shall restrict our attention to the

sets A1 and A.
Define a new state variable y by the time varying transformation y x &
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We shall construct a continuous mapping (1 from A1 into W and a con-
tinuous mapping q2 from A. into S such that for some L1 and L2 < -t-
we have for i 1 and 2,

(D.4) i(x) x _-< Li Ix 12 for all x A,

(D.5) [q(x) x[ _<_ L Ix 12 for all x A,

where L max {L1, L2}. From the last two relations and from Proposi-
tion B.1 we conclude that the sets I(A) and 2(A2) are not disjoint which
implies a fortiori that the sets W and S are not disjoint. This contradiction
will then conclude the proof of the Linearization Lemma.
The second of the relations (D.4), for i 2, is immediate since we have

assumed that the functions go(x), gl(x),..., g,(x) defining the sets S+

and S are twice continuously differentiable with respect to x.
To simplify the notation we shall sometimes write e0 for 0, u(eo) and

u.(0) for , and x+(eo) for 0.
By assumption we have e W+ for i 1, 2, ..., q. In other words,

the point ei is reachable for the linearized problem defined in 4. Let us
denote by X+o(e), x+(e), ..., x+(e) a sequence of states and by
+ +

Uo (e), U+l (ei), Uk-l(e) sequence of controls leading to the point
for this linearized problem. For i 1, 2, q we have then

(0 ) X+o(e) 0 for j 12, l,(D.6) -- h(x) I=o "",

xi++(ei) x-(ei) f(O, u.(e:))
(D.7) (0 i(x,u(O))[=o)x(ei) for j=0, l 2,-..+ X
(D.S) x+ (ei) e.

Let D+ be the convex hull of {x0+(e0) O, X+o(e), X+o(eq)}. Since
we have assumed that the functions h(x), h2(x),-.. h,(x) are twice
continuously differentiable with respect to x then there exist a continuous
mapping (x) from

(D.9)

into

(D.10)

y" h(x) I=o y O, j 1,...,

Y" h(y) O, j-- 1, ...,l}

and a constant La < + such that

(D.11) I(x) x --< L Ix 12 for all x D+.
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Let D b(D+).
For any a A1 let k(a) (k0(a),),l(a), ),2(a), ),q(a)) be the

barycentric coordinates of a with respect to the points e0 0, el, e2,

eq. In other words we have
q

(D.12) a ),j(a)ej, _,kj(a) 1.
j=0 j=0

By assumption we have a W+ for any a A1. In oher words, any
poi.nL a in A is reachable for he linearized problem defined in 4. For any

+a A we shall define below a sequence of saes x0
+ (a), x+(a), x (a)

leading o he poin a for his linearized problem"

(D.13) X+o (a) ),(a)x+o (e),

+ +xi+(a) xi (a) h(a)fi(O, ui(e)
(D.14)

=0

(0 ) +(a)for i 0,1,2, / 1-t- -f(x, ui(O))l=o x

The definitions (D.13) and (D.14) are compatible with the definitions
(D.7) and (D.8), and for i 0, 1, 2, ,/ we have

(D.15) x+ (a) _, ),(a)x+i (e).
j----0

We have assumed that the set {f(x, u)’u t} is convex for every
i 0, 1, ,/ 1 and every x En. Hence for any a A, there exists

+a control sequence u0 (a), u+(a), uk-(a) such that

(D.16) f(O,u+(a)) k(a)f(O, ui(e)) for i 0, 1, 2, ,/ 1.

+Consequently the sequence X+o(a), x+,(a), xk (a) defined by (D.13)
and (D.14) corresponds to some admissible control sequence U+o(a), u+,(a),

+u-(a) for the linearized problem defined in 4.
We shall now define for every a A a sequence of states xo(a) x,(a),.., x(a) which forms a solution for the original nonlinear difference

equations. The initial state xo(a) is defined by

and the states xl(a), x(a),

x+(a) (a)
(D.17) _, ,(a)f(x(a), u(e))

j----0

xo(a) (x+o (a) ),

x(a) are defined inductively by

fori 0,1, 2, / 1.
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Again from the assumption that the set [fi(x, u)’u } is convex for
every i 0, 1, k 1 and every x E we know that for any a A1
there exists a control sequence u0(a), ul(a), Uk_l(a) such that

(D.18)
ui(a))

X(a)f(x(a), u(ei))
5-----0

fori 0,1,2, ...,k-- 1.

Consequently the sequence x0(a), xl(a), xk(a) defined by (D.16)
and (D.17) corresponds, for the original nonlinear equations, to some ad-
missible control sequence uo(a), ul(a), U_l(a). Moreover we have

(D.19) x(0) 2 0 for i 0, 1, 2,..., k.

The mapping, 1 from A into W is defined as the mapping from x+ (a) a
into x(a). In other words we define the mapping by the relation

(D.20) l(a) x(a) for all a A.
We shall now prove that x(a) is continuous with respect to a over A

and that there exists an L1 < + such that

(D.21) Ixk(a) al --< Llal for alla A.
Let M SUpaA]Xo(a) 20 [. We have M < + . Let H

_
E be

the set of all states which are reachable at some time i 0, 1, k
with some admissible control function and from some point x ,nt i 0
satisfying the condition Ix 201 -< M. The set H is bounded. Let N be
such that

(D.22)
f(x’, u) fi(x", u) =< NIx’ x"

all i 0, 1,

for all x’ and x" H,

,k- 1, andallu

(D.23)
f(x, u) <- N for all x H, all i 0, 1, ..., k 1, and

all u ft.

From the initial assumptions relative to the set ft and to the functions
f(x, u) we know that the constant N < -t- exists.

Let us first prove that the function x(a) is continuous with respect to
a over A1. For any i 0, 1, 2, k 1 we have

(anx+x(a x,+(a")l ]x,(a xi
(D.24)

<= (x,+(a’) x,(a’)) (x,+(a")

(D.25) h(a’)f(x(a’), u(e)) h(a")f(x(a"),u(e))
=0
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q q

<- ,(a’)fi(xi(a’), u,(e)) h(a’)fi(x(a"),
j=0 a=0

(D.26)
q

+ (a’)f(x(a"), u(e)) (a")fi(x(a"), u(e))
=o =o

q

att(D.27) N ]x(a’) x ) + N (a) X(a’) ].

From Proposition C.1 (GronwMl’s inequality for difference equations) we
hve then

(D.28) ((1 + N) xo(a’) xo(a") + N X(a’) (a")l
j=0

We know Mredy that xo(a) nd (a), j 0, 1, 2, q, re continu-
ous functions of a over A. Hence from (D.28) it follows that x(a) is a
continuous function of a over A.

It remains to prove that there exists n L < + such that

(D.29) x(a) a L a or 1 a A.
From the previous definitions we hve immediately

(D.30) x(0) 0.

For every a A1 with a # 0 let us consider the vector xk(ea/] a I) as a
function of . We shall prove below that:

(i) xk e is well defined for any a Alwitha # 0andforany

e [0, [a[]; moreover there exists a constant L1 < -- such that for
n.y a A with a # 0 and for any [0, a ] we hve

(D.31) xk e L1

(ii) for every a A with a # 0 we have

(D.32) 0- xl
=0 al

From (D.30), (D.31), and (D.32) we obtain the desired result (D.29).
We conclude the proof of the Linearization Lemma by proving (D.31)

and (D.32). The proof of (D.31) is an immediate consequence of the
assumptions that the functions hi(x) and fi(x, u) are twice continuously
differentiable with respect to x. The relation (D.32) can be written equiva-
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lently

(D.33) O xk(ea)i=o a for every a A1.

For every a A1 and every i 0, 1, ,/c we define yi(a) by the rela-
tion

(D.34) yi(a) xi(ea)

We have immediately

(D.35) yo(a) k(ea)x+o (ej)
j=O =0

q

(D.36) k,(a)x+o (e)

(D.37) X+o(a)

(D.38) y+(a) yi(a)
=o

q

,(a)f(O, u(el))
(D.39)

5=0

/ \

By comparing (D.14), (D.37), and (D.39) we see that for all a A
and all i 0, 1, 2, ,/c we have

(D.40) y(a) x+ (a),

in particular we have
+(D.41) xk (a) y(a).

By definition we have also

(D.42) x+ (a) a

and

(D.43) y(a) x(ea) ]=0.
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From (D.41), (D.42), and (D.43) we obtain the desired result that

(D.44) a xk(eal,=o.

This concludes the proof of the Linearization Lemma.
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A CLASS OFITERATIVE PROCEDURESFORLINEAR INEQUALITIES*

YU-CHI HO NI) R. L. KASHYAP
1. Introduction and notations. In this pper we nre concerned with the

problem of finding a (m-vector) such that Aa > 0, where A is a given
N X m matrix and N > m. This problem is fundamental in mathematical
programming, switching theory, and pattern classification. We shall demon-
strate a class of exponentially convergent and finite iterative procedures
for solving this problem.

Matrices will be denoted by upper case letters; vectors, lower case letters.
The subscript i will indicate the iteration number. IIMI[ denotes the spectral
norm of M, and M > 0 means that M is positive definite and symmetric.

2. The algorithm. It is clear that the problem in 1 can be restated as:
Find a (m-vector) and 5 (N-vector) such that Aa 5 0 and 5 > 0.
We shall see later that the introduction of the vector 5 as additional vari-
ables plays a crucial role in the convergence rate of the algorithm without,

any appreciable increase in computational complexity. Let us define

(1) y=Aa-

and p as a scalar constant, S as an m X m symmetric matrix to be specified
later.

PROPOSITION. The algorithm

(2) O/i+1 + pSA ’IYI, ao arbitrary,

(3) i+1 i + (y + ]YI), o > 0 but arbitrary otherwise,

converges to the solution of the problem in a finite number of steps provided a

solution exists.

3. Proof of convergence. To show convergence, we must demonstrate
that (2) and (3) imply that lim. y 0. From (2) and (3), we have

(4) y+l (pASAT- I)lyi I.
Consider a Lyapunov function V(yi) lly]]2; then

* Received by the editors (in summary form) June 3, 1965, and in complete form
September 9, 1965. Presented at the First International Conference on Programming
and Control, held at the United States Air Force Academy, Colorado, April 16, 1965.

[ Division of Engineering and Applied Physics, Harvard University, Cambridge,
Massachusetts. This work was supported in part by the Radiation Center, Honeywell,
Incorporated, nd by the Joint Electronics Program under Contract NONR 1866(16).
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AV(yi) V (yi+l) V (y)

(5) [yIr(p2ASArASA r 2pASA r)[y

IU I A[ :ZA A 
By a well-known theorem of Ky Fan [1] we know that Ar]y 0 for all
y, 0 if a solution exists to the problem Aa > O. Hence, in (5) we need
only to choose p und S appropriately to insure

Case 1.* (ArA )- S, 0 < p < 2. In this case, (6) becomes

(7) [pSArAS 2pSI p(p- 2)(ArA)-1 < 0.

Case 2. S I, 0 < p < (]]A rA )-1. As before, we have for (6),

(8) p[pArA 21] < 0,

which is negative definite by definition of p.

Case3. S (2 llArAll I ArA)/ArAll,0 < p < 2. In this case,
(6) reduces to

[pSArAS- 2pS] p (p- 2)S- p ArA

S
lArA ]- I

which is negative definite in view of the fact that S > 0.
In (3) if we let 0r [1, 1, 1], then every component of is greter

than one for all i. Thus ]y] < 1 implies that Aa > 0. Since y converges
to zero in infinite time, it follows that y must enter the unit cube which
represents solutions of Aa > 0 in finite time. Our proposition is proved.

Remark. Computationally, Case 1 can be expected to have the fastest
convergence rate. However, it is necessary to invert an m m matrix
once per problem. Case 2 is simplest but probably slowest in convergence.

The case where A is not of mximal rank will be treated in the Appendix.
Define matrix L by ATA [ATA[I + L]. Then S [I L]/]ArA and

[pSATAS 2pSI p[(p 2)S + p(SATAS S)]

p[(p 2)S + p{(I L)(I + L)(I L) (I- L)}/[ATA[[]

p[(p 2)S- pL(I- L)L/[[ATA[],

which is equal to the right-hand side of (9).
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Case 3 occupies a place in between Cases 1 and 2 in complexity. The spec-
tral norm, IIA rA[I, can be easily computed by the power method.
The scalar p, instead of being treated as a constant, can be chosen suit-

ably at each stage so that -AV (yi) is a maximum. The optimal value of p

at the ith stage is found to be

pi
Yi rASArASA Y I"

In particular, for Case 1, p 1 or all i.

4. Comparison with other algorithms. Let 0r [1, 1, ..., 1]. Then the
Novikoff procedure [2] for solving the problem can be stated essentially as

(10) +t a + pAr[sgn ([Aa- 0]) sgn (Aa- 0)].

The Agmon-Mays procedure [3], [5] becomes

(11) +1 a + A[IAa- ol- (Aa- 0)]

and finally, the Wong-Eisenberg procedure [4],

(12) Aai+i Aa + pA (A rA )-IA T[ Sgn (Aai)],

which are variants of Cases 2 and 1, respectively. The key difference in
(10)-(12) is the fact that is not treated as a variable but held constant.
This difference apparently accounts for the high convergence rate ex-
perimentally observed for our procedure [6]. Heuristically, a variable
vector fl allows those row constraints which are not satisfied to have more
weight in the iterative procedure (cf. (2)).

Appendix. Modification of Case 1 when A is not of maximal rank. Let
A* be the Penrose generalized inverse of A. We modify (2) and (3) to

ai At
+ + p[y + [yl], 0 [1, ..., 1],

(A-l)

(h-2)

which lead to

(A-a) y+ y + p(AA I)(y +
The Lyapunov function V(yi) Ilyll implies

(A-4) AV(yi) 2pyr(AA I) (y + y) + py + y[ _,
which reduces to

by virtue of the facts

(A-6) (y + y]) r(y ]y]) O, A ry ArAA A O.
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The matrix [pAA* + (p p)I] is positive definite for 0 < p < 1.
Furthermore, all components of y cannot be simultaneously negative.

For otherwise, let a* be a solution of Aa > 0, then

(A-7) 0 yrAa* yrb < 0

represents a contradiction. Consequently, AV(y) is again negative definite.
We have convergence once again.
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AN OPTIMAL PROCEDURE FOR AN N-STAGE LEARNING
PROCESS*

W. KARUSH AND I. E. DEAR
1. Introduction. In this paper we deal with a learning process, or experi-

ment, that involves a finite number N of trials (N arbitrary), where each
trial consists of the presentation of a single (stimulus) item chosen out of
a given set of n items, n =< N. In each trial, the subject responds to the
presented item, either correctly or incorrectly, and following this, under-
goes a reinforcement or corrective action that allows him to improve his
state of learning with respect to that item; the response and change of state
are taken to occur probabilistically. The sequence of item presentations is
under the control of the experimenter, and he is free to follow any strategy
of presentation he chooses; a strategy is a procedure that specifies a definite
item for each trial, the specification being contingent on the history of
presentations and responses up to that trial. We are concerned with the ex-
pected level of learning reached by a subject with respect to all n items at
the end of the experiment. To measure the terminal level of learning, we
define a risk for each strategy, this being the expectation of a function that
assigns a numerical loss bk to the terminal event of being in the unlearned
state with respect to exactly / items, /c 0, 1, 2, n. We then use
Bayes’ criterion to define an optimal strategy as one that minimizes the
risk.
In this paper, we assume a mathematical model of learning that is based

upon the so-called single-element model of the stimulus-sampling theory of
learning (see [1]). Using this model, we formulate the problem of determin-
ing optimal strategies as a type of dynamic programming problem involving
branching (correct or incorrect response) at each node (item presentation),
which may be viewed in some respects as a generalization of Bellman’s
"gold-mining" problem [2]. We show that a certain simple, intuitively
appealing decision rule is the correct rule for generating optimal solutions.
To describe the decision rule we introduce the vector of probabilities

(kl, },., hn), where ki is the probability of the learned state with
respect to item i, or, as we shall say, the probability of "knowing" item i.
An initial vector 0 is assumed at the outset of the process, and the subse-
quent values of are computed trial-by-trial on the basis of the model of

* Received by the editors July 2, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 15, 1965.

Research and Technology Division, System Development Corporation, 2500
Colorado Avenue, Santa Monica, California.
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learning. The present value depends upon the immediately preceding , the
item last presented, and the response elicited. The decision rule is then the
following (Theorem 1): present an item j for which the current probability
X. is least among all the components M. Another way to express this result
is: the strategy of local optimization whereby the item presented is that
minimizing the risk if the present trial were the last (i.e., looking ahead one
step) is in fact a strategy of global optimization.

In addition to assuming dichotomous responses, the single-element model
we use also assumes just two possible states, learned or unlearned, with
respect to a given item. The state is not observable; what is observable is
the response when the item is presented in a trial. The learned state is
characterized by the probability of a correct response being 1, and the un-
learned by this probability having a value , 0 < , < 1, called
the "guessing" probability. The existence of a positive guessing probability
means that the test on an item is not perfect in separating unlearned sub-
jeers from learned ones (although, as we shall see, it does imply that in-
correct responders are necessarily unlearned). It is this aspect of the model
that gives content to the problem of an optimal strategy; if the test sepa-
rated perfectly, then we would never re-present an item to a subject who
had once given a correct response to that item.
The remaining parameters of the model, other than the initial vector

and the guessing probability % are the "learning rates" 01 and 00, which
have the following meanings: given that the subject responded correctly in
a trial, 01 is the probability of a transition from the unlearned to the learned
state with respect to the item presented (as a result of the corrective action
during the trial); 00 is this transition probability given that the subject
responded incorrectly. In general, to apply the above decision rule for an
optimal strategy to a particular subject we must know the values of the
parameters 0, % 01, 00 for the subject. The determination of these values
raises practical difficulties, particularly the determination of the learning
rates, which can be expected to vary significantly as individual attributes.
We are rescued from this difficulty by the fact that typical practice is to
assume that the initial probabilities Xi are all 0; under this assumption
(and certain mild restrictions) there is a fixed strategy independent of 01,
00 (and ,), which is optimal for arbitrary values of these parameters. This
strategy is given by a counting rule depending only on the responses of the
subject (see Theorem 2).
The present work grew out of some laboratory experiments that were

designed to test the stimulus-sampling theory with human subjects in
paired-associate learning. The experi_ments were such as to allow the as-
sumption 01 00 also, ;.0 was taken as zero. The intention was to compare
the performance of subjects when taught by a strategy that was optimal
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(if the model held) with their performance when a strategy of random
presentations was used. This approach required knowing what an optimal
strategy was, and it had been conjectured and assumed that the decision
rule described above gave an optimal strategy. Our results verify this con-
jecture. It might be mentioned that the evidence derived from the experi-
ments was inconclusive in validating the learning model. The assumed
single-element model is too simple to explain the learning actually taking
place in these experiments, and it seems that an extension of the model to
include a forgetting rate might be called for. We have not been successful
so far in treating this extension and shall not enter into a discussion of it
here.
We conclude this introduction by a reference to the treatment of the

"two-armed bandit" problem given by Feldman [3]. He establishes an
optimal strategy for the sequence in which one should play the two arms
of the machine when the arms have different and unknown probabilities of
winning. Although the problem is formally quite different from ours, there
is an analogy with our two-item case with respect to the methods of proof.

2. Model of learning. Consider a, single item. As mentioned above,
there are two possible states with respect to the item, learned or unlearned.
The state of a subject is unobservable, but his response, correct or incorrect,
upon presentation of the item in a trial is observable. For a given trial, we
assume that the probability of a correct response depends only upon his
state at the outset of the trial and is given by the conditional probabilities

prob (correct learned) 1,

prob (correct unlearned

The parameter , is the "guessing" probability; using the notation

(1) / 1 v,

we note that * is the probability of an incorrect response in the unlearned
state.
As a result of the corrective action that is applied during a trial, following

the response of the subject, the subject may "learn" the item, i.e., make
the transition from the unlearned to the learned state with respect to the
presented item. The nature or "strength" of the corrective action is allowed
to differ with the response to the item, and consequently the transition
probability is allowed to depend on which response is forthcoming. We
assume that the probability of a transition to the learned state depends
only upon the state at the outset of the trial and the response during the
trial, and we take
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O0 given an incorrect response,prob (learned unlearned)
01 given a correct response,

0 < O0 < 1, 0 <- O1 < 1,

prob (learned[learned) 1.

(In the second ease, when the subject "knows" the item at the outset of
the trial, we need not distinguish between the two responses, since he then
responds correctly with probability 1.) The parameters 00, 01 are the
"learning rates." For later convenience we introduce

0 3’01 + ,*00.
In contrast to incremental models of learning, the stimulus-sampling model
we use is referred to as an all-or-none model of learning--there are only two
states, the jump from the unlearned to the learned state is made in a single
trial, and once in the learned state the subject thereafter remains in that
state.

Suppose the subject enters a trial with probability X of knowing the item
presented. We think of his response as taking him along either one of two
branches, the correct-response or incorrect-response branch. In accordance
with the definition of % he will follow the correct branch with probability
X -- /X* and the incorrect one with probability *h*. We now compute the
probability of the learned state at the end of the trial, conditioned on his
response. Consider the case when he responds correctly. There are then
two ways he might wind up in the learned state. First, he might have been
in the learned state at the outset (then necessarily responded correctly and
remained in the learned state); this occurs with probability . Second, he
might have been in the unlearned state, responded correctly, and then
mde the transition to the learned state; this occurs with probability
01"y*. Since a correct response occurs with probability X -- ,X*, we find
that the required probability, given correct response, is

(2) X’ x + 0 x*

X* is defined according to (1). Similarly, by considering an incorrect re-
sponse, we find that the a posteriori probability of the learned state, given
an incorrect response, is 00.

If the same item were presented in the next trial, there would be two
branches emerging from each of the terminal nodes above, making four

In a "forgetting" model we would allow transitions from the learned to the
unlearned state during a trial for items that were not presented in that trial.
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terminal nodes in all, or equivalently, making four two-branch paths be-
ginning at the initial node. The four paths are correct-correct, correct-
incorrect, incorrect-correct, and incorrect-incorrect; the corresponding
probabilities of being traversed are (X + 3‘X*)(X’ -t-3’(X’)*), (X + 3‘X*)

*(X’ *,"3’ (3"*X*)(00 -4- 3"00*) and (3"*X*)(3"*00*)
We digress briefly to note some immediate properties of the mapping

0or 1,fromXoX, 0 <= X =< 1, givenby (2) IfX 0orl, thenX’
respectively; when 0 < 0 < 1, X’ is sgricgly increasing wih X and we have
X < X’ < lforXinherange0 <= X < 1.
Now leg us turn o iems, i 1, 2, ..., , = 2. We suppose

he paramegers % 0o, O which describe he single-grial response and gransi-

gion probabiligies for an individual iem are the same for all igems. Also,
we assume hag response and learning for any iem is independen of he
sgae wih respecg o any oher iem. Leg .0 (X0, ,20 Xn0) denote
he vector of inigial probabiligies, i.e., leg

X be ghe probabiligy of being in he learned sgage wigh respecg o

item i at the outset of the experiment, i-- 1,2,...,n.

Let , (,1 X2, n) be the corresponding vector at the beginning of
any trial and suppose that item i is presented during the trial. Then
Xi -t- 3"hi* and 3"*X* are the probabilities of a correct and incorrect response
respectively, and the vectors of probabilities at the end of the trial are

(hi, X’, Xn) for the correct branch,

(Xl, 00, ),n) for the incorrect branch.

These become the initial vectors for the next trial. Suppose item j, j i,
is presented in the next trial to correct responders and item k,/c i, j, to
incorrect responders. There are then four possible response paths of two
branches each; these are (correct on i, correct on j), (correct on i, incorrect
on j), (incorrect on i, correct on k), (incorrect on i, incorrect on k) The
respective probabilities of occurrence are (hi -4- 3"X*)(X- A- 3"X.*),
(X + 3"X*) (3‘*Xj*), (3"*X*) (Xk -t- 3"Xk*), (3"*X*)(,*X*), and the respective
probabilities of knowing the items i, j, k are (X(, Xj’, Xk), (X(, 00, Xk),
(00, hi, Xk’), (00, X, 00); the probabilities for the other items are un-
changed.
We may visualize an N-trial experiment as a tree structure with a single

initial node and 2 terminal nodes. The tree contains 2 1 (= 1 + 2
A- 2 -t- A- 2-1) nonterminal nodes in all, and at each of these, one of
the n items is to be chosen; a branch emerging from a node indicates the
response to the item chosen for that node. A presentation strategy is given
when the item to be used at each nonterminal node is given. There are
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n-1 strategies in all. Each terminal node of the tree of a strategy deter-
mines a unique pth from the initial node to the given termina! node, and
this corresponds to a definite sequence of alternating responses and item
presentations. The probability of reaching the terminal node is well defined
as the product of the probabilities of occurrence of the individual response
branches making up the path to the node. For later use, we let

q(h) be the probability of reaching terminal node h,

where the terminal nodes are indexed in some order by h 1, 2, 2.
3. Loss function and risk. Since a subject may be in either of two states

with respect to an individual item at the end of the experiment, he may
occupy any one of 2 possible terminal joint states with respect to all n
items. However, we wish to give equal weight to the various items in
assessing the terminal effects of a strategy of presentation and so we dis-
tinguish only the following n + 1 terminal joint states"

Tk is the event of being in the unlearned state with respect to exactly

lc items, k 0, 1, 2, n.

We assign a numerical loss bk to the event Tk, and, since the greater/c the
less desirable the event, we assume

(3) b0-<_ bl _-< b2 <= -<_ b with b0- 0, bl 1.

The normalization b0 0, bl 1 is assumed merely as a notational con-
venience.

Consider a terminal node with vector of probabilities (, s,
t*) of knowing the n items. Let pk p(t) be the probability of T.

The generating polynomial,

(4) f(t) (t*l + tt,l*)" (t*2 + tt,*)... (t*, + tt,*) p,t,
k=O

gives the p in terms of the t*. The loss associated with the terminal vector
t* is then taken as

(5) L(O) p + b.pe + + bnp,.

Consider a strategy S with its terminal nodes h 1, 2, 2 and asso-
ciated terminal vectors t,(h); we define its risk as the expected value

(6) R(.; S)
h

here, for simplicity, we have omitted the parameters % 00, 01 from the
argument of the risk. An optimal strategy for given .0 is one that minimizes
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(6); its risk is

(7) () ni. R(U; ).

Two special loss functions are of practical interest. One occurs when we
take b. 1, j 1, 2, n. Then (5) becomes

Thus, in this case, an optimal strategy is one that maximizes the expected
product of the terminal probabilities, i.e., that maximizes the probability
of knowing all n items. The other special case occurs when b. j. Then
(5) becomes, with the help of (4),

L jp df
t----1

In this case, an optimal strategy is one that maximizes the expected sum
of the terminal probabilities of knowing the items. Our result on optimal
strategies is valid for the general case (3) and hence for each of these
speciM cases.

4. Minimum risk function. Define p0 by p0(.) L(.), where L is given
by (5) and the p. by (4) with , replaced by .. This, together with (7),
defines the minimum risk function pN for all N _-> 0. For arbitrary initial .,
let

pN() be the minimum risk relative to all strategies that use item i
in the first trial,

and

p’() be the minimum risk relative to all strategies that use item i

in the first trial and item j in the second.

(Notice that the second type of strategy is special i that the sme item
is used in the second trial regardless of the response in the first trial.) In
this section we shall derive some properties of these minimum risk functions.
By the symmetry of the problem with respect to the n items, we have

for any permutation r (il, i,..., iv) of (1, 2,..., n). In fact, let
S be any strategy and let S be the strategy obtained from S by substi-
tuting item i. for j everywhere in the strategy tree of S. Then

so that if N minimizes the risk for initiul values ., then minimizes it
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for the permuted initial values. The asserted symmetry of or follows from
this. Two other consequences of symmetry are or(h, h,-.., h)

p*(h, h, ..., h) for every i, and

(8) o() pi() when X Xi.
We next state the basic recursive relation of this paper. Before doing

this, we introduce the notational device of using dummy variables x,
x, Xn tO signify the successive places in the argument of p and other
functions of (e.g., o at x 0, xi Xi (j i) stands for p(X,
X_, 0, X+, X)). The recursive relation is that for any i,

+() *(9) (x + x )p I=x, + x I=00, N 0;

this follows from the branching process described earlier and the definition
of the minimum risk. Note that on the right side of (9) we show only the
changes in argument, practice that we shall follow. Equation (9), to-
gether with

p+ rain [p+],

characterizes n optimal strategy; this shows that our problem is one in
dynamic programming. Observe that the recursion (9) remains vMid if we
adjoin the superscript j everywhere, i.e.,

Our work depends in n essentiM wy on the following "commutative"
property "2 for ny i, j,

p+() N O.(10)

In the following proof, we suppress the constant rguments X, k # i, j;
lso, we my suppose i # j:

+( ) a+(, ) + a+(Oo, )
, ,

+ x, [(x + x*)(00, x) + x (00, 00)]

(x + x*) [(x, + x,*)(x,, x) + x, w(Oo, x )]

+ *x*[(x + x*)(x/, 0o) + *x*(0o, 0o)]

+(,
We wish to mention that it was R. E. Bellman who, in the erly stages of our work,

first pointed out to one of us in conversation the significance of this property in
multistnge decision making.
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5. Difference function. We define the differences

(11) d/ p’-- p N > 0,dN pN p,

where the rgument is . everywhere. We begin our study of these functions
by an explicit computation ia the one-step case, N 1.

Let , denote the vectors of n 1 nd n 2 components, respec-
tively, derived from by deletion of h nd h, h, i j, respectively.
Then the quantities p(), k 0, 1, ..., n 1, nd p(), k 0,
1, n 2, re well defined, being the probability of not knowing ex-
actly items exclusive of item i nd exclusive of both items i nd j, respec-
tively; these probabilities re given s the coefficients of the polynomial
f(t) in (4) with the ctors ( + t*), nd ( + tX*), ( + tX*)
deleted, respectively. We have

h*p_() + hp() p(), k 1, 2, ..., n 1,
(12) .

i Pn-(i) pn().

These equations simply compute the probability of the state T in terms
of the two Mternatives of not knowing or knowing item i; they Mso follow
from (4). Now let

n--1 n--1

F b+p(), e bp();
k=0

these are, respectively, the expected losses conditioned on not knowing or
owing item i. We have

F + iG,L(k) *

which can be seen directly in terms of conditional expectations or can be
verified by calculation using (12). Using this, as well as (9) with N 0
and the definitions of k’ and , we find thut

Next, we show that
n--2 n--2

k=O k=O
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To do this, we may use the equations

p(.) *X p_() + X’p .),

p_() *j pn-2(,ij),

/c 1, 2, n 2,

which are analogs of (12);substitution of these relations into the expression
defining G yields the desired formula. By forming the difference pl pl

we obtain the following result.
LEMMA 1. For any and any i # j, we have

(13) dli K.t)(h. hi),

where

(14) K (bk+ bk)p(j) >= O.

The last inequality is strict, i.e., Ki > 0, in case (a) either (3) is a chain of
strict inequalities, or (b)), > 0 for all k i, j.

ProoJ’. In view of the preceding discussion it remains to justify only the
latter statement of the lemma. When (3) is a strict chain, every factor
b+x b in (14) is positive; since the nonnegative factors p in (14) must
sum to 1 by their definition as probabilities, it follows that K. is positive.
When ), > 0, ] i, j, then the first term in (14), namely,

p0(,) II ,
is positive, and we have the same conclusion..
The preceding proof of Lemma 1 was curried out with the implicit as-

sumption that n >= 3; the sme proof applies when n 2 with obvious
notational interpretations (e.g., pk(.) is defined only for k 0 nd has
the wlue 1). Notice that this lemm provides description of the strategy
thut is locally optimal in the sense of lwys minimizing the risk relative
to the outcome of the currenL trialnumely, it is the strategy that selects,
in the current trial, n item that hs least probability of the learned
state t the outset of the tril.
We next derive recursion relation for the generM difference d. Start-

ing with the recursion (9) we hve

p+ (x + x,*)p t,=,’ + I,=oo
(x + X*)d =x, -*" *"

Interchanging i nd j gives similar expression for p+]. Then, ing the
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commutative property (10), we find

(15)

This is the formula we require.

6. Properties of difference function. Our main results are based on
properties of the difference functions (11 ), which we develop in this section.
We remark that in the forthcoming we will be using the term "increasing"
in the following sense: g(t), say, is increasing in case tl < t2 implies
g(h) g(t.) (i.e., increasing means nondecreasing).

Property PN. Property PN holds at in case the following is true: for any
j, j 1, 2,... n, let and i j satisfy

(16) Xi r min [Xk];

let X be replaced by the running variable in d’a and consider the resulting
difference as a function dr’(t) of t; then

(17) dvii(t) is increasing on =< _-< 1.

Property P+. Same as property P with "increasing" replaced by
"strictly increasing" in (17).
LEMMA 2. Let Pv hold at a given and let i be such that hi min [Xk].

Then ov(
Proof. Let and i be as described. For arbitrary j i, . _>_ ),, property
P gives

d(.) _-> d/

But the right-hand term vanishes by (8). Thus, p/ => pi, which estab-
lishes the lemma.
Our aim is to show that property PN holds for all . This is done by

induction on N in the next two lemmas.
LEMMA 3. Suppose N is such that P holds for all . For each , let

denote the (nonnegative) difference dv pv pv regarded as a function of
alone. Then dv](t) is an increasing function on 0 <= <__ 1.

Proof. Given j, let and i j satisfy (16). By Lemma 2, p p on
0 -<_ -<_ , p pcion z _<_ =< 1. Thus, dv(t) 0ordvi(t)on these
respective ranges. The lemma now follows from (17).
LEMMA 4. For every N >-_ 1, property Pv holds for all .
Proof. The proof is by induction. The lemma is valid for N 1 by

Lemma 1. Now consider any N for which the lemma holds. Given :k and j,
let a and i satisfy (16). Consider the recursion relation (15). By the induc-
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tive assumption and Lemma 2, the third term on the right vanishes for
X. => z (sinceX. =< X.); thus

(lS)
d+(t) ,*(t ),/

xj=Oo

-k y*z*dv(t)[x=Oo for o- __< =< 1.

On the right, the first term is increasing in by its explicit form while the
second and third terms are increasing by Lemma 3. Thus, the left side is
increasing on -< -< 1, which establishes PN+I. This concludes the proof.
Lemmas 3 and 4 have their counterparts with respect to the stronger

property PN+.
LEMMA 5. Let P+ hold at . Then for each j, d(t) vanishes on 0 <- o-

and is strictly increasing on r <- <- 1; here r is defined by (16).
Proof. By Lemma 4, we see that the conclusion of Lemma 2 always holds.

From this, we may verify that the proof of Lemma 3 carries over to the
present lemma.
LEMA 6. For every N >= 1, property P+ holds for all with >= 0o,

i= 1, 2, ,n.
Proof. The lemma is valid for N 1 by Lemma 1 (we have K. > 0

in Lemma 1, since ) >= 00 > 0 for 11 k). Now let the lemma hold for a
particular N and consider N -4- 1. Select any ;. with all }, => 00 and any j;
choose i and a to satisfy (16). We have =>- 00. By Lemmas 4 and 2, we
deduce (18). The first term on the right in (18) i.s increasing by explicit
form, and the second term is increasing by Lemma 3. The third term may
be written "*o’*dr(t) for 00 _-< =< 1 where the difference is evaluated for
original components , => 00, new component }, 00, nd h- t. By the
inductive assumption, this term is strictly increasing on 00 _-< __< 1. Thus,
the left side of (18) is strictly increasing on =< -<_ 1. This completes the
proof.

7. Optimal strategies. We are now in a position to establish our results
on optimal strategies. The first theorem is an immediate consequence of
Lemmas 4 nd 2 nd the recursion relation (9).
TIEOIEM 1. Consider an N-trial experiment with arbitrary N and arbi-

trary initial probabilities 0 (h0, }o, ;n0) of being in the learned state
relative to the items i 1, 2, n. Then an optimal strategy is determined
by the rule of presenting in any trial an item for which the probability of being
in the learned state at the outset of the trial is least among all items.
The next theorem is concerned with the question of characterizing opti-

mal strategies, while Theorem 1 deals only wigh a sufficient condition for
an optimal strategy. For simplicity of statement we consider only the most
important case in which the initial probabilities X are all zero; in this case,
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the decision procedure can be simplified and expressed in terms of a simple
counting rule, as we shall see.
From Theorem 1 we know that if we present the n items in sequence (in

any order whatever) in the first n seps, regardless of the subject’s re-
sponses, then we are initiating a possible optimal strategy. From a practical
point of view it is natural to limit consideration to such strategies, and we
shall restrict ourselves to this class of strategies in the next theorem. We
impose the further minor modification of taking the learning rate to be the
larger value O0 in these initial steps regardless of the response of the subject.
In terms of the description of the model given in the Introduction, this
amounts to the reasonable procedure of applying the "stronger" corrective
action the first time that an item is presented, regardless of response, and
only discriminating between corrective actions thereafter.
THEOREM 2. Consider an N-trial experiment, N arbitrary, with initial

probabilities Xi all zero. Consider strategies that present the n items in (an
arbitrary) sequence in the first n trials, and assume that in these (but only in
these) trials the learning rate is Oo regardless of the response. A stralegy is opti-
mal in this class if and only if it conforms to the following rule: beginning with
trial n + 1 associate with each item a count whose initial value is 0; in any
trial choose an item for presentation whose count is minimal at the outset of
the trial; at the end of a trial, increase the count of the presented item by 1 if
the response is correct but set it back to 0 if the response is incorrect.

Proof. Consider any one of the first n trials, and let item i be presented
in the trial. We have X0 0 at the outset of the trial, by assumption. This
probability will increase to 00 at the end of the trial regardless of the re-
sponse. That is to say, if the response is correct, then the new value is given
by (2) with 0 and with 00 in place of 01, and this yields 00 if the
response is incorrect, then the new value becomes 00 directly by the single-
trial branching process. Thus, at the end of the first n trials we have the
probability vector . (00, 00, "--, 00) regardless of the pattern of re-
sponses (the tree of the process reduces to a simple linear chain for the
first n steps).
We may now see that a continuation of such a strategy is optimal if and

only if it conforms to the rule of Theorem 1; for from trial n + 1 on, we
hve all >= 00 and, hence, by Lemma 6 we have property P+ holding
for any number of trims M remaining to the end of the experiment. The
strict monotonicity of d(t) in Lemma 5 then shows that the rule in ques-
tion is necessary for optimality, as well as sufficient.
To establish the counting rule, we define 00(), /c 0, 1, 2, induc-

tively by

Oo() 0o, Oo(+) (0o())’,
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where X’ is defined by (2). At the outset of any trial from trial n + 1 on-
ward, each component of the vector a will have the form 00(k) for some k.
Now interpret k as the count of an item. The rule of Theorem 2 for chang-
ing counts from trial to trial is then the correct rule for computing the
probability of the learned state at the end of a trial, in accordance with the
single-triM branching process; further, the rule for selection of an item is
the same as the rule of Theorem 1 because 00(k) is a strictly increasing
function of k. This completes the proof of the theorem.
To apply the decision rule of Theorem 1 to a given subject, it is necessary

to know, among other things, the values of the learning rates 00 and 0 for
that subject. Since these parameters may vary significantly from subject to
subject, and it cannot be reasonably assumed in practice that they will be
known or can be readily determined, it becomes important to consider
strategies that are independent of 00 and 01. A natural way to state the
problem of an optimal strategy in this case is the following. Let R(, 00,
01 S) denote the risk of a strategy SN, where we exhibit explicitly the
dependence on the model parameters (but omit the guessing probability ,
for simplicity). What Theorem 1 does is to construct for each ;.0, 00, 01 a
strategy N(X, 00, 01) that minimizes R. Suppose that a probability
distribution is given over pairs of values (00,0), and consider the expecta-
tion rN(.; S) of R with respect to these variables. We view the new
problem as the one that attempts to minimize r relative to S.
The latter problem seems to be a difficult one to solve. Fortunately, in

the most important case of 0 0, the problem can. be handled (for strate-
gies S that are initiated as in Theorem 2). Observe that the counting rule
for an optimal strategy given, in Theorem 2 specifies a strategy tree that is
independent of the learning rates; it gives a fixed S such that for any S,

R(00,0. ;) <__ R(Oo, o ;).
(We have omitted the argument .0 0.) Thus, the strategy N does more
than minimize the expected risk r it minimizes the risk R uniformly in
the parameters 00 and 01. We conclude by noting that S is also inde-
pendent of and hence minimizes the risk uniformly in , as well as 00 and 01.
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THE DUOPLEX METHOD IN NONLINEAR PROGRAMMING*

1. Introduction. In a previous paper [1] H. Tzschach and the uthor
discussed the duoplex algorithm in linear programming. It is method
which is convenient to use in linear programming when the number of
restrictions is large.
The first step in the duoplex method is to try and come as close as

possible to the optimum point. This is achieved by determining the restric-
tion whose normal, which is pointing into the convex region, has the
largest angle with the gradient of the linear objective function. This will
be referred to as the main restriction. In the two-dimensional ease, it is
easy to show that the optimum lies on the main restriction. This is not
necessarily so for higher dimensions, that is, when n > 2. (See Fig. 1.)
The second step in the duoplex method consists of determining the

optimum point using a method which is similar to the simplex one.
When the optimum lies on the main restriction, it can be determined

very quickly. However, if it does not--which can happen if the main
restriction is redundant---the duoplex algorithm is still useful.

It is worth noting that in the duoplex method, it is not required to
operate always with permissible solutions, that is, departure from the
feasible region is permitted. The multiphase method for determining a
feasible solution plays an irnportant role in the second step. See also [2].
The duoplex method referred to has been programmed on an electronic

computer and a few hundred examples have been solved. In the majority
of eases a considerable reduction in computation time has been noted
compared to the standard methods.
As previously mentioned, the duoplex method is to be recommended

when the linear programming problem has a large number of restrictions.
In such a ease the first step is especially economical.
Due to this reason, we consider extending the duoplex method to non-

linear convex programming. This we achieve by linearizing the nonlinear
expressions (objective function and/or restrictions) using a specially con-
venient method and then solving the problem with duoplex. In many eases,
as a consequence of this linearization, a very large number of linear restric-
tions result, so that if a standard method is used it becomes tedious to
obtain the optimum.

Received by the editors June 25, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 15, 1965.

Rechenzentrum der Universitt Ztirich, Ztirich, Switzerland.
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X2 .& x, /

> X

In this paper some nonlinear duoplex cases are considered and are dis-
cussed in detail. The ideas concerning the linear duoplex are based on the
work previously cited and knowledge of which is a prerequisite for what
follows.

2. The X-algorithm and the duoplex method. In this section we limit
ourselves to problems which lead to separable functions, and to perform
the linearization we will use the well known algorithm which is basically
based on the Charnes and Lemke’s methods [3]. Compare also the descrip-
tion by Hadley in his work on nonlinear and dynamic programming [4].
Starting with the nonlinear optimization problem:
We maximize

(2.1) z a.(x),

with respect to the restrictions

(2.2) a(x) <_ ao, i-- 1, ...,m,
j--=l

(2.3) x;. >= 0, j 1, .--,n.

As we mentioned, we require that all the functions that occur be separable,
and to have a single optimum we require these f.mctions to be convex (or
concave) and also to be differeItiable.
As n illustration, let f(x) be such a fun.ction (compare Fig. 2) with x

varying in the interval 0 x =<_ a. This interval is to be divided into
, q- 1 points x. Then we determine . f(x) and consider for each lc the
connection between

(x,f) nnd

Thus we obtain the dashed lines )(x) shown in Fig. 2.
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f(x)

o xlx2 x3x4 xsxs.xT=a
Fie. 2

If x lies within the interval x -<_ x -<_ x+l, then the following expression
for the linear approximation is valid"

(.) /(x) f + f+ f (x ).
Xk+l Xk

Returning to the original problem (2.1)-(2.3) and linearizing the func-
tions aj(xj) and aij(x) by subdividing each interval in which x. varies into
a number of points xk, the problem becomes the linear programming
one"

We mximJze

with respect to

(2.6) di(x) =< aio, i 1, m,

(2.7) x >= 0, j 1, -..,n.

Returning to Fig. 2 we recognize for every x in the interval x __< x =< xk+l
that

X---= )kXk+l-F (1- k)Xlc,

and furthermore

for 0__< ),__< 1,

x x: (x+ x).

Similarly,

/(X) (k-t-1 _qL_ (]_ )fk-
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Substituting

X= X+ and (1-X) X,

the following unique representation for x =< x _<_ xk+l is obtained"

(2.8)
x Xx + X+x+,

](x) xf +
with

kk+)+ 1, ), >-- O, X+ >= O.

Applying the ideas of (2.8) to each variable x.--this is performed by sub-
dividing the appropriate interval into p. subintervals having the points
xl.--then for each x. we can write"

kO

(2.9)

where for a given j no more than two ),. must be positive. Such hk. must
in addition be adjacent to each other.

Furthermore, by substituting

ai(x) a and a(x) a,

problem (2.5)-(2.7) can be formulated in terms of the new variables
as follows

(2.10) max 2 a-.
’ k=0

with respect to

(2.11) ai’Xki <- aio, i 1,’’’, m,
’=1 k=0

(2.12) , Xk. 1, j 1, ..., n,
k=O

(2.13) , -> O, for all/, j.

It can be proved (compare [4, p. 124]) that, assuming concavity or
convexity respectively of a(x) and ai(x), it is not necessary that in the
optimum solution of the above problem for each j, not more than two X-
be positive and adjacent to one another.
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Consequently (2.10)-(2.13) produce a linear optimization problem in
m -4- n restrictions and . p.) -t- n variables. Thus we have often a prob-
lem with a large number of restrictions so that the duoplex method can be
profitably used.

In many cases it is more appropriate in problem (2.10)-(2.13) first
to go from the primary to the dual because it general the number of
variables in the primary increases more than the number of restrictions,
so that in the dual the number of restrictions will be even larger. In the
following work we will remain in the primary and we leave it to the reader
to make analogous reflections about what happens in the dual. In certain
cases this can result in further reduction in the computation work.
Some numerical examples will be now presented, in which first lineariza-

tion using the -algorithm is made, then finally the duoplex method is
applied to determine the optimum.

3. Three duoplex examples.

Example 1. n 2, m 3;

maximize z x,

under the restrictions

(1) --x x + 25 -> 0,

(2) --x +x + 23 >= 0,

(3) --x + x + 6 >= 0 (this restriction is redundant!),

x,x2 >= O.
(Compare Fig. 3.)
For the lineariztion x and x re taken to be

0 x < 6,

0-<x<5,

:FIG. 3
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and as support points in the intervals obtained we take"

0 x2 0
0.5 0.5
1.0 1.0
1.5 1.5
2.0 2.0
3.0 3.0
4.0 4.0
5.0 5.0
6.0

This results in 17 variables X, , 1, 17, and 2 additional restric-
tions:

(4) ’ X,, 1,

17

(5) X, 1, X, >__ 0, u 1, ..., 17.
=10

Linearized and expressed in terms of the variable k, the problem becomes:

xl 0.5X2 -t- 1.0X3 + 1.5X4 q- 2.0X q- 3.0X6 q- 4.0X7 q- 5.0Xs q- 6.0X9,
X2 0.510 -t- 1.0Xl q- 1.5X2 q- 2.0Xla -t- 3.0)14 -t- 4.0X1 -t- 5.0X6 -t- 6.0X7,

and the objective function z to be maximized:

z 0.5X2 -t- ha q- 1.5X4 -t- 2Xu q- 3X q- 4X7 -t-- 5)s -- 6X9.

The coefficient matrix corresponding to the above five restrictions is
(3 inequalities and 2 equations 0)

--1 --1 --1 --1 --1--1--1--1--1 0 0 1]
0 0 --1 --1 --1 --1 --1 --1 --1 --1 1_1

The solution is obtained using the duoplex method in 11 iterations and is:

Zl 4.889, x 1.000, and z 4.889.

The actual optimum is:

z. 4.898, x 1.000, and z 4.898.

Example 2. n 2, m 3;

maximize z x2,

under the restrictions
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FIG.

(1) (as in Example 1),

(2) (as in Example 1),

(3) Xl- X2 + 2 0. (Compare Fig. 4.)

In this example there are no redundant restrictions. The procedure is as
in Example 1 nd the solution is obtained in 10 iterations using the duoplex
method"

x 2.357, x 4.357, and z 4.357.

The actual optimum is"

x 2.391, x 4.391, and z 4.391.

Example3. n 3, m 4;

maximize z x - 0.5x,

with the restrictions"

(1) --x --x + 25 _-> O,

(2) --x: +x: -t- 23 O,

(3) x --x + 2 _-> 0,

(4) --Xl --x: --x-t- 16 >_- 0,

x, X2, x _--__ 0.
(Compare Fig. 5.)

Since the variable x appears in a linear form, it does not require any
lincarization. The following limits are tken for variables x and x

0_-< x_-< 6, 0_-< x-< 8.

Using the same interval subdivision as in Example 1 we obtain"

x -- 9 variables" }, to h,
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X

18

16

14

12

10
x28

6

2

0

x
FG. 5

x2 11 variables" hi0 to h20,

x3 -- 1 variable"

Analogous to Example 1 we obtain as restrictions 4 inequalities and 2
equations and as objective function to be maximized"

z 0.5h2 ),3 A- 1.5)4 A- 2 + 3 + 4 + 5s + 6h + 0.5X21.
As a solution we obtain in 11 iterations"

x 4.778, x 0.0, x 11.222, and z 10.3S9.

The actual optimum is"

x 4.796, x 0.0, x 11.204, and z 10.398.

To show that there is no disadvantage in exceeding the limit x, Ex-
ample 2 is solved once more using a larger interval for x.
Example 4. As in the second, except that 0 x 8, i.e.,

20 variables are obtained instead of 17.
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Using the duoplex method the same solution as in Example 2 is obtained
after 12 iterations. It is to be noted that the new variables Xs, X, X0
may appear in the solution of the fourth problem, however they have no
effect on the numerical value of x, that is, on the accuracy of the solution.
Example 5. In this example two solutions having different limits for x.

are compared. The objective function, is

z --2x -- x;the restrictions are as in Example 2.
The intervals are

() 0_-< x =< 5, as in Exmple 2,

(b) 0 =< x_-< 8, as in Example 4.

As solution we obtain fter 7 steps in (a) and after 4 steps in (b)"

x 0.0, x x(),) with () and (b);

x 2.0, () x x(, );

z 2.0. (b) x x(0, ).

The exuct solution coincides with the ubove one!
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SUFFICIENT CONDITIONS FOR THE OPTIMAL
CONTROL OF NONLINEAR SYSTEMS*

O. L. MANGASARIAN
Abstract. It is well known that Pontryagin’s maximum principle furnishes neces.

sary conditions for the optimality of the control of a dynamic system. In the present
work sufficient conditions for the optimality of the control of a nonlinear system with
state and control variable constraints and with fixed initial and terminal times are
given. These conditions are essentially Pontryagin’s necessary conditions for the
same problem, plus some convexity, negativity and strict negativity conditions. The
present sufficient conditions subsume the recent results of Lee, wherein sufficient
conditions for the optimality of a system, linear in the state variables, were given.

1. Introduction. Consider the following problem in optimal control:
given an initial time and a terminal time , find vector functions u(t)
and x(t) that will minimize the functional

(1.1) I(u,x) fo ck(t,x(t), u(t)) dt q- O(x(t),x(t)).

subject to the differential equations

(1.2) 2 g(t, x, u),

the constraints

(1.3) h(t, x(t), u(t) =< O,

the initial conditions

(1.4) p(x(t)) <= O,

and the terminal conditions

(1.5) q(x(t1)) <-_ O.

Here, x is an n-dimensional state vector, u is an m-dimensional control
vector, h is a /c-dimensional vector of constraints, p is an /-dimensionl
vector of initial conditions and q is an /1-dimensional vector of terminal

* Received by the editors May 25, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 16, 1965.

Shell Development Company, Emeryville, California.
Throughout this work, we shall assume that u(t) is continuous in [t 0, ]

except for a finite number of jump discontinuities and shall consider only continuous
solutions x(t) of (1.2), [3, p. 12]. Equations (1.2) need not be satisfied at the points
of discontinuity of u(t). Similarly, other differential equations (2.1), (2.31) and (2.36)
need not be satisfied at the points of discontinuity of u(t).
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conditions. Yarious differentiability conditions will be imposed on these
functions subsequently.
The main results of this work are Theorems 1 and 2 which give sufficient

conditions for optimality. Theorem 1 gives sufficient optimality conditions
for the above problem as it stands, while Theorem 2 gives sufficient op-
timality conditions for the above problem for the "separable" case when

(t, x, u) 1(t, x) -+- 2(t, u),

(1.7) g(t, x, u) g(t, x) + g2(t, u),

the(t, x) l < 0h(t, x, u) [..h(t, u)

Essentially, the present sufficient conditions are Pontryagin’s conditions
[3] plus some convexity conditions on , 0, g, h, p and q, strict negativity
of the adjoint variable associated with , and negativity of the adjoint
variables associated with the differential equations (1.2).
The sufficient conditions given in Theorem 2, subsume the recent results

of Lee [2], which in turn subsume the sufficient conditions given by Rozo-
nor [5, Part I, Theorem 2]. Essentially, Lee considers the separable case
where g(t, x) is linear in x, and with no state variable constraints. Rozo-
nor considers the same case but with an objective function that depends
only on a linear combination of x(tl). Rosen [4] has also recently given
somewhat different sufficient conditions for optimal control by utilizing an
integral representation of x(t) in terms ot u(t).

It should be remarked here that the present sufficient conditions were
obtained in the same spirit as that of the Kuhn-Tucker sufficient conditions
for mathematical programming [1]. In the present sufficient conditions,
the Euler conditions play the same role as the gradients in the Kuhn-
Tucker conditions. Furthermore, the adjoint variables associated with the
differential equations (1.2) turn out to be precisely the negative of the
Lagrange multipliers associated with (1.2). In particular we shall have
time-dependent multipliers v(t) and w(t) associated with (1.2) and (1.3)
and fixed multipliers r and s associated with (1.4) and (1.5).

Vector notation will generally be used. Vectors will be denoted by single
letters. In general, subscripts will be used to denote components or groups
of components, superscripts .will be used to distinguish vectors. A vector
will be either a column or a row vector, as it will be clear from the context
how the vector is to be considered. Thus we shall write the inner product
of two vectors x and y simply as xy. The partial differential operator
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will be denoted by V, and similarly for V,. The dimensionality of some
vectors will not be stated explicitly, it being clear from the context. Also,
when we say that a vector function is convex we mean that every component
is convex, and similarly for other properties.

2. The sufficient conditions. We shall start by giving sufficient condi-
tions for the nonseparable case (1.1) through (1.5). These conditions were
arrived at by introducing Lagrange multipliers v(t), w(t), r, and s for the
relations (1.2) to (1.5) respectively, appending these relations and multi-
pliers to the functional (1.1), and then imposing Kuhn-Tucker type condi-
tions [1] to obtain the following sufficient conditions for optimality.
THEOREM 1. Let (t, x, u) and each component of g(t, x, u) and h(t, x, u)

be differentiable and convex in the variables (x, u) for [t, tl], let each com-
ponent of p(x(t)) and q(x(tl)) be differentiable and convex in x(t) and
x(tl), respectively, and let O(x(t), x(tl)) be differentiable and convex in
(x(t), x(t1) ). If there exist vectors (t), (t), (t), (t), , and satisfying
the relations (1.2) through (1.5), with (t), O(t) continuous and ff(t) in-
tegrable and such that:

(2.1) VxO(t, , (t) - VOg(t, , (t) - Vxh(t, , ) z7 (t) --O,

(2.2)

(2.3)

(2.4)

V)(t, 2, ) + Vg(t, , ) + V,,h(t, , ) O,

v(0)0((t), (t)) + v(0)p((t)) + o(t) o,
Vx(ti)O((tO), (tl) + Vx(t)q((t1) )(t) O,

(2.5) >= o,
(2.6) p((t) o,
(2.7) >-- 0,

(2.s) q((t) o,
(2.9) (t) >= 0,

(2.10) (t)h(t, (t), 5(t) O,

(2.11): O(t) >= 0,

then (t), :(t) will mininize the functional (1.1) subject to the conditions
(1.2) through (1.5). Condition (2.11) need hold only for those components
of g(t, x, u) that are nonlinear in x or u or both.

It is understood here and elsewhere that all relations involving must be satisfied
for all in [t, t], and that the convexity and differentiability ussumptions hold over
the entire space over which the functions are defined. However, (2.1) need not be
stisfied at discontinuities of u(t).

Condition (2.11) and the convexity of g may be replaced by the weaker require-
ment that g be convex in (x, u). I am indebted to J. B. Rosen for this observation.
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Proof. For simplicity we shall denote )(t, 4, 4) by and 4)(t, x, u) by ,
and similarly for 0, g, h, p and q. Let (t), (t), (t), (t), and satisfy
(1--) to (]--.5) and (2.1) to (2.11). Let u(t) and x(t) satisfy (1.2) to (1.5).
We shall prove that

I(u, x) >= I(, ).

We shall now write a string of equalities and inequalities that will prove
this result. Explanation of the less obvious equalities and inequalities is
found directly below the string.

I(u, z) I(a, 2) tlo (4)-- Jh) dt + O 0

() >-_ f,

(b) fro

tl

(c) f

(d) ->- ft

[(x 2)V$ + (u a)V] dt

+ (x(t) 2(t))Vx(to) 0 + (x(t1) 2(t))Vx(tl) 0

[-(x )(v + vt + )

(u ) (VuOt7 + Vz/)] dt (x(t) (t))

(Vx(tO) p -Jr- )(tO) (x(t1) :(t1) (Vx(tl) (t1)

[-(x )(va + v) + (g )9 (u )

(V + V/)] dt (x(t)

(x(t) (t’))v(,)

[ g + / h + (g gT)o] dt

--(x(t) 2(t) )Vx(tO) P (x(t) 2(t) )Vx(tl) (

(e) ->_- -(x(t) (t))V(o)P (x(t)

(f) >=p- p+O-q

(g) => 0.

The above relations hold"
(a) by he differentiability and convexity of and ;
(b) by (2.1), (2.2), (2.3) and (2.4);

For subsequent reference in the proof, it is clearer to refer to relations (1.2) to
(1.5) by "(1.2) to (1.5)" when they are stisfied by tho brred quantities.
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(e) by integration by parts, (1.2), (]-) and continuity of x(t), (t) and
(t);

(d) by the differentiability and convexity of g and h, and (2.9) and
(2.11), (note that this is the only step in the proof where (2.11) is used--
note lso that if a component of g(t, x, u) is linear in (x, u), then (2.11)
is not needed for that component of g(t, x, u) in order that this step go
through, i.e., in order that the lst sentence hold in Theorem 1);

(e) by (2.10), (2.9) and (1.3);
(f) by the convexity and differentiability of p and q, and by (2.5) and

(2.7);
(g) by (2.6), (2.8), (2.5), (1.4), (2.7) and (1.5).
It should be remarked that the initial and terminal conditions (1.4)

and (1.5) are ot sufficiently general i’orm to include all types of linear
equalities. We simply write an equality as two inequalities. Thus the in-
equalities.

x(t) x <- O,

--x(t) + x <-_ O,

imply the equality

x(t) x.
With initial conditions of this type, and terminal conditions of the type

x(t1) X1,
considerable simplifications can be achieved in the sufficient conditions of
Theorem 1. We state these results as the following.
COROLLARY 1.

If the initial conditions (1.4) are replaced by

(1.4’) x(t) x,
then Theorem 1 holds with conditions (2.3), (2.5), (2.6), and the vector
all deleted;

(b) if the terminal conditions (1.5) are replaced by

(1.5’) x(t1) X1,
then Theorem 1 holds with conditions (2.4), (2.7), (2.8), and the vector , all
deleted;

(c) if the initial and terminal conditions (1.4) and (1.5) are replaced by
(1.4’) and (1.5’) respectively, then Theorem 1 holds with conditions (2.3),
(2.4), (2.5), (2.6), (2.7), (2.8), and the vectors and , all deleted.

The convexity requirement on p and q restricts us to only linear equalities.
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We shall only indicate how part(a) of Corollary 1 follows from Theorem
1. Let

Then (2.3) becomes

P(x(t) I_x( ) x.
x( ) + x

v,(t0)0 + + (t) 0,

or

(2.5’) V(to)0
Since any number can be expressed as the difference of two nonnegative
numbers, (2.3) and (2.5) can be automatically satisfied by picking non-
negative 2 and 1 such that (2.5’) is satisfied. Relation (2.6) is automatic-
ally satisfied because p(4(t) 0.

It is also possible to show that the conditions of Corollary 1(c) imply
Pontryagin’s maximum principle for the fixed-time case. Pontryagin [3,
pp. 298-299] considers the problem of minimizing

P

(2.12) I(u, x) at[o 4)(x, u) dt,

subject to"

(2.13) 2 g(x, u),

(2.14) hi(x, u) O\(x
(2.15) h2(u) <= 0

(2.16) x(t) x,
and

(2.17) x(t) x1,

u)=<0,

where hi and h2 are vector constraints. Pontryagin’s maximum principle for
this problem asserts that if (t) and (t) solve the above problem, then
there exist a scalar 0(t) and a vector (t), not both zero, and vectors
7(t) and p(t) such that (t), (t), 0(t), (t), X(t) and p(t) satisfy (2.13)
to (2.17), and;

(2.s) Vo(, a) + v(, a) vh(, a) + 0,

(2.19) V,o(, ) + Vg(2, ) Vh(2, ) Vh2() 0,

We have changed Pontryagin’s problem to a fixed-time problem nd have omitted
the variable-time condition that the maximum of the Hamiltonian be zero.
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(2.20) Co(t) const. -_< O,

(2.21) 0(, ’) + g(2, d) >= 0(, u) + g(, u)

for ll u satisfying h(X, u) <= 0 and h.(u) <= O. Condition (2.21) is the
"maximum" condition.
From Corollary 1(c), the sufficient conditions at our disposal are that

(t), 2(t) und some O(t) and (t) stisfy (2.13) to (2.17) and (2.1), (2.2),
(2.9), (2.10) and (2.11). It is easy to see that if we set

(2.22) 0 1,

(2.23) --,
(.2)

then (2.1) implies (2.18) nd (2.2) implies (2.19). It is obvious that
(2.20) is implied by b -1. We shll now show that (2.9), (2.10), (2.11)
and (2.2) imply the mximum condition (2.21). We have

0(, u) + (, u)

(.) -(, u) g(, u)

(2.25) __< --(, zT) Og(, ) (u %)(Vu(, ) -t- VuOg(, ))

(2.26) --(Y,

(2.27) -<_ --(,

(2.28) __< --(4, ) Og(2, ) (for h(, u) =< 0)

(2.29) 0(2, ) + g(, ) (for h(, u) =< 0),

where (2.24) follows from (2.22) and (2.23), (2.25) from the convexity of
(x, u) and g(x, u) in u and (2.11), (2.26) from (2.2), (2.27) from the
convexity of h(x, u) in u and (2.9), (2.28) from (2.9) and (2.10), and
finally (2.29) from (2.22) and (2.23). Hence the maximum condition
(2.21) is established.
We consider now the "separable" case where the state and control vec-

tors enter into separate functions. For this case we shall obtain somewhat
stronger sufficient conditions than those in Theorem 1. Furthermore, these
conditions will, essentially, be identical to Pontryagin’s conditions, with
additional requirements of convexity, negativity and strict negativity.
We now state the separable problem.

Condition (2.11) is needed only if g(x, u) is nonlinear.
Note if g(x, u) were linear, (2.11) would not be needed.
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Given an initial time and a terminal time , find vector functions
u(t) and x(t) that will minimize the functional

(2.30) I(u, x) fo (t(t, x(t)) + (t, u(t))) dt + O(x(t), x(t) ),

subject to the differential equations

(2.31) 2 g(t, x) + g(t, u),

the state-vector constraints

(2.32) h(t, x) <= O,

the control-vector constraints

(2.33) u(t) (t) E",
the initial conditions

(2.34) p(x(t) <= O,

and the terminal conditions

(2.35) q(x(t) <= O.

THEOnE 2. Let 6(t, x) and each component of gi(t, x) and h(t, x) be
differentiable and convex in x for [t, ti], let each component of
p(x(t) and q(x(t) be differentiable and convex in x(t) and x(t), respec-
tively, and let O(x(t), x(ti)) be differeutiable and convex in (x(t), (t)).
If there exist vectors (t(t), (t), (t), @(t), and with (t), O(t) contin-
uous and @(t) integrable, satisfying (2.31) to (2.35) and

(2.36) V6(t, ) + Vg(t, ) + Vh(t, ) + (t) O,

O(t, u) -+- Og(t, u)
(2.37)

>= .(t, ) + g2(t, ) for all u(t)

(2.38) V(to)O(2(t), (t)) + V(t0)p((t)) + (t) 0,

(2.39) V(t)O((t), (tx)) + (t)q((t)) 0(t) 0,

(2.40) => o,
(2.41) p((t) O,

(2.42) >- 0,

(2.43) q((t) O,

2(t) is an arbitrary time-dependent set in the m-dimensional Euclidean space E".
o This is the "maximum" condition if we set - and 0 -1.
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(2.44) (t) _>_ O,

(2.45) (t)h(t, 4) O,

(2.46) 11 O(t) >__ 0,

then (t(t), 4(t) will minimize the functional (2.30) subject to (2.31) to (2.35).
Condition (2.46) need hold only for those components of gl t, x) that are non-
linear in x.

Proof. The proof is similar to that of Theorem 1. Let (t), 4(t), (t),
(t), and satisfy (2.31) to (2.35) and (2.36) to (2.46). Let u(t) and
x (t) satisfy (2.31 to (2.35). We shall prove that

(u, x) _>_ I(a, ).

We have

I(u,x) I(,4) fro (4)1-- 1+ 42 gp2) dt + O

tl

>- fro ((x 4)V. + -- ) dt

(b)

(c)

(d)

(e) 0

The above relations hold:
(a) by the differentiability and convexity of 1 and 0;
(b) by (2.36), (2.37), (2.33), (2.38) and (2.39);
(c) by integration by parts, (2.31), (2.31) and continuity of x(t),

4(t) and O(t);
(d) by the differentiability and convexity of gl, h, p and q, and by (2.40),
1 Condition (2.46) and the convexity of gl may be replaced by the weuker require-

ment that gi be convex in x.
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(2.42), (2.44) and (2.46) (note that this is the only step in the proof
where (2.46) is used--note also that if a component of gl(t, x) is linear
in x, then (2.46) is not needed for that component of gl(t, x) in order that
this step go through, i.e., in order that the lust sentence hold in Theorem
2);

(e) by (2.45), (2.44), (2.32), (2.41), (2.40), (2.34), (2.43), (2.42)
and (2.35).
Again here considerable simplification in Theorem 2 can be achieved if

the initial and terminal conditions (2.34) and (2.35) are replaced by

(2.34’) x(t) x

(2.35’) x(t) x.
We have then the following.
COROLLARY 1.
a If the initial conditions (2.34) are replaced by (2.34’) then Theorem 2

holds with conditions (2.38), (2.40), (2.41) and the vector , all deleted;
(b) if the terminal conditions (2.35) are replaced by (2.35) then Theorem

2 holds with conditions (2.39), (2.42), (2.43) and the vector , all deleted;
c if the initial and terminal conditions (2.34) and (2.35) are replaced by

(2.34) and (2.35) then Theorem 2 holds with conditions (2.38) through
(2.43), and the vectors and , all deleted.

Corollary l(a) above subsumes the sufficient conditions given by Lee
[2]. Lee considers the case where g(t, x) A(t)x and with no state vari-
able constraints.

It is quite straightforward to obtain a sufficient version of Pontryagin’s
maximum principle for fixed-time [3, Theorem 6, p. 67] from Corollary
1(c). For this purpose we consider a simpler version of the separable cse
as follows. Find u(t) and x(t) that will minimize

(2.47) I(u, x) Jto ((t, x) q- (t, u) dr,

subject to"

(2.48) Yc gl(t, x) if- g.(t, u),

(2.49) u E,
(.o) x(t) x,
(2.51) x(t1) x1.

For this case, the following corollary follows from Corollary 1 (c) to Theo-
rem 2.



OPTIMAL CONTROL OF NONLINEAR SYSTEMS 149

0 0.2

Control Variable u

0.4 0.6

FIG. 1

COaOLLARY 2. Let 1(t, x) and each component of gl (t, x) be differentiable
and convex in x for [t, tl]./f there exist vectors (t(t), 4(t), (t) satisfying
the relations (2.48) to (2.51), with 4 t) and t) continuous and such that

(2.52) -VCl(t, 4) + V,(bgl(t, 4) + (t) O,

(2.53) --2(t, (t) - g.(t, (t) >__ --2(t, u) + bg(t, u) for all u ,
(2.54) _<_ o,
then (t), 4(t) will minimize the functional (2.47) subject to the conditions
(2.48) to (2.51). Condition (2.54) is needed only if gl (t, x) is nonlinear

12inx.
This corollary follows directly from Corollary 1(c) by setting -and suppressing the constraint h(t, x) <- 0 and the vector . The condi-

tions of Corollary 2 are identical with Pontryagin’s conditions [3, Theorem
6, p. 67] plus the additional requirements that 0 -1, that (2.54) holds
for nonlinear gl (t, x), and that 1(t, x) and gl(t, x) are convex.

3. Numerical example. Consider the following numerical example.
Given initial time 0 and terminal time 1, find scalar functions
u(t) and x(t) that will minimize the functional

Condition (2.54) and the convexity of gl may be replaced by the weaker require-
ment that -gl be convex in x.
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1.0

0.8

0.6

0.4

0.2

0
0

State Variable x

0.2 0.4 0.6

FG. 2

fox(t) dt,

subject to the differential equation

2 x - 2u,

the constraints

-x-u-0.5 <= O,

-x <-_ O,

-u- 1 <= O,

and the initial condition

x(0) 1.

It is obvious that the above problem satisfies the conditions of Theorem 1.
The optimality conditions of that theorem require that x nd u satisfy
the above differential equation, constraints, initial condition and:

1-t-2vx- wl- w2-O 0;

2v- wl- w3 0;
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1.0

0.8

0.5

0.4

0.2

Multiplier v (=-)

0 0.2 0.4 0.6 0.8 1.0

FIG. 3

v(1) O;
> O, w2 > O,w => O;

w(x + u + 0.5) 0, w2x O, w(u + 1) 0;

v>=0;

’(t+) z(t-);

v(+) (-).

The following solution satisfies the above sufficient conditions and hence
is optimal"

(i) for 0 <- <= 0.3619,

u -1,

0.6232 0.3536 log
1.414 -f- x
1.414 x’

x
v

2- x2’ wl w2 0, wa 2v;

13 These conditions are equivalent to (2.10) in view of (2.9) and (1.3).
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(ii) for 0.3619 < =< 0.7239,

u --x 0.5,

x 1 -+- 1.414 tanh 1.414(0.1006 t),
x

v
1+2x-- x’ wl 2v, w2 w3 0;

(iii) for 0.7239 < _-< 1,

u O,

x O,

v 0, wl 0, w. 1, w3 0.

Figs. 1, 2, nd 3 depict, respectively, the control vrible u(t), the state
wrible x(t), nd the multiplier v(t), 11 s functions of time t.
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QUADRATIC PROGRAMMING IN MECHANICS" DYNAMICS OF
ONE-SIDED CONSTRAINTS*

J. J. MOREAU
1. Let S be a frictionless mechanical system with n degrees of freedom;

we denote by ql, q, qn the generMized coordinates, representing the
point q of a configuration space. A finite family of one-sided constraints
is imposed on the system; the kinematic effect of these constraints is ex-
pressed by the conditions (assumed compatible)

(1) f(q, t) _>__. 0, a I, finite set of indexes.

For instance, some solid parts of the system may be in contact or become
detached but they can never overlap. These constraints are frictionless,
i.e., as long as the equalities hold in (1), the motion of the system is
governed by Lagrange’s equations with multipliers, a C I. The mechani-
cal meaning of these multipliers is to describe the reaction forces associated
with possible contacts and, conventionally, we have

(2) _>__ 0,

i.e., the force of reaction is directed towards the region defined by (1) and

(3) hf,(q, t) O, for all a I,

i.e., as soon as a contact ceases, the corresponding reaction becomes zero.
The set of the active forces experienced by the system is described by

its covariant components Qi (continuous functions of q, t) relative to the
coordinates (qi).
The kinetic energy is expressed as

(4) T(q, , t) 1/2 a(q, t) A- b(q, t) A- c(q, t).
i,k

We shall always assume that the considered configuration ]s regular with
respect to the coordinates (q) so that the quadratic part of this expression
is positive definite.

It is usual to study such a mechanical system by starting with the tenta-
rive hypothesis that all the contacts f 0 are present at any instant.
Then, by putting Of/Oqi u, the n differential equations of Lagrange
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(5) d-t oq .
together with the vanishing of f, (for every a I), determine the func-
tions q(t) and ,(t).

As long as the values ),, so calculated are all nonnegative, the initial
hypothesis of permanent contacts is accepted. When, on the contrary, some
of the ,, become negative, the hypothesis is rejected" some of the contacts
must cease. But, as Delassus [1] pointed out, the contacts f, which cease
are not necessarily those for which the above computation gives a negative
),, (simple counterexamples may be formulated). Delassus’ arguments to-
wards a correct solution were rather intricate; actually the author has
proved [4] that the determination of the acceleration (i.e., the second
derivatives ) is governed by a generalization of Gauss’ variational prin-
ciple; this leads to a typical quadratic programming procedure. An ex-
tremal principle also holds which characterizes the values of the one-sided
reactions (i.e., the ),,), independently of the accelerations: this leads to a
quadratic programming problem dual to the preceding one.

2. Our problem may be expressed in the following manner.
For to, the configuration q (i.e., the values of the qi(to)) and the

velocity (i.e., the values of the derivatives i(t0)) are given. These data
are assumed compatible with the contacts f, 0 for a K I; that
means that

(6)
\ dt ]t=t

0, for all a K,

while f, > 0 for a K. The question is to find the state of acceleration after
to, i. e., the right-limits (t0 -t- 0).
By continuity, for a ( K, we have f, > 0 during an interval (t0, to - e)

so that the corresponding contact does not intervene. For a K, on the
contrary, the conditions (1), together with (6), yield

(7)
\dt2]t=to

where so is a known quantity. Using the energy expression (4), Lgrange’s
equations, analogous to (5), may be written

(8) Ea z + )’-u-,
where z deaotes known quantities. Theh re nonnegtive by virtue of (2),
nd (3) yields

0.
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We can prove that the conditions (2), (7), (8), (9) define one and only one
set of values for the untnowns , i 1, 2, n, and ), a K; this
solution possesses the following variational characterization" in the Rn-space
of , the inequalities (7) define closed convex polyhedral region (non-
empty, since the set of inequulities (1) is assumed to permit a motion). One
proves that the above solution corresponds to the unique point of where
the function

(10) G a z
i,k

attains its minimun. The proof may be derived from Kuhn and Tucker’s
theory of multipliers in nonlinear programming. A direct derivation may
also be found in [4].
On the other hand, Gauss’ principle (of "least deviation") may be formu-

lated, for the classical case of two-sided differentiable constraints, in the
following way" given the configuration and the velocity state of such a
classical system 8 at an instant to, the resulting acceleration state is, among
all the acceleration states compatible with these data and with the con-
straints, that one which confers its minimum to the "Appell function"

(= 1/2F2dm-- fF.dF,
where F denotes the acceleration of the generic element of 8, dm is the mass
measure defined on 8, while the vectorial measure dF represents the active
forces experienced by 8. Since it happens that, for an arbitrary motion de-
fined by some qi(t), the function a has exactly the expression G written in
(10) (disregarding an additive constant), the variational characterization
given above for the solution of our problem means that Gauss’ principle is
still valid for systems with one-sided frictionless constraints.

3. In order to deal with duality, i.t is useful to introduce additional geo-
metrical terminology. Let (ei), i 1, 2, n, represent a base in an
n-dimensionM linear space E and let (ei) be the dual base in the dual space
E’; we denote by (, the duality bilinear form. The symmetric positive
regular matrix a represents, relative to these bases, a one-to-one linear
mapping A of E’ onto E. We provide E with an Euclidean metric by de-
fining, for every pair x E, y E, the scalar product

(x Y) (x, A-l(y)} (y, A-I(x)}.
Let us put

us u,e E,
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Z Ziei E,

so that the system of Lagrange’s equations (8) is written as an equation
in E,

(11) A() z -Instead of ( Er, we now introduce the new unknown x A () E, so
that (11) becomes

The inequalities (7) are rewritten as

(13) (u,x) s, 0, for all a K,

defining thereby a closed convex polyhedral region C in E.
Then the variational characterization stated bove is formulated with

regard to the Euclidean metric of the space E" the solution x is, in C, the
nearest point from the known point z.

4. We are now prepared to invoke the uthor’s duality-decomposition
theorem on quadratic programming (cf. [3], [8]). This theorem was derived
for the more general case of infinite-dimensional Hilbert spaces in connection
with problems of unilterality in the mechanics of continu. In contrast
with other duality treatments, the elements of pair of dual problems belong
to the sme self-dul (Hilbert) spce, so that they my be dded together.

Let us first recall Fenchel’s [2] concept of conjugate convex functions
(slightly modified by the uthor, in order to accept + as a vlue for such
functions) we denote by F0(E) the totality of the functions everywhere
defined in E, taking their vlues in (- , + ], which are convex, lower
semicontinuous, and other than the constant + . For instance, given a
nonempty subset P of E, the indicatrix function

(z) if z P,

belongs o r0(N) if and only if P is closed and convex. Now one easily
proves ghag a one-go-one involugory mapping of r0(E) onto iself is defined
by associating o any f r0(N) is conjugate or dal function

(14) g(y) sup [(x Y) f(x)].

In other words, g is the smallest element in the set of functions for which

(15) f(x) + g(y) (x y)
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for every x and y in E. The points x and y are called conjugate, relative to the
pair of dual functions (f, g), if the equality holds in (15).
For any z E and f F0(E) we denote by proxs z (proximal point of z

with regard to the function f) the point where the function

u 1/2 z u + f(u)

attains its minimum (existence and uniqueness of this point are assured):
specifically, if f is the indicatrix function of a closed convex set C, proxs z is
the nearest point from z which lies in C, denoted by projc z.
Then our duality-decomposition theorem may be stated in the following

form: Iff and g are dual functions, every z E equals the sum of x proxf z
and y proxg z; the points x and y are conjugate relative to (f, g) and they
embody the unique decomposition of z into a sum of two such terms.
A particularly interesting case occurs when f and g are the indicatrices

of two mutually polar closed convex cones P and Q, i. e.,

Q {y E: (xly) <= 0 for every x P}

(and conversely). Here the theorem gives: Every z E equals the sum of
x proje z and y proj z; the elements x and y are orthogonal and embody
the unique decomposition of z into a sum of two orthogonal elements respectively
belonging to P and Q. This result may be regarded as a generalization of the
classical decomposition of E into the direct sum of two orthogonM com-
plementary subspaces.

5. Returning to our mechanical problem, let us take as f the indicatrix
of the set C defined by (13). The dual function

g(y) sup [(xly f(x)] sup
xEE xEC

is the support function of C. Our generalization of Gauss’ principle means
that the unknown x defined in 3 has the value x prox z. Then, by the
duality-decomposition theorem, (12) leads to a variational characterization

of the (abstract) reaction exerted by the system against its set of one-sided
constraints, i.e., the term

E.

This term equals the proximal point prox z.
Incidentally, we may note that, in the present case, the set C is a (non-

homogeneous) cone with vertex at the point x0 which would be found for x,
in the case where the system underwent the two-sided constraints f, 0,
a K. That leads to an alternate characterization of proxg z:it is the near-

C’est point from z x0 in the convex polyhedral homogeneous cone gener-
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ated by the -us, a K. Actually, z x0 is the value found for the re-
action in this hypothetical case of two-sided constraints; in that sense, it can
be said that the motion .in the presence of one-sided constraints takes place
in such a way that the one-sided reactions differ the least from the reactions
corresponding to the two-sided case.

6. In conclusion, we hope that such a theory may prove useful in studying
the dynamical response of mechanical transmissions affected by looseness.
The author’s main concern in mechanics is with the infinite-dimensional
cases appearing in the mechanics of continua, e.g., inception of cavitation
in a liquid flow (cf. [6], [7]). In this connection, conjugate convex functions
in topological linear spaces, more general than Hilbert’s, have been in-
tensively studied for three years, together with various related notions such
as subdifferentiability, inf-convolution (see, e.g., [5]).
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DUALITY IN DYNAMIC OPTIMIZATION*

R. PALLU DE LA BARRI]RE

1. Statement of the problem. The problem we shall consider is the fol-
lowing.
(I) Find the function x minimizing

f(x) -subject to the constraints

A (t, -)x(t)x(-) dt dr -- fo b(t)x(t) dt,

0 <= z(t) <= 1.

It is assumed that the two functions x and b belong to the space L of
square-integrable functions defined on the interval [0, 1]. The function A
is assumed to be a continuous positive-definite kernel. The scalar product
of two elements y, z of L will be denoted by (y, z}"

Z} Jo y(t)z(t) dt.

The operator transforming the function x into the function y, defined by

y(t) Jo A (t, -)x(-) dr,

will be denoted by A. Consequently, the problem (1) can be written in
the condensed form"
Find x minimizing

f(x) 1/2 (x, Ax) + (b,

subject to the constraints x L, 0 <-_ x <= 1.
Remart. From the positive-definiteness of A, it follows that f is a convex

function. On the other hand, let us note that the feasible set A1 (defined
byx Land0 <_- x <_- 1) isconvex.

This problem occurs in problems of statistical optimization (see, for
iUstance, [2]).
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i. Existence of the solution. Let us denote by L the space of all in-
tegrable functions defined on [0, 1] and by L the space of all bounded
measurable functions defined on [0, 1] with the norm

Ilull ess. sup lu(t)I.
The feasible set A1 can be considered as the closed ball of center 1/2 and
radius 1/2 in L*. As L is the dual space of L, A is weakly-star compact
in L and afortiori weakly compact in L=.
On the other hand, A is a completely continuous operator and therefore,

if x -- x weakly, then IXn strongly and (x, Axe) - (x, Ax}.
Finally, f is weakly continuous on a weakly compact set. Thereforef attains
its lower bound and problem (I) has a solution.

3. Conditions for optimality. An easy computation gives the following
value for the gradient of f:

Vf(x) Ax + b.

This gradient is an element of L.
Now it can be proved that each of the following conditions is necessary

and sufficient for 2 to be optimal for problem (I):

2(t) 0 (A2 -- b)(t) >= 0 (a.e.),
(1) 2(t) 1 (A2 -F b)(t) <= 0 (a.e.),

[0 < 2(t) < 1 (A2 + b)(t) 0 (a.e.).

(2) There exist two functions (called multipliers) and t, belonging to
L, such that

A2 +b p,, >= 0, t >__- 0,

2(t) > 0 (t) 0 (a.e.),

(t) < (t) 0 (.e.).

The two last conditions can be summarized as follows:

(,2) + (t,l 2) 0.

(3) There exist two functions and p, belonging to if, such that

(; , ,) __< (; , ) =< (x; , ),

for allx, h,t L, h_>- 0,#_>_.0,

The proof hs been carried out by direct methods, without using the general
results of Hurwicz and Uzaw [1].
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where is the function defined as follows"

(x; X, ) f(x) (X, x} (, 1 z).

The condition (3) is the saddle point form of the condition for optimality.
Remark. If 4 is optimal and if X and satisfy (1) or (2), then we have

X(t)f(t) 0 and therefore [ (P+(Ax-t-b), p (p-(Ax + b), where
(P+(u) and (p-(u) denote respectively the positive part and the negative
part of u.

4. Duality theorems. A duality theorem was given by Dorn [3] for
quadratic programming. It has been generalized by Wolfe [6] for convex
programming. We shall rather recall the formulation of Wolfe, though the
problem is quadratic.

Let us consider the problem:
(A) Find x R minimizing f x
subject to the constraints gi(x) >- O, i 1, m,
where f and gi are continuously differentiable functions, f is convex and
g is concave.

Following Wolfe, we introduce the "dual" problem"
(B) Find x R and X R maximizing

(x, X) f(x) g(z),
i=l

subject to the constraints

),, >__ 0, Vf(x) XVg(z).
i=l

Let ZXl and /x2 be the feasible sets respectively for problem (A) and
problem (B). Then the theorem of Wolfe states, under some conditions of
regularity, that if 4 is optimal for problem (A), there exists X such that the
couple 4, X is optimal for problem (B).

Analogously, the following "dual" problem can be associated to problem
().
(II) Find x, , L maximizing

(z; x, ) f(x) (x, ) (, 1 x),

subject to the constraints

),,, >= 0, Vf(x) X ,.
It has been proved that if 4 is optimal for problem (I) and if and

are the corresponding multipliers, then the triplet (4, , ) is optimal for
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problem (II). It can also be proved that if (2, , ) is optimal for problem
(II), then 2 is optimal for problem (I).
Now let us define the function 4 by

(x) max (x; x, ).
.,o
---vf()

It cn esily be verified that the mximum is reched for

x= +(Az+b), ,= -(gz+b),

nd therdore we hve

6() ) {x, ) (e-( + b), ).

A necessary nd sufficient condition for to be optiml for problem (I)
s that mximize (without constraints).

5. A differentiability problem. When examining if is differentible or
not, we meet the following problem: is the mpping + differentible?
The following result hs been proved by M. Vldier.
THEOnEM. Let be a finite measure, and L(p 1) the space of all meas-

urable functions x such that ] x . . Assume that o L(p 1)

and that the set.{ o() 0} is of measure O.
(i) The mapping + from L o L with 1 q p is differentiable al

Xo and its derivative is the operaor

h 1 0>0h,

where l t0>0 is he characteristic function of the se {t 0(t) > 0}.

(ii) The function x f +(x). is differentiable a Xo, and is deriva-

tive is the function h f h. I.
{x0>0}

By ppliction of this theorem we see that is differentible t every
peint x such that b (i.e., the gradient of f) is lmost everywhere
different from 0.

6. Computational aspects. We can propose two methods for solving
numerically problem (I).

(i) The generalization of the Wolfe nd Frank lgorithm [4]. It hs been
proved by M. Vldier that this lgorithm is vlid in Bnch spce for
wekly continuous function and convex wekly compact feasible set

[5].
(ii) The use of the theorem of duality, i.e., the mximiztion of the
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function . The results of the numerical experiences will be reported else-
where.
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DUALITY AND A DECOMPOSITION TECHNIQUE*

J. D. PEARSON

1. Introduction. In 1927, K. O. Friedrichs demonstrated that a convex
variational problem could be Legendre transformed into an equivalent
concave variational problem [1]. This work was reported by R. Courant
and has since been rediscovered [2], [3], [4], [5], spurred principally by the
development of duality principles in convex programming [6]. However,
convex programming techniques can also be extended by use of a function
space treatment of the variational problem [7].
The primal and dual problems discussed here are related by the fact that

finding the lowest point on the graph of a convex function is equivalent to
finding the highest, tangent plane underneath the graph. Use of the Legendre
transform enables a symmetric treatment of both problems [8]. However,
the complete eliminations required by the transformation are unnecessary
and result in the simpler but unsymmetric primal and dual problems
reported here. The associated composite program is largely trivial for
control type problems, because of the preponderance of equality constraints.
The principle contribution of this paper is to present a decomposition

technique by which a convex control programming problem having "coupled
subsystem" constraints can be decomposed into smaller subproblems.
Coordinating these subprobleras is shown to be the dual problem. This
technique is based on ideas due to Dantzig [9], Mesarovic [10], and Lasdon
[11], and is aimed at a theory of multilevel or hierarchical control originated
by Mesarovic.

Notation. A vector has scalar components (yi y2 n)y and vector
components (Yl y2 yv). x’ denotes dx/dt, f. denotes Of/Ox; y Io =- y(O),
y tl y(tl). (x, y} xry shows the inner product and transpose notation.
f(x) is convex if f(x) f(xl) -d- (fxl x: xl}. x denotes optimal x value
andf(x0) f0.

2. Primal, dual and composite programs. Let f, g, R be convex, twice
differentiable functions of y, m, where y, p En, m Er, q E, for

[0, t]. Suppose that f has strict convexity in y and m.

* Received by the editors June 17, 1965. Presented at the First International
Conference on Programming and Control, held at the United States Air Force Acad-
emy, Colorado, April 15, 1965.
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t)RIMAL PROBLEM.

Minimize , g(y, t) -t- f(y, m) dt,

(2.1) subiect to y’ Ay - Bm, y(O) yo,

(2.2) R(y, u) <= O, i 1, 2, s.

R is supposed to satisfy a constraint condition [12, p. 148].

DUAL PROBLEM.

tl
$

Maximize o g* (y, t) -t- (p (0), yo) + f (y, m, p, q) dr,

subject to p’ - Arp - hy O, p(tl) gy,

h, - Brp O,

qO,

(2.3)

(2.4)

(2.5)

where, by definition,

165

(2.6) f* h (h, y} (h,,

h f
Assume that the differential constraints (2.1), (2.3) are instantaneously
controllable for all such that both variational problems are normal.

COMPOSITE PROBLEM. Minimize c(m, q) such that

c(m, q) (g y} tl (p, yo} Io - [(h, y} - (h, m} (q, R}] dt,

subjectto y Ay + Bm, y(O) yo,

R(y, m) O,

p +A +h O, p(t) g

h Brp O,

qO.

The composite problem is the difference between the primal and dual
objectives subject to all the constraints (2.1)-(2.5).

Let (y0, m0, p0, q0) be the unique solution to (2.1)-(2.5) together with
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(2.7) (q, R) 0.

This is the extremal curve for all three problems since these equations are
the first order necessary conditions for the problems [12, Theorem 2, p.
155].
PROPOSITION 1. Let y, m, p, q be any other solution to the composite con-

straints (2.1)-(2.5). Then

(2.8) c(m, q) >= c(m, qO) O.

Proof. Application of the constraint equations (2.1)-(2.5) yields

(2.9) [(h, y} -t- <h,, m}] dt (p, yo} Io (Y, g} tl,

whence
tl

c(m, q) -Jo (q, R) ct.

However since (q, R} =< 0 by (2.2) and (2.5), then

c(m, q) >= 0 c(m, qO)

from (2.7) and the definition of (y,m,p,q).
Define

L(y,m,p,q)= (eo,y--yo}lo+g+ [f+(p,Ay+Bm-y’>+(q,R)]dt,

(2.10)

where eo, p, q are multipliers with eo determined by y(0) yo.
PROPOSiTiON 2. With yO, mo, po, qO defined as before, it follows that subject

to the composite constraints (2.1)-(2.5) and any y, m yOm

(2.11) L y, m, pO, qO) > L(y, mo, pO, qO) ,o,
where ,o is the optimal minimal value of the primal objective.

Proof. This follows since the integrand of (2.10) has strict convexity in
(y, m) by definition of f. Using (2.3) and (2.4) and using (2.6) to define h,

i (y, m, pO, qO) L(y, mo, po, qO)

yO mo> (gO,y yO>l -4- (eo,y y }]o -t- [(h,y + (h, ,m

-t- (Arp, p pO> -4- (Brp, m r> A- (pO, y, y,O>] dt

ArpO ,o(gO_ pO, y yO}ltl A- (pO -4- eo,y y }1o + [(h -t- -4- p ,y yO}
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O.

The right hand side of (2.11) is completed using (2.1) and (2.7) in (2.10).
COROLLARY 1. Using Proposition 2 it follows that if (y, m) satisfies (2.1),

(2.2) and (2.7), then

(2.12) u >
Define

M(y, m, p, q, y*, m*)
(2.13) (p, Yo)lo + g* + (el ,gy p)l tl

+ If* + (y*, Arp + hu + p’) + (m*, Brp + hm)] dt,

where el, y m are multipliers for the dual variational problem with el
determined by p(tl) gu 0.
PROPOSITION 3. With yO, mo, pO, qO defined as before, it follows that subject

to the composite constraints (2.1)-(2.5) with (y, m, p, q) (yO, mo, pO, q0),

mO).(2.14) o M(y, m p q y m) > M(y, n, p, q, y

Proof. Using the convexity of f and g along the optimal solution y0, m0,
* * itwherey m stisfy (2.1),(2.2),pO, q0, then choosing y* y, m m,

follows that for any y, m, p, q >= 0,

(2.15) M(y mo, pO, qO, y.,m > M(y,m,p,q,y ,m ).
,

Eliminating y*, m establishes the right hand side of (2.14), while the left
hand side follows by enforcing (2.3) and (2.4).
COROLLARY 2. Using Proposition 3 it follows that for y, m, p, q satisfying

(2.3), (2.4) and (2.5), then

(2.16) o >
COROLLARY 3. Using Propositions 1, 2, 3 and (2.9) in the definition of

the dual objective, then

whence

O30

for y, m, p, q satisfying appropriate constraints among (2.1)-(2.5) and
(2.7).
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Extensions. A certain amount of trade off is possible between the llow-
able nonlinearities.

(i) Use of the Weierstrass or Clebsch condition gives convexity with
respect to m when

y’ Ay + (m),

Ri(y, m) <- O.

(ii) Generalization to the case

y G(y, m)

is possible if G is convex and restrictions

Gj > 0

are imposed to give p(t) _>- 0 [7].

3. Quadratic control programming. The quadratic control programming
problem is defined as follows" given

y’ Ay + Bm, y(O) y0, Cy + Dm <= O,

minimize

1 tl 1 f0
tl

[y, Qy} -- (m, Rm}] dt.

The dual problem is readily found using 2; given

p’ -Arp- Qy- Crq, p(ti) Py(ti),

q >= O, Rm+Brp+Drq O,

maximize

1
(uo, p(O)) (u, Pu)[ 1 tl

(y, Qy + (m, Rm}] dt.

Both problems can be solved by expansion techniques resulting in
Riccati equations. Either of these problems can be recast.as a best approxi-
mation problem, thus relating the "Kalman dual" to quadratic pro-
gramming as will be described elsewhere.

4. Decomposition and coordination problems as duals. Suppose that
the previous primal control problem is such that
(i) the constraints represent a collection of N interconnected subsystems,
(ii) the objective functional is separable into N objective functions.
This section demonstrates that this primal problem can be decomposed
into N independent parametric subproblems. The subproblem solutions
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can be coordinated by adjusting the parameters so as to solve the dual
control problem, and hence the original problem. In a limited sense de-
composition and coordination are dual techniques. Let f, g, R be con-
vex twice differentiable functions of yi, xi, m, and let f be strictly
convex in y, x, m for [0, tl].
PRIMAL CONTROL PROBLEM. Minimize

(.4.3)

, g(y x) -[- f(y mi x) d

y Ay -t- Bm -t" Cx, y(0) T,
R(y, m, x) <= 0, j 1, 2,

xi Ni" y’, i 1, 2, N.

Equation (4.3) represents an interconnection constraint where
incidence mtrix connecting some components of y. to
DUAL CONTROL PROBLEm. Viaximize

(4.5) Bi pi hi O,
T(4.6) h + C p- 0,

(4.7)

where

(4.s)

qi >_- 0, i- 1,2,’..,N,

hi fi + (qi, Ri},

fi* =hi- (hiy, yi) (hix, xi} (h.,, m},

The complementary slackness equation has the form

(4.9) (q, Ri) 0.

The decomposition technique follows immediately because of the intro-
duction of the redundant variables xi which form interconnections between
subsystems.

Associated with the primal optimal solution yi, xi, m, pi, r, qi, which
satisfies the composite constraints (4.1)-(4.9), minimizes , and maximizes



170 . D. PEARSON

o, Lgmngin cn be defined,

13o .. o q_ (qO, RO) -t- (pO, A yO + Bm + Cx Y’
(4.10)

+ (o, Ni yO_ xO

+ (qO, RO} + (pO, AyO + BmO + CxO_ y,O)
(4.11)

As a consequence of ghe inereonneegion eonsgraing in ghis Lagrangian,
rearrangemeng in the manner of (4.11) reveals ghag ig can equally well be a
sum of N sub-Lagrangians corresponding o N parametric subproblems.
The lager, paramegrie subproblems are defined as"

Paac spo5s. Minimize

(4.12) () g + + (y, N.} (,x} dt,

subject to y( Ay B# Cx y(O) c

R(y m x) O.

The input vribles x, m re to be chosen independently for ll i.
By virtue of the strict convexity of f(y, x, m) it cn be seen that for

ny given v(t), 0 t, unique minimizing solution exists if the primal
solution exists, denoted by y0(), x0(), m0(), p0(), qi() on [0, 6].
Associated with this solution is a sub-Lagmngian function,

(4.1)
ie

irs order necessary conditions are satisfied for i 1, 2, N, comprising
for a given , equagions (4.1)-(.9) wigh ghe ezcepion in general of (4.),
i.e.,

(4.14) xO() # N, (),

if o. However, it follows from comparison of (4.13) and (4.10) or
o(4.11) that w exists such that for M1 i,

i o() o(o) o, t.,
0
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thus stisfying (4.14). Furthermore, this optimal 0 clearly maximizes the
dul functional , since if 0, (4.14) indicates that the first order neces-
sry conditions for the dual, i.e., (4.1)-(4.7), are not all satisfied, i.e.,

(4.15) o > o(y(), x(r), m(), p(r), q(r)), # r.
To summarize then"
PROPOSITION 4. If the primal integrated problem has a solution, then

(i) subsolutions to the N parametric subproblems exist for all continuous
functions -( t)
(ii) an optimal .o(t) exists which causes the N sets of subproblem solutions
to satisfy the composite constraints,
(iii) the optimal .o( t) causes the parametric subproblem solutions to maximize
the dual functional .

In the prlance of multilevel control theory it could be said that this
decomposition is "two-level" such that the "first level activity" comprises N
prametric subproblems which are directed from a "second level" by
manipulating to maximize the dual functional .
A gradient scheme of adjustment will achieve the coordination required.

although there are superior ways of doing so.
Let 0(t), 0 __< =< tl, be an initial guess of (t) and consider (t, ) for

0 __< z __< such that (by definition)

( t, O) o(t),

dr Cd-- (t,) 0 <- <= tl, 0 <- <- .
0(Since from the strict convexity of f, yO(.), xO(.), mO(.), pO(r) q ure

continuous functions of r, the derivative of with respect to , evaluated
along the trajectories yO (w), x (w), m (w), pO (w), qO(w) of the parametric
subproblems us they vary with , is easily found from 2 to be

(4.16)

subject to

do"

v

fo d’.E (2,-)dt >= O,
i=l

with Q(t) being any positive definite continuous matrix. Equality occurs
uniquely when v r, (4.14) is satisfied and 0 is maximal t o.

Thus subject to (4.17), gradient coordination rule, is monotonically
increased as - nd is bounded above by 0.

PROPOSITION 5. The rule
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dr_ Q 2. Ny(r) x(r)) i= 1,2... N,
do- j

with
7r(t, O) ro(t),

will coordinate the N subproblems into maximizing the dual functional and
thus solving the original control problem.

Extensions. Convexity with respect to x is not necessary if each sub-
problem is recognized to be singular with respect to x on [0, t].

5. Conclusions. Sufficien conditions for a primal control programming
problem to have a minimum also provide a maximum for a dual problem.
A particular application of the reciprocal nature of the primal-dual

constraints is to generate a two-level decomposition and coordination
procedure which enables the solution of N medium size convex control
problems which together might comprise a prohibitively large integrated
problem.

6. Acowledgment. It is a pleasure to acknowledge discussion with
my colleagues, Mihajlo Mesarovic, Sanjoy Mitter, Irving Lefkowitz, Leon
Lasdon, and Cole Brosilow.
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DECOMPOSITION OF LARGE-SCALE SYSTEMS*

P. VARAIYA
1. Introduction. A considerable amount of effort has been devoted in

recent years to develop decomposition techniques for the solution of large
problems in mathematical programming. In all these cases the complete
problem can be represented as a number of small subproblems tied together
by coupling constraint equations or coupling variables. The various tech-
niques make use of this structure and differ in the classes of problems that
they can deal with.
The purpose of this paper is to present a slight modification of the usual

problem in nonlinear programming. We will call this modified problem P.
Next we will state, without proof, the theorem which yields conditions
(named CP) for the solution of P. The conditions CP are very similar to
the results of Kuhn and Tucker [1] and, in fact, they can be obtained by
a parallel proof. Finally, we will show how different specifications of P
give rise to different classes of "decomposition problems". In each case,
CP will yield "existence results" for resolving the decomposition problem,
and in most cases we will present computational techniques.

2. Statement of P. Consider

{/(x) Az x T},

where x En, 2 E and T E are closed convex sets, A is an m X n
matrix with full rank and f is a real-valued, concave, differentiable func-
tion of x. In order to facilitate the statement of CP we adopt the following
notation.

DEFINITION. Let K

_
E be a convex set and let k_ K. By the polar

generated by K at k_ we mean the set

P g,
_

v E (v, k) <-_ (v, }Vk g}

THEOREM l. The vector x_ fit T is a solution of P if and only if
(1) f’(x_) P(’ T, x_),

where ’ {x lAx } and f’(x) is the derivative of f at x.

* Received by the editors May 25, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 15, 1965.

] Electronics Research Laboratory, University of California, Berkeley, Cali-
fornia. This research was supported by the National Aeronautics and Space Ad-
ministration under Grunt NsG-354 (S-2).
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Assumptions A1, A2 and A3 will be made throughout the remainder of
this paper.

A1. P(’ T, _x) P(a’, _x) - P(T, ).

A2. P(’, _x) A*[P(, _x)],

where the overbr denotes the closure of the set underneath.

A3. A r[P(t, _x) is a closed set.

Finally, combining (1), A1, A2 und A3, we have CP. The vector _x
T is a solution of P if and o.ly if

(CP) f’(x_) Ar[P(, A_x)] + P(T, x_).

Remark. Theorem 1 can be usefully generalized to the case where f
is an arbitrary differentiable function, A is an arbitrary differentiable
mapping from E to E", and T is an arbitrary set. Equation (1) then be-
comes only a necessary condition, unless appropriate convexity restric-
tions are imposed. A sufficient condition for (2) to be valid is a suitable
generalization of the Kuhn-Tucker constraint qualification, or the weak
constraint of Arrow et al. For details and proofs of these results, see [2].
For presentation here we are limited to the simpler cuse shown above.

3. Classes of decomposition problems and computational techniques.
3.1. We specialize P to

(3) max (c, z) ]Ax t}

where A is an m X n matrix with n > m. Let x be a solution of (3) and
let Ax _y. We can assume that there is an invertible submatrix _A of A
such that x (_x, 0) where _x (_A)-y. If u (_Ar)-_c, then we must
have Au c. By CP, x is a solution of (3) if and only if c ArP(t, y_),
if and only if

(4) u P(t, _y).

Now consider problems (4a) and (4b). Let y be a fixed vector.
Let x (_x, 0) be a solution of

(4a) max (c, x} Ax y_},

with _x (_A)-y, and let u (_Ar)-l_c be a shadow price vector. Now
consider

(4b) max (u, y} Y 9}.
Y
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Then by CP, _y is a solution of (4b) if and only if

u P(a, y).
Combining the previous facts we have the following.
THEOREM 2. X (_X, 0) iS a solution of (3) if and only ifx and y are solu.

tions of 4a and 4b respectively.
We can also give the following computational algorithm"
Step 1. Select y t. Construct and solve (4a). Obtain _x and u.
Step 2. Construct and solve (4b). Obtain the solution y’ to (4b.).
Step 3. If (u, y}_ (u, y’}, stop. If (u, _y} < (u, _y’}, go-to step 1 with

y replaced by _y’.
Remarlc 1. Since there are a finite number of invertible submatrices of A,

there will be only a finite number of cycles. However, each step 2 may in-
volve nonfinite procedures.
Remark 2. At each step in the process we get feasible solutions.
3.2. Now consider the following special case of P"

(5) max (c, x} Ax , x >= 0},

where again A is an m X n matrix with n > m. Let x be a solution of (5)
and let Ax y. Clearly, x also solves

(5a) max {(c, x} Ax y_, x >- 01.

For convenience, we shall assume that the solutions to problems of the
form (5a) are nondegenerate. It is clear now that x con be assumed to have
the form x (_x, 0), where _x (_A)-ly. Let u (_A r)-l_c be the shadow
price vector. Then

(6) c Aru+v,
with v -<_ 0, _v 0. Moreover since x solves (5) we have by CP that

(7) c Ar[P(2, _y)] + P(E’+, x_),

where E"+ is the nonnegtive orthant of E". Comparing (6) and (7),
we have, by the nondegeneracy assumption,

(8) u P(f, _y).

Now consider

(Sb) max {(u, Y) Y , (_A)-’y >_ 0}.
Y

Since (8) holds, it is clear by CP that y solves (5b). Conversely, suppose
that x (_x, 0) and y Ax solve (5a) and (5b), respectively. Equation
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(6) is still valid with _v 0 and v =< 0. Also by CP, the fact that _y solves
(5b) implies that

u P(gt, _y) + (_Ar)-I[P(E’+, (_A)-l_y)].
Let u0 P(ft, _y) and _v0 P(E’+, x_) be such that

u u0 + (_A )-_,0

By the nondegeneracy assumption we must have _v0 0. Combining (9)
with (6), we see that (7) is satisfied so that by CP, x (_x, 0) solves (5).
We have proved the next result.
THEOREM 3. Under the nondegeneracy assumption, x (x_, O) is a solu-

tion of (5) if and only if x and y are solutions of 5 and (5b), respectively.
Remark 1. The computational technique given in 3.1, after replacing

(4a) and (4b) by (5a) and (5b), works for problem (5).
Remarl 2. If we admit degenerate solutions to (5a), the technique given

above is not valid without revision. The "only if" part of Theorem 3 still
holds, but the "if" part does not. It appears that the lternate shadow
price vector should be taken into account.

3.3. This time we consider a problem which is very similar to Rosen’s
cow,vex partition programming problem [3],

{9) max {(c, x)]Arx >-_ y for some y ’},

gt Ewhere A is an m X n matrix with n m,

___
is a set such that the

set

Iw+ylw >= O,y ’}
is closed, and convex.
By CP, a feasible vector x_ is a solution of (9) if and only if

(10) c A[P(, Ar_x)].
Let yo t’ be a vector such that A r_x >__ y0. Clearly _x solves

(9) mx/(c, )IAx >__ yo/.

We may assume then, that _x (_Ar)-yo, where yo (yo,
and that the vector u (u_, 0) =< 0, where

u (_A)-c.(11)

Next consider

(95) max (u, Y) Y , Qry_ >= y,},
Y

where _A [_A B], Q (_A)-IB, and y (y, y’).
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LEMMA. If X_ solves (9), then x_ solves 9a and yo solves 9b ).
Proof. Only the second assertion needs proof. Clearly y0 is feasible. Let

y be any feasible vector. Then

(u, u) (u, u0) (u_, y) (u_,

(c, x) (c,

where x (_Ar)-ly and _x (_Ar)-l_y0. Clearly x is feasible for (9) so
that (c, x} (c, _x} _<_ 0.
We will now prove the converse result. Suppose we are given _x and y0

with y0 ’ such that _x solves (9a) and y0 solves (9b). The second postu-
late implies by CP that there are vectors u0, v such that u0 P(2, y0),
v -< 0, and

and

(12)

where w Qv’ and w’
(13)

{Qyo- y0,v 0

--v’. Combining (12) with (11) we have

Au Auo y.

In order to prove that (10) holds, it remains to show that u0 P(, At_x).
From the definition of the polar it suffices to prove that

(14) <u0, y0> <u0, At_x>.
The following chain of equalities yield (14).

(Q _y0 y0 v(uo, yo} (u -,w, yo) (u_, y_o) r ,, ,)
(u_, A_} (Au, x_} (Auo, x_}.

We have thus proved Theorem 4.
THEOREM 4. The vector x_ solves (9) if and only if x_ and yo solve (9a) and

(9b), respectively.
Remark. A computational algorithm similar to the ones suggested in

3.2 and 3.3 can be employed for this case also.
3.4. The last class of "decomposition problems" that we deal with here

is a generalization of a technique due to Lasdon [4]. Consider the following
special case of P,

(15) max {f(x) lAx b, x T).

By CP, a feasible vector _x solves (15) if and only if there exists a vector
such that for u_

(16) f’(_x) - u P(T, _x).
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Now consider

(15a) max {f(x) + (u, x} x T}.
y

Again by CP, a vector x solves (15a) if and only if

(17) x Tandf’(x) +u P(T,x).
Comparing (16) and (17) we have the following "existence" theorem.
We will assume that both (15) and (15a) have solutions.
THEOREM 5. (a) If X_ solves (15), then x_ solves (15a) for u u_.

(b) Conversely, if u u_ in (15a), then there is a solution of (15a) which also
solves (15). Moreover, this is the case if and only if the solution x of (15a)
satisfies Ax b.

If we assume that the function f is strictly concave, the solutions will
be unique so that if we can determine ’_u, then the solutions of (15) and
(15a) are the same. Under certain circumstances, can be obtained as
follows.

Suppose T xlh(x >= 0}, where h is a concave, vector-valued func-
tion satisfying the Kuhn-Tucker constraint qualifications. Let u(t) be
any vector and let x(t) be the solution of (15a) with u u(t). Let e(t)

Ax(t) -b. Now change u(t) according to the differential equation

(18) du Are(t).
dt

Then, if T is compact, the following theorem can be proved.
THEOREM 6. For any initial condition u(O), the solution u(t) of (18)

converges to the required vector and the solution x(t) of (15a) converges
to the solution x_ of (15).
The proof of Theorem 6, although straightforward, is quite long and is

therefore omitted. The interested reader is referred to Varaiya [5].
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this research.
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PROGRAMMING UNDER UNCERTAINTY AND STOCHASTIC
OPTIMAL CONTROL*

RICHARD VAN SLYKE AND ROGER WETS:
1. Introduction. Most optimization models (programming models,

optimal control models, etc.) assume that the model’s parameters (co-
efficients, functions, etc.) are well specified, either as best estimates, or by
their expected values, and so on. In reality, however, these quantities are
subject to uncertain or random variations of various kinds due to noise,
component failure, unexpected demands, etc. Such discrepancies between
reality and model can be reduced by assuming that all or some of the
parameters are random variables with known probability distribution
function.

Unfortunately, the complexity of such models, and of their solution,
increases rapidly with the "amount" of uncertainty present in the problem.
Nonetheless, different approaches and different techniques have given us
some grip on a certain class of problems, for which there exist now "effi-
cient" solution methods.

la. Programming under uncertainty. In 1955 Dantzig formulated the
two-stage linear program under uncertainty model [2]. The theory was
furthered by Danzig and Madansky [3], Madansky [5], Wets [8], and
some special cases were investigated by Williams [9], [10] and Wets [7].
The standard form of a programming under uncertainty problem reads"

Minimize z (x) cx - E min qy

subject to Ax b,

Tx - My , on (E,(,F),

x >= O, y >= O,

where A, T, and M are fixed matrices, c, q, b are constant vectors, x and y
are variables, and is a random vector defined on the probability space
(E, ,, F). The only random parameter present in this problem is . The
decision process described by this model is a two-stage process in which one

* Received by the editors June 30, 1965. Presented at the First International
Conference on Programming and Control, held at the United States Air Force Acad-
emy, Colorado, April 15, 1965. This research was partially supported by the Office of
Naval Research under Contract NONR-222(83) with the Operations Research Center,
University of California, Berkeley, California.

University of California, Berkeley, California.

: Mathematics Research Laboratory, Boeing Scientific Research Laboratories,
Seattle, Washington.
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first selects x, then observes and finally selects y so as to satisfy the con-
straints of the problem. The decision process is thus divided into two parts,
but only the first one is of interest since once x is selected and ( is observed,
finding inf qy subject to My Tx , y >- O, is a deterministic problem.
One procedure to solve such a problem is to exhibit a deterministic problem,
whose set of optimal solutions is identical to the set of optimal solutions of
our original problem. In general, such a deterministic problem exists, and it
is shown that it has the form of a convex program. To find an explicit ex-
pression for this equivalent convex program is not always trivial, but it is
possible to do so for an important class of problems [7].

lb. Sequential decision processes and stochastic optimization. It is not
difficult to see that the two-stage programming under uncertainty problem
can be generalized to an n-stage decision process where we have sequence
of decisions, observance of the behavior of the system and new decisions
(corrective action). This ide is not new but literally illustrated by dynamic
programming. Ninny stochastic optimization problems fll naturally in
this framework, even if sometimes the concept of decision stage may only
be mathematical fiction, see [8, II.A].

lc. The stochastic optimal control problem. Usually, the stochastic
optimal control problem is also formulated in the framework of a sequential
decision process. But rather than dealing with a finite number of stages, it
is assumed that the corrective actions are taken at every .instant, i.e., at an
infinite number of stages. To see this, it suffices to remark that a solution
(control) for such a problem is not only expressed as a function of time,
but also as a function of the actual state of the system [1], [4]. The observed
state of the system consists then of the space-state determined by the
control function affected by the interference of a random (noise) process.

In order to obtain an explicit expression for the solution of such a prob-
lem, or to find an algorithmic procedure leading to the solution, different
assumptions have been made, explicitly or implicitly in the formulation of
the problem. From a practical point of view, probably one of the weakest
assumptions one could make is to assume that the number of corrective
actions is finite, either at fixed time intervals or at some time intervals to
be determined by the control system itself.
An n-stage control system can be described as follows" Let x(t) describe

the space state obtained by controlling the system with ul(t) for 0 =< =< tl.
Let y(t) be the observed state of the process, i.e., y(t) x(t) -+- (t),
where (t) is a random (noise) function. If u2(t) is the second stage control
fort1 __< =< t2, we have u(t) O(t, y(t))or (t, u(t), (t))and similarly
for t. _-< =< t3, we have u3(t) b(t, y(t)) or (t, u(t), (tl), u.(t), (t)),
and so on.
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This structure is underlying our approach to the stochastic optimal con-
trol problem. We develop the theory for a two-stage system but the generali-
zation to an n-stage process presents no mathematical difficulty. In 2 we
derive the deterministic equivalent of the stochastic problem. 3 is devoted
to a duality theory for this class of problems and its relation to the maximum
principle. A projected paper will deal with the applications of the theoretical
results obtained here to specific control problems.

2. The equivalent convex program.

2a. The problem. The standard form of the problem to be considered in
this paper is"

(1) Find infz(u) c(u) + E{inf q(v[])},

subject to A (u) b,

T(u, ) + W(v[]) d,

where u is restricted to lie in some closed convex subset U of a Banach space
and viii must belong to a closed convex subset V of a Banach space 2 for

each ; b and d are points in 9 and ’, respectively; is a random variable
defined on a probability space (, , F), (note that v: -- %3) c and q are
continuous convex functionals on and q2, respectively; A, T, W are con-
tinuous linear operators such that A
the operator E stands for expectation of the infimum of q(v[]) with respect
to 5
The process described by Problem (1) can be interpreted as follows: We

first select a point in t, satisfying the constraints A (u) b and u U, say
; we then observe the random event, say , and we are finally allowed to
pick a point of such that v V, W(v) + T(, ) 0 and q(v) is mini-
mum. The decision process is thus divided into two stages. The second-
stage decision is taken, when no uncertainties are left in the problem, i.e.,
when the random variable has been observed. This second stage is not our
immediate interest here. Our primary interest is to find a feasible u which
minimizes our total cost. Not only does our objective function take into
account the immediate cost, c(u), but also a weighted average of the cost
of all the optimal second-stage decision a given u may lead to.

For the sake of simplicity, we shall assume that (, , F) is the prob-
ability space induced in 9. is a subset of , F is a probability measure
generated by a distribution function also denoted by F and is the com-
pletion for F of the Borel algebra in . We shall assume that is convex.
If this is not the case, we then replace it by its convex hull which we will
also denote by and fill up with the appropriate sets of measure zero.
Without loss of generality, we can assume that is of full dimension. If not,
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we can change Problem (1) so as to include the deterministic second-stage
constraints into the set of fixed first-stage constraints. Then, our new N has
full dimension. The probability distribution function F is continuous,
discrete, or a mixture of both.

In view of the interpretation given to (1), it is easy to see that the
second-stage decision (control) variable v is a function of the observed state
of the system, viz., d T(u, ), and in particular a function of the random
variable (. Thus, v is itself a random variable. This fact is expressed by our
notation v[]. Moreover, we do not make any assumptions on v as a function
of , e.g., as to its measurability. Since by the nature of the model it is
"calculated" only for the value of ( which actually occurs. We will, how-
ever, show that E{inf q(v[]) makes sense.

In what follows we show that there exists an equivalent problem to (1),
i.e., a problem with the same set of optimal solutions as (1), that can be
expressed as the minimization of a convex functional on a convex set.

2b. The second stage problem. Once u is selected and is observed, the
second stage problem

(2) Find inf q (v),

subject to W(v) d T(u, ),

v V,

becomes a deterministic problem. Let

(3) V(u, ) Iv lW(v) + T(u, ) d, v V}

be the set of feasible solutions for (2), and let

Q(u, ) inf {q(v)l v V(u, )}

be the functional describing the range of the infimum of q(v) as a function
of u and (. As we shall see later, we may restrict ourselves to the case where
V(u, ) is nonempty. The set V(u, () is convex and closed, but not neces-
sarily compact. Thus, the functional q(v) may fail to achieve its minimum
on V(u, ). We shall assume that q (v) possesses finite infimum on V(u, ).
Such a condition is not very restrictive, because if for some u, Q (u, )
for all in N, then z(u) and Problem (1) is of no interest. Moreover,
if for some u, Q(u, () for a proper subset of , we could still hope
that this set would have measure zero, and our problem could have a mean-
ingful solution. But it is not the case, since we shall show that if Q(u, )

m for some ( in 2, then Q (u, () for all ( in . To do so, we need
the following results.
PnOPOSITON 1. Fix u and let V(u, ) for all in E. Then Q(u, ) is

a convex function in on .
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Proof. For > 0, we say that v determines an e-inf of q(v) on V(u, ) if
v V(u, ) and q(v) <= Q(u, ) q- e.

First, we shall assume that Q(u, ) > for all ( in 2. Let (0, (1 2;
then X.0 q- (1 X)I (x for X [0, 1]. Let v0 and vl determine e-inf
on V(u, (0) and V(u, ), respectively. By the convexity of V and linearity
of the operators W and T,

hv0+ (1 h)v V(u,$) for X [0, 1].

Then

Q(u, x) <= q(hvo + (1

also, by the convexity of the functional q,

q(vo + (1 )v) -<_ Xq(v0) + (1

and since v0 and vl determine e-inf, we have

q(vo) + (1 )q(v) <= Q(u, o) + (1 )Q(u, ) - ,
i.e.,

Q(u, ,) <- Q(u, 0) - (1 )Q(u, ) - .
Since the above inequality holds for any e, arbitrarily close to zero, we
obtain

Q(u, ) <= XQ(u, o) -t- (1 x)Q(u, ).

Let us now consider the case where Q(u, ) is not finite for all in E.
Without loss of generality, we cn assume that Q(u, o) -.
If Q(u, 0) -, then or all N arbitrarily large, there exists
Vo V(u, 0) such that q(vo) <= -N. But

Q(u, ) <= q(kvo + (1 ,)v);

and by convexity of the functional q,

q(hvo + (1- ,)v) <- hq(vo) + (1- ,)q(v);

and since Q (u, 0) , there exists v0 such that

hq(vo) + (1- k)q(v) <= -N
for any N; thus Q(u, x) <= -N, i.e., Q(u, x) for (0, 1).

This implies that if there exists some in E such that Q(u, ) has no lower
bound, then Q(u, ) - or every in the interior of and Q(u, )
may be different from at most on the boundaries of .
PROPOSiTiON 2. If for a fixed u, V(u, ) for all in and at least one

of the four following assumptions is satisfied"
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(i) q(v) is linear and V is a convex polyhedral subset of
(ii) V is compact,
(iii) q(v) is weakly continuous on V and V is weakly compact,
(iv) is open,
then Q(u, is continuous in on Z.

Proof. Since Q(u, ) is convex, Q(u, ) is continuous on the interior of
(this proves the proposition under assumption (iv)). Thus, the only case

of interest is when is on the boundary of . The proposition under as-
sumption (i) is proved in [8]. We limit ourselves to (ii) and (iii).

Let 0 /tE and i -- 0, where each belongs to the interior of E. Under
either (ii) or (iii) there exists a subsequence vi such that q(v) -- q(v)
for some v in V and such that W(v) T(u, o) d, where v is an e-inf
corresponding toni. Hence, lim Q(u, i) >- linf q(v)l v V(u, limi )}

Q(u, 0). On the other hand, by the convexity of Q(u, ), we have

thus

Q(u, 0) => lim Q(u, k),
koo

lira Q(u, ) Q(u, o).

Remark. The conditions (i), (ii), (iii) or (iv) are sufficient conditions to
ensure the continuity of Q(u, ). They are not necessary. In general, how-
ever, Q(u, ) may fail to be continuous in , as is shown by the following
example, where X) is of finite dimension. Let

V 9q+2, [0, 1],

q(v) q(x,y) -min(l-l, 1), d 0,

W(v) x and T(u, 8) -.
It is easy to see that Q(u, ) 1 if # 0 and Q(u, 0) 0. Hence, Q(u, )
is not continuous at 0.
COROLLARY. For a fixed u, let V(u, ) ? for all in . IfQ (u, )

for some in and at least one of the conditions (i), (ii), (iii) or (iv) of
Proposition 2 is satisfied, then Q(u, for all in .

In what follows, we shall assume that either X is open--or it can be rede-
fined so that it is open--or that at least one of the conditions (i), (ii), or
(iii) of Proposition 2 holds.

2c. The solution set. A fixed u and an observed determine Q(u, )
uniquely; then our only decision variable is u. It is in this context that we
examine the solution set of Problem (1). Nonetheless, the second-stage
decisions affect our first-stage decision, not only by the values assumed by
Q(u, ), but also by the restriction that we have to limit our set of ad-
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missible first-stage decisions to those for which there exists a feasible second-
stage decision.

DEFINITION. U is a feasible solution to (1), if A (u) b, u U, and
if the feasibility of Problem (2) is independent of the value assumed by
in . Let K be the set of feasible solutions to (1). Let

K1 {u tlA(u) b} l U

be the set determined by the fixed constraints.
PROPOSITION 3. KI is a closed convex subset of.
Proof. By linearity and continuity of the operator A and convexity of the

closed set U.
Let K. {u tl E, V(u, ) } be the set representing the

induced constraints. By induced, we mean that the set K2 is determined by a
condition to be satisfied at some later time, viz., the second-stage problem
must be feasible for all in .

Let K2 {u V(u, ) } then K ez K. By the linearity
of the operators W and T and convexity of V, K is convex. Thus"
PROPOSITION 4. K is a convex subset of .
Note that introducing the appropriate sets of measure zero, in order to

replace the original by its convex hull, does not change the set K2. Let
be the original probability space and let E be its convex hull. Let

/. [’le K and K as above. Obviously,/: K2 since the intersection
is taken over a smaller index set. Thus, it suffices to show that u /
implies that u C K. If u /, then u K for all in , and V(u, )
for all in . If , but not to , then there exist 1, "", m+ in
such that k for some i,i= 1, ..., m + 1, such that
=+ ), 1. By linearity of W and T and since V(u, i) is nonempty for
,i 1, ..., m, so is V(u,). Thus, V(u, ) i for all in , i.e., u K2.

PROPOSITION 5. The set K of feasible solutions to Problem (1) is a convex
subset of ’It.

Proof. K K K:.

2d. The objective function. To show that (1) can be reduced to an
equivalent convex program, it now suffices to show that z(u)--the objective
function of Problem (1)--is a convex function in u on K. Remark that
u K implies that V(u, ) is nonempty for all in E.

PROPOSITION 6. Q(u, ) is convex in u on K.
Proof. Fix and take u0, u C K; then )Uo -- (1 h)u ux K. Since

we assumed that Q(u, ) > -, there exist v0 and v which determine
e-inf of q(v) on V(uo, ) and V(Ul, ), respectively. Also, by convexity of V
and linearity of W and T, Vo -- (1 k )v. V(ux ). Then
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Q(ux, ) <- q(Xvo + (1 })Vl) )q(v0) +(1 )q(vl)

<- Q(uo, ) + (1 )Q(ul, ) + .
Since this inequality holds for all e, we have

Q(ux, ) <= XQ(u0, ) + (1 X)Q(Ul, ) for X [0, 1].

PROPOSITION 7. Let Q(u) EIQ(u, }. Then Q(u) is convex in u on K.
Proof. The function Q(u, .) is continuous, thus Lebesgue measurable.

But F is a Lebesgue-Stieltjes measure and , contains the Borel algebra; thus
Q(u, ) is also F-measurable. Since F determines a positive measure, Q(u)
is the result of a weighted positive linear combination of convex functions.
Thus Q(u) is convex.

Since c(u) is convex, we have shown that there exists an equivalent con-
vex program to Problem (1), viz.,

Find infz(u) c(u) + Q(u),
(5)

subject to u K,

where no random elements are presen.t any longer. Nonetheless, two main
difficulties remain to be solved before one can use efficiently the techniques
available for convex programs, namely, depending on the structure of the
different operators of the original problem, to find an explicit expression
for Q(u) and the set K may be a major undertaking. As we shall show in a
forthcoming paper, a certain interesting class of problems allows us to
express Q(u) and K explicitly, with relatively little effort.

3. Duality.

3a. The dual problem. Solution methods for any particular problem of
the form (1) depend strongly on the form of the operators involved. How-
ever, as was the case in linear programming under uncertainty [8], there is
a duality theory which plays a crucial role.
The second-stage problem (once u is selected and is observed),

find inf q(v),

subject to W(v) d T(u, ),

vE V,
and the equivalent convex program,

find inf c(u) ’t- Q(u),

subject to A (u) b,

u K. f’l U,
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are in the same form. To develop the duality theory for this class of prob-
lems, it suffices to consider the following simple problem.

find inf c(u)

(6) subject to A(u) b,

uUc,
where b, c(u), U and t are as defined in the previous section. We remember
in particular that U is closed and convex and A is a continuous linear oper-
ator with range in

Let

C= {p (po, pl Pm)I Po >_ C(U), (Pl P,) A(u) b, u U}

and

{(p ,’’’, Pm)I(Pl ,’’’, Pm) A(u) b, u V}.

LEMMA 1. C is convex.
p2 uProof. Suppose p, C and suppose further that u1, U satisfy

p0 _-> c(), (pl,...,pm A(ui) b, i= 1, 2.

Let pX Xpi _[_ (1 X)p and u u + (1 ),)u for ), [0, 1]. Then

k(pil, pml) "- (1- X)(pi2, pm2)
X(A(u1) b) + (1 X)(A(u2) b) A(u) b.

Also, by convexity of the functional c we have

C(U) )kC(U1) + (1 X)c(u) <= kpl+ (1 ),)p2.

Unfortunately, it is not true, in general, that C is closed. Consider (6)
with

A (u) Ul

ui =1
i2

For any b in , inf c(u) 0, but there exists no feasible u such that c(u) O.
In particular, let ui, i 2, be given by u.i ti. Then A(u) 0
andc(ui) 1/2i,i 2, Thus, wehavepi (p0i,pli) _>_ (1/2i,0)-- (0, 0) p0, where p0 C and each p does.
However, we will need closed. This will be the case when U is weakly

sequentially compact or if it is a convex polyhedral subset of a finite Eu-
clidean space. In general, we see that we are essentially seeking to find
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FG. 1

the "lowest" point of C on the p0 axis. That is, we can reformulate (6) as
follows"

(7)

where L {(p0, pi,

the very natural dual,

find sup

find inf po,

subject to p L l C,

,p,)lp= O,i= 1,... m}. Problem (7) has

(8) subject to ro 1,

rp- _-> 0 for all p in C,

where u is a scalar, and 0 is the first component of the (m q- 1 )-dimensional
vector r.

If we think of rp 0 as defining a hyperplane in m, then there is
one-to-one correspondence between feasible solutions of (8) and nonvertical
supporting hyperplanes which are "below" the set C, in. the sense that in-
creasing p0 means up.

Immediately, we have"
PROPOSITION 8 (Weatc duality), po >= t for all feasible solutions to (7)

and (8).
Proof. rp >= 0 by (8). Since p is feasible for (7), then

pl pm 0 and hence 0p0- t _-> 0. But r0 1.
We now prove the following intuitively obvious duality theorem"
THEOREM 1 (Strong duality). If the projection of C with respect to po is

closed, exactly one of the following occurs"

(a) (7) and (8) both admit feasible solutions, in which case inf p0 sup
(b) (7) is feasible and (8) is not, in which case inf p0

(c) (8) is feasible and (7) is no t, in which case sup
d neither (7) nor (8) is feasible.
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Proof. (a) By Proposition 8, infpo and sup t, are finite. Let. inf {p0 P L f’l C} > . Clearly there exists p* which belongs to
I1 L such that p0 and p is a boundary point of

{(po,..,p)]p- p( i 1, ..., m, po -> po, P C}.

Hence, there exists a supporting hyperplane to (3 at p*. Let it be defined by
#p- _>- 0. Clearly o => 0. If o > 0, division by #o yields rp- t* _-> 0,
where

1
r (), ,

T’0 71"0

for all p C Since rp* 0 implies po* * , (, ) is optimal for
(8) nd inf p0 sup g If for every supporting hyperplne of t p*
hve that 0 0, somewhat more complicated construction is necessary.
Let e > 0 be rbitmry, nd let (po* e, 0, 0); then . Hence
there exists hyperplne separating strictly p nd , i.e., there exist ,
such that p- p < 0 nd p- p 0 for 11 p in C. In prticulr,

> 0 butrp

p oo o (po*- ) < opo*

implies that o > 0. Letting

1 .
z -- and Po po -e,o

we hve feasible solution to (8) with v po* e. Since e is rbitmry,
sup v inf po po*.

(b) If inf po > , feasible solution to (8) exists by the sme con-
struction s in (), but by hypothesis no feasible solution to (8) exists,
therefore inf po .

(c) Suppose sup < + ,thenlet# sup {] zo 1, zp 0 forll
p C} nd let (p, 0, 0). We now establish that C. In fct,, for if it did, (, ) (0, 0) would belong to .
But then (c(0), 0, 0) would be feasible point for (7), which is s-
sumed infeasible. Hence, C. Therefore, there is hyperplne separating
strictly nd determined by, sy, , , nd such that

< inf{pJp } inf{p]p C}.

By definition of nd since C is nonempty, we hve that o 0. If o > 0,
let z, be given by

1 1
z and #< i{p[p C};o o o
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then r, is a feasible solution to (8) with > , which contradicts the
definition of . Suppose now that 0 0. Then #i0 0, hence #p > t > 0
for all p C. Let e, Z be any feasible solution to (8), then r (e + X#),
p (t + X) is also feasible for any . Taking any , > 0 contradicts the
definition of .
COROLLARY 1. If p$ and - are respectively feasible for (7) and (8),

they are optimal if and only if
-p =.

p.Proof. (r ((1, rl ,’", rm ), (p0 0,’-’, 0)} P0*, hence
p0 ;but p0 => for all feasible solutions of (7) and (8) by Proposition
8. In particular, p0* _-> sup t. Since p0 (r*, t is optimal. Con-
versely, inf p0 > * and since p0* * *r p is optimal. On the other hand, if
p and r are optimal, i.e., they achieve the infimum and supremum in
(7) and (8), respectively, then. by Theorem 1 they must satisfy r p
COROLLARY 2 (Pre-maximum principle). If p* is optimal for (7), there

exists a - such that

r p rain {*PlP C}.

Proof. Clearly p* is a boundary point of C. Then there is a supporting
hyperplaner p-t => 0forallp C Cwith.r p t 0.
Remark. If in Corollary 2, r0* > 0, then r*/r0*, p0* determine an optimal

solution to (7); however, this need not be the case (see Fig. 2).
COROLLARY 3. If C is closed and the infimum in (7) exists and is finite,

then the infimum is attained for a feasible solution.
COROLLARY 4. If L intersects the relative interior of C and (8) is feasible,

the supremum in (8) is attained.

Proof. See [6].

3b. Special cases. We now apply the results of the last section to the

FG. 2
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original problem (6) and examine some special cases. We first interpret the
dual problem (8). For the special case (see Fig. 1), it is equivalent to"

find sup
(9)

such that c(u) [A(u) b] -> for all u U.

An easy lemma is"
LEMMA 2. [f C(U) C’U i8 linear and U is a cone, then for any feasible, t for (9), we have

[c- A](u) -> 0 for all u U.

(a) Application to linear programs. Consider the linear program"

mincx such that Ax b, x >- O.

By direct application of (9), its "dual" is"

find sup
(10)

such that cx-- r[Ax- b] >= for all x => 0.

Since the set of nonnegative x is a cone, Lemma 2 applies and we have
[c -A]x >= 0 for all x => 0. Further, by taking x I, i 1, m, where
Ii is the ith unit vector, we obtain

c-- vA >= 0 for any feasible

Rearranging (10) we obtain (c- vA)x + wb ->_ g. Clearly for a given
the largest g is given by

t- b inf (c- A)x 0.
x_>0

Hence, the dual problem becomes

sup
(11)

such that c-wA >_-0.

To obtain the usual duality theorem for linear programming from
Theorem 1 it suffices to observe that if sup b < , then it is attained by
some feasible r, and similarly for the primal objective.

(b) Application to linear control problem. Consider a dynamical system,
the evolution of which is described by the ordinary linear differential
equations

dx(t)
dt

A(t)x(t) -- u(t)

on the time interval [0, T], where x(t) (xo(t),..., x(t)), A(t) is
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an (n + 1)X (n + 1) matrix of continuous functions and u(t)
(u0(t), Un(t)) is a vector of controls. For simplicity, we assume that

u U {u u(t) , 0 <-_ <= T, anduismeasurable and bounded},
where 2 is a closed convex subset of n+l. Further we assume that

x(0) x, i= 0," ,n,

and x(T) x, i- 1,...,n.

The value of x0(T) is not prescribed and the problem is to minimize x0(T)
over all x(t) and u(t) satisfying the above relations.
As is well known,

x( T) Y( T)x + fo Y( T) Y-(s)u(s) ds,

where Y(T) is an (n + 1) X (n + 1) matrix of functions satisfying the
adjoint equation-

Y(t) Y(t)A(t), Y(O) I.

It is easily seen that

{xSr T) x( T) Y( T)x(O) + Y( T) Y-1(8)u(8) 48, u

is convex. Thus, the duality theory previously developed can be used.
If x*(t), u*(t) is an optimal solution to the control problem, we can apply

Corollary 2 yielding the existence of (0, +) such that

7rx*(t) min {rx x St}.

Using the particular form of the description of the set Sr, we have

r Y()z" -t- Y(T)Y-()*() d

<= rY( T)x + fo rY( T) Y-(s)u(s) ds

for all u gt. Thus

0 <-_ f Y(T) Y-l(s)[u(s) u*(s)] ds.

If we define II(t) vY(T)Y-I(s), it is easily seen [6] that u*(s)
mineu II(s)u and II(t) is a vector solution of the adjoint equation, which

is equivalent to the maximum principle for this problem.
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NONLINEAR IROGRAMMING A NUMERICAL SURVEY*

G. ZOUTENDIJK
1. Introduction. In this paper some of the existing general nonlinear

programming methods will be reviewed with special emphasis on their
numerical aspects. A few modifications will be suggested. In addition two
new methods will be described which to a certain extent combine the
advantages o the other methods.
The problem we will consider is to find a (local) maximum, if it exists,

of a function f(x) of the vector x En on a closed and connected set R in
n-space:

() x{f(x) R}.

In most applications R will be of the form R {xlfi(x <= O, i I},
I being a finite set. Some methods can also be applied to problems with
an infinite number of constraints.
The functions f(x) and fi(x) will be assumed to be differentiable with

continuous partial derivatives.
The question which method is best cannot be answered in this general

form. To a considerable extent this will depend on the structure of the prob-
lem, e.g., on the degree of nonlinearity. Moreover what is best? The method
that is fastest in a series of tests? The method that can solve larger prob-
lems? The method that is most accurate? The method that has the simplest
computer program? There obviously is no definite answer. If there are
many constraining inequalities and if most of them are linear, then any
method that is a direct extension of the simplex method for linear pro-
gramming [5], [10] is to be preferred. If, in addition, the variables are sepa-
rable, Miller’s simplex method for local separable programming [17] is the
obvious one to apply. Since, however, this method imposes a severe re-
striction on the form of the nonlinearities, it cannot be considered as a
general nonlinear programming method and will therefore not be discussed
in this paper.
There are two other types of methods to which we will pay no attention

in this paper, viz., the combinatorial methods and the decomposition/
partitioning methods. For instance, by a systematic and sophisticated

* Received by the editors June 17, 1965. Presented at the First International Con-
ference on Programming and Control, held at the United States Air Force Academy,
Colorado, April 15, 1965.

f Centraal Reken-Instituut der Rijksuniversiteit te Leiden, Leiden, The Nether-
lands.

R also has to satisfy a regularity condition to exclude "cusps". See [16].

194



NONLINEAR PROGRAMMING 195

search through all possible combinations of equalities out of the (finite)
set of inequalities we would reduce the programming problem to a finite
number of classical Lagrange type maximization problems. This, together
with a numerical technique for solving these classical problems, would form
a general nonlinear programming method. The combinatorial nature of such
a method would restrict its applicability to problems with relatively few
constraints, however. The decomposition and partitioning methods [2],
[19], [20], [23] will probably be of considerable practical importance. Since
they are still under development and since they reduce the original problem
to a sequence of smaller and simpler nonlinear programming problems to
the solution of which a general method has to be applied, we will not take
them into account in this paper.

In 2 some existing methods will be reviewed. In 3 two new methods
will be described which we will call the MIP and the MFD method (for
modified interior point and modified feasible directions). These new
methods are thought to have some important numerical advantages over
other methods.

2. Review of some existing general nonlinear programming methods.

2.1. Dual methods. In this category we find the cutting plane method
developed by Cheney and Goldstein [3] and independently by Kelley [15].
A slightly different version was suggested by Hartley and Hocking [13].
The cutting plane method is as follows.

(a) Add the relation -f(x) Xo <- 0 to the constraint set and maxi-
mize the value of the new variable x0 instead of the function f(x), which is
obviously equivalent to maximizing f(x). Writing f0(x) for f(x) and adding
the index 0 to I the problem is still of the form (1) but now with a (simple)
linear objective function. The algorithm works for a general linear objective
function pTx, however.

(b) Start with some initial point x (x need not be feasible) and solve
the "linearized" problem

(2) max {prx Vf(x)rx <- Vf(x)rx f(x), i I},

where T denotes the transpose and Vf denotes the gradient vector of the
function f. A possible infinite solution can be prevented by adding con-
straints of the type x.! <- a, a being a number chosen so large that no x-
will equal +/-a in the optimum solution of (1). Let x be the solution of (2).

(c) Suppose x, x1, x have already been calculated. If for every
i, f(x) -<- , where is a predetermined small positive number, we will
stop; otherwise we will choose i in such a way that fk(x) maxf(x)
(greatest infeasibility), relinearize the ikth constraint with respect to x
and add the new linear relation
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vf(x) __< vf(x)x f,()
to our linear subproblem.

(d) Solve the linear subproblem again (starting from the old solution
and using the dual simplex method). This will give a new point xk+l.
Repeat (c) and (d), if necessary.
A convergence proof can easily be given if -f and all f are convex. This

is based on the following observations: the feasible region of the linearized
problem (2) contains R; each new linearization cuts off the old optimum
but never part of R; the xk form a sequence with nonincreasing values for
f(x) exceeding the maximum of f(x) on R; and, with the choice of the
next constraint to be relinearized as in rule (c), any point of accumulation
of the sequence x will belong to R and will therefore be a maximum of f(x)
on R. The proof makes an essential use of convexity properties. Indeed, the
method will not work in nonconvex problems. This is a serious drawback
since most practical problems are not convex, while a test on convexity is
a time consuming numerical procedure. The dual methods are thus of
limited practical value and have only been described to simplify the
discussion of other methods. In relation to these dual methods several
questions of a computational nature can be discussed.

Is it worthwhile to start with a complete linearization (2) or would
it be better to start with linear constraints and upper bounds only
and add linearizations gradually?
Would it not be better to go cyclically through the nonlinear

constraints accepting for relinearization the first one with fi(x
where e >_- is gradually reduced? This would increase the number of
steps but reduce the amount of work per step.

Is it advisable to solve each linear subproblem completely or could
we stop after a few or even one iteration in the subproblem? (Making
only one iteration would lead to the method due to Hocking and
Hartley.) Probably it is best to solve the linear problems completely.

Is it necessary or recommendable to retain all old linearizations,
even those which are no longer active in the linear subproblem?
Different answers to these questions will lead to different computational

variants. For all these variants the following advantages (A) and dis-
advantages (D) will probably hold (compared to other methods).

A. 1. Direct extension of the simplex method (therefore efficient for
convex programs which are nearly linear).

2. Relatively little work per step.
3. Simple computer program.
4. Some problems with an infinite number of constraints can be

solved (e.g., the Chebyshev approxi,mation problem).
D. 1. Methods cannot be applied to nonconvex problems.
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2. Intermediate solutions are not feasible.
3. Rather slow convergence, especially if the maximum is not in a

vertex.
4. Linear subproblems will consist of near-dependent constraints

which could lead to serious rounding-off errors, especially if the
maximum is not in a vertex.

5. Rather inefficient for problems with linear constraints and a
nonlinear, possibly quadratic, obiective function.

9..2. Small step gradient methods. The only method in this class which
we will discuss, is the so called method of approximation programming
(MAP) developed by GrifSth and Stewart [11] which has been successfully
applied to many nonlinear programming problems. The method has some
relation to the cutting plane method and proceeds according to the follow-
ing rules.

(a) Start with some feasible initial point x.
(b) Suppose x, x1, xk hve already been calculated. Linearize all

constraints with respect to xk and solve the linear subproblem

(3)
max {Vf(x)rx Vfi(x)rx Vf(x)rx f(xk), i I;

for all j},

where tk :> 0 is a small number which prevents large steps.
(c) Repeat (b) with gradually decreasing "stepsize" tk until the im-

provement in value becomes sufficiently small nd the infesibilities in x
are acceptable.

In MAP a complete relinearization of the problem takes place at each
step. Hence, no old information is retained. This, together with a pre-
determined small stepsize, makes it possible to apply MAP to nonconvex

Wolfe [22] describes an accelerating device for problems with linear constraints
resulting in a finite quadratic programming method. The computational value of his
suggestion is unknown but is admitted of doubt.

A simple trick can be applied if such a point is not available. We replace the
original problem (1) by the equivalent problem

max {f(x)-lf(x)-p <= O, pi >= O, I},

where t is a large number, is an additional variable and p if for the (infeasible)
estimate x, f(x) >= 0 will hold, p 0 if f(x) < O. It is clear that 0 can be chosen
such that x, 0 is feasible in the modified problem. It can be proved [24, Theorem 2,
p. 67] that for sufficiently large the modified problem will have the same solution as
the original one. Note that the modified problem will always have an interior point.
The same trick can be applied if there are nonlinear equality constraints. Suppose
f(x) 0 has to hold andf(x) > O. Then replace the equation by the two inequalities
f(x) <= 0 and -f(x) -<-- O. We must be careful, however" a local minimum of the
original problem may be a local maximum of the modified problem!
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problems without any modification. No proof of convergence has ever
been published. It is likely, however, that the choice of the tk can be
formalized in such a way that convergence can be proved, at least for
convex programming problems. We will obtain a sequence of near-feasible
points. Due to the many small steps needed and the complete relineariza-
tion at each step, MAP will not be very efficient if no prior knowledge of
the problem is available. In many practical problems, however, the present
way of doing things is a very good starting point, which by applying MAP
will be improved.
The advantages and disadvantages of MAP are listed as follows:
A. 1. Works for noneonvex problems.

2. Rather simple computer program.
3. More accurate results can be expected.
4. Simplex method used as subroutine.
5. Intermediate solutions are (near) feasible.

D. 1. No formal way to determine the stepsize (this probably is only
a matter of mathematical elegance since there have been no
difficulties in a large number of practical problems).

2. Many small steps, hence slow convergence, especially if the
starting point is arbitrary.

3. Complete relinearization, hence more work, at each step (the
linear subproblem will have to start with a preinversion while
in the dual methods the existing dual inverse can immediately
be used to price out the added (dual) column).

4. Inefficient for quadratic, for nearly linear programs and for
unconstrained problems.

5. No extension to problems with an infinite number of constraints.

9..3. Large step gradient methods, also called methods of feasible
directions. A great number of methods, described in [24], belong to this
class. Well-known is Rosen’s gradient projection method [18] which has
successfully been applied to many problems with a nonlinear objective
function and linear constraints. Another method in this class is the one
described in a paper by Frank and Wolfe [9], which has been reinvented
recently as a method of solution for certain control optimization problems.
Any method of feasible directions proceeds according to the following

rules.
(a) Start with some feasible initial point x (no restriction, see the

remark in 2.2). Suppose x k-x, ..-, x R have already been calcu-
lated.

(b) Then determine a usable feasible direction in x-, i.e., a direction
s- with the propery that a X > 0 exists such that for all X, 0 < X _-< X,
x- + Xs-1 R and f(x- -Jr- Xs-) > f(x-) hold.
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(c) Determine the steplength ),k-1 by solving the one-dimensional
maximum problem in X,

max lf(x- +
The direction finding problems are easy to formulate in the case of linear

constraints of the form at’x <- bt. If the present solution is 4, then require"
(a) at s < 0 for i
(b) a normalization like srs =< 1, -1 <- s. =< 1 for all j, ]si] -< 1, etc.,
(c) Vf(2)rs to be maximized.
Different normalizations will lead to different computational procedures.
A linear normalization will lead to a sequence of linear subproblems to
which a variant of the simplex method can be applied.

In the case of a nonlinear constraint for which ft() 0 we must re-
quire Vfi()rs < 0 instead of -<0. This can be satisfied by adding an
additional variable z and by requiring
(a) Vfi()rs - 0z <- 0 if i I(), where 0t 0 if ft is linear, 0i > 0 if

ft is nonlinear;
(b) Vf() rs -+- a <__ 0;
(c) normalization;
(d) a to be maximized.
To avoid so-called zigzagging, common feature in ll gradient methods,

nd to guarantee or speed up convergence, additional requirements cn
be dded to the direction finding problems. They hve been described in
[24] and result in a number of finite methods for the quadratic programming
problem which have wrongly received considerably less ttention than the
methods due to Beale [1] nd Wolfe [21].

Several questions of a computational nature may arise in relation to the
methods of feasible directions"
Which is the "best" normalization to use?
What is the most efficient wy to determine the steplength?
When to add nd when to drop ntizigzagging requirements?
Which "pushing off" factors 0t to use?

These questions can only be answered computationlly. The considerable
amount of computer programming needed hereto will probably be iustified
by the ultimate result" n efficient nonlinear programming method.
These methods have the following dvantges and disadvantages"
A. 1. Applicable to nonconvex problems.

2. Fster convergence, especially if the pushing off fctor is prop-
erly chosen nd ntizigzagging precautions re tken.

3. Reduce to n efficient linear programming method in the linear
cse (only if linear normalization is used).

4. Finite for quadratic programming problems.
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5. Intermediate solutions feasible.
6. More accurate results can be expected in the case of the maxi-
mum not being at a vertex.

7. Extension to certain problems with an infinite number of con-
straints possible.

D. 1. Determination of the steplength needed, resulting in more
work per step.

2. Complicated computer program.
3. Upper bound for further increase in value in convex programs

cannot easily be obtained (except in what has been called
procedure P2 in [24]).

2.4. Interior point methods. In this class of methods the principle is to
keep away from the boundary of the feasible region. A sequence of interior
points is constructed converging to a maximum of f(x) on R. There are
two variants.

(a) Huard’s method [14]. This essentially is a method to find an interior
point. Start with x R0 (the interior of R; if R0 is empty the problem
can be modified, see footnote 3). Find X R0 ’ {x f(x) > f(x0) R1.
Next find x R {x f(x) > f(z1)} R, etc. The method to find an
interior point can be devised in such a way that the sequence of points x
converges to a maximum of f(x) on R.

(b) The SUMT method developed by Fiacco and McCormick (sequential
unconstrained minimization technique, see [6], [7] and [8]). In this method
the nonlinear programming problem (1) is solved through a sequence of
unconstrained maximization problems of the form:

(4) maximize f(x) pg{fl(x), fro(x)}, p > 0 fixed,

where g(yt, ym) is defined and bounded below for all yi < 0 and

lim g(yl y,) q- for all i.
’o

Fiaeco and McCormick have taken

g(y, y) __1_
_

1
i=1 Yi = fi(x)

but other choices are possible, e.g.,

i=l

Starting with some interior point x 6 R0 they solve (4) for o p0 > 0,
leading to x R0. This is repeated for o o < o0 and further values of
o: ok < pk-, ok -- 0. It is supposed that an efficient algorithm for uncon-
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strained maximization is available which uses the maximum of the previous
step as a starting point for the next maximization. (See [4] for this.)
Newton’s method is chosen, so that the matrix of second partial derivatives
of the function (4) has to be calculated. To speed up convergence an
extrapolation device is included in the method.

Extension of the method to problems containing nonlinear equations is
possible. If, in addition to the inequalities f(x) <-_ 0, we have a number of
equations g(x) 0, i 1,..., p, then the sequence of unconstrained
problems to be solved is of the form

(5) maximize f(x) +. .= f(z)l .-I2 =IE {g(x)}2, . > 0.

Again starting with x R0 {x If(x) < 0}, a sequence of problems of
type (5) is to be solved for o= m,p.,"" with ok <ok-1 and ok--0
(see [8, pp. 1-3]).

It is also possible to avoid using a parameter p, at least if there are no
nonlinear equations. The procedure (see [8, p. 5]) is then as follows.

(a) Start with x R0. Suppose x, x1, xk-l R0 have already
been determined.

(b) Then

maximize g (x, xk-l) 1 x-’m 1
--f(x) - f(xk-l) 4- .._ f(x)

starting with a point x xk- + XVf(xk-), X > 0 so small that

X Roll {x If(x) >f(xk-1)}.
This results in zk.
(e) Repeat (b) for xk, etc. This procedure obviously belongs to class

(a), described by Huard [14].
Several questions of a computational nature may be studied in relation

to the interior point methods.
What is the best choice for the function g in (4)?
What is the computationally most efficient way of solving the uncon-

strained problems?
Is it necessary to solve the unconstrained problems completely or can
we stop after using a gradient method for a number of steps or
maybe for one step?

What is the best way of decreasing p? Here we have to compromise
between speeding up convergence and increasing accuracy.

This method has the following advantages and disadvantages.
A. 1. Applicable to nonconvex problems, including those with non-

linear constraints.
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2. Very efficient for unconstrained problems as well as for problems
with a few highly nonlinear constraints.

3. Good convergence cn be expected if the p are well chosen and
an extrapolation device is used.

4. Intermediate solutions feasible.
5. Relatively simple computer program.

D. 1. A special structure of the constraints (linearity or near linerity,
partial nonlinearity, etc.) is destroyed; even constraints like
x => 0 are not dealt with in a special simple wy.

2. Not finite for linear or quadratic programs.
3. Much work per step (solution of u complete unconstrained

problem, whereas the other methods require a few additional
simplex iterations i the linear subproblems).

4. Rounding-off problems my sometimes rise (p -- 0 and simul-
taneously g -- ). Practical experiments are very promising in
this respect, however.

5. No upper bound for the value of the objective function avail-
able.

6. Problems with n infinite number of constraints cannot be
solved with the methods in their present form.

A summary of the properties of the methods discussed can be found in
the appendix.

3. lew methods. Of the four methods considered in 2, the first two
(cutting plane and MAP) are direct extensions of the simplex method;
SUMT has no relation with the simplex method but works with a sequence
of unconstrained maximization problems, while most of the methods of
feasible directions, though working with linear subproblems, also mke
use of techniques originally developed for unconstrained problems (step-
length determination, conjugated directions). The SUMT method is

The obvious extension of the SUMT method to (some) problems with an infinite
number of constraints, max {f(x) lf(x, t) <= O, t T}, is to consider lim0 max
g(x, p), where

g(x, o) f(x) - p
f(x, t)

or

g(x, p) f(x) - p fT log f(x, t) tit.

It is not known to the author under which conditions convergence can be proved for
this method. In particular, it is not known whether the Chebyshev approximation
problem can be solved in this way.



NONLINEAR PROGRAMMING 203

obviously not suited to linear or nearly linear problems. It can, however,
easily be modified in such a way that the linear constraints are not included
in the function to be maximized.

Suppose the problem is of the form

(6) max{/(x) ]fi(x) <= O,i I1, li(x) <= O,i I2},

where 11 and I2 are finite sets of indices and the l(x) are linear constraints
(including those of the form x. => 0, if any). The modified method, already
described by Fiacco and McCormick in [8], will then work through
sequence of linearly constrained maximization problems of the form

{f 1 l(x) <O,iI.}(7) max (x) q- p. f/
These problems having a highly nonlinear objective function and linear
constraints cn then be solved using a method of feasible directions.
Fiacco and McCormick have used Rosen’s gradient projection method
[18], for which an efiicient computer program is available. For a 100 vriable
problem they report a decrease in computer time from 13 to 6 minutes by
treating the nonnegativity requirements separately. A further decrease
may be expected if the other linear constraints are also treated separately
and if a method of feasible directions is selected using a linear normaliza-
tion.

It may be worthwhile to make only one or perhaps a few steps in the
linearly constrained subproblem. A typical step in the corresponding
modified interior point method would then be"

(a) calculate

v/(z)Vgk Vg(xk’ P) V/(x) P 1 {/i(xk)}

(b) solve the direction finding problem

nx/(re)s[ ai s <= 0 if i I:(x), normalization},

where li(x) airx bi ;this will give the vector sk;
(c) determine x+1 x q- hs, where h is given by

g(x q- },ks, pe) max {g(x

(d) determine p+l and repeat.
Thus far, convergence has not been proved for this procedure. Numerical

details concerning the best way to decrease p, the necessity to use antizig-
zagging precautions, etc., should be investigated. The so-obtained modified
interior point method (MIP) has all the advantages A.1-5 mentioned in
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2.4 but not the disadvantages D.1-3. Therefore, it looks very promising,
especially for problems with many nonlinear constraints.
Another new method, to be called the MFD method (modified feasible

directions), makes extensive use of the linearization technique as applied
in the cutting plane method, MAP, and a particular method of feasible
directions (procedure P2 in [24]). At each step a feasible direction and a
steplength are determined; but in addition a sequence of feasible points
interior with respect to the nonlinear constraints is obtained which con-
verges to a (local) maximum of f(x) on R, while for convex programs an-
other sequence of nonfeasible points converges to the same maximum and
gives an upper bound for the value of the objective function.
We shall first describe the method for convex programs with a linear

objective function and then mention the modifications for more general
nonlinear programs. The problem is supposed to be of the form (6).

1. f(x) linear, all f convex. The procedure is as follows.
(a) Start with x R’ {xlf(x) <0, i I1, li(x) -< 0, i Is}

(see footnote 3 if such a point is not immediately available or does not
exist). Start with the linear subproblem

L0= max If(x) ]li(x) =<0, i I2,1x.l <- a},

with a chosen sufficiently large. Suppose we have already determined:

a sequence xh R’, h 0, 1, k ("interior" feasible points),
a sequence yh E R, h 0, 1, ,/c 1 (infeasible points),
a sequence z R R0, h 0, 1, k 1 (boundary points),
a linear subproblem Lk.

We then perform the following calculations.
(b) Solve the linear subproblem Lk giving the solution y E R.
(c) Determine zk by zk x+h(y-x), where

+k(y-x) R},z R-R0.Letf(z) =Ofori
(d) Linearize for i I1 the constraints f(x) <- 0 with respect to z

giving the linearized constraints (tangent planes)

vf(z x __< vf(z z,
Add these relations to the constraints of L giving the linear subproblem
Lk+1

(e) Ca’lculate xk+l rx -+- (1 )z, 0 < r < 1, e.g., r 1/2, x+1 R’.
Repet (b)-(e) for k -+- 1 (]c ] + 1).
We so obtain"
a sequence of feasible points x with increasing values, f(xTM) > f(xk),

converging to a maximum of f(x) on R;
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/

FIG. 1. Linear objective function, two nonlinear convex constraints, 1/2

a sequence of infeasible points y with nonincreasing values, f(y+l)
<= f(y), converging to a maximum of f(x) on R and at each step
giving an upper bound for the maximum value;

a sequence oI’ feasible points z giving at each step a lower bound for
the maximum value;

an upper bound for the possible further increase in value, f(y) f(z).
If this expression is less than some predetermined e we will stop.

The convergence proof is equivalent to the one given for procedure P2
in [24, p. 78]. A geometrical illustration is given in Fig. 1 and Fig. 2.

2. f x nonlinear, all f convex. If f is concave we could add f x
+ x0-<_ 0 to the constraints and maximize x0. Probably it is better for
concave as well as more general f(x) to perform the steplength procedure
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\

\1

FIG. 2. Linear objective function, one nonlinear convex constraint, r 1/2

as in the methods of feasible directions, so that an interior maximum is
possible on the line connecting x to y. This point, if feasible, will be taken
as x+1 and (d) and (e) need not be performed. The linear function to be
maximized in the subproblem will then be Vf(x
As in the original methods of feasible directions convergence can be

speeded up by using the principle of conjugated directions, i.e., by tem-
porarily adding a relation of the form

/Vf(x+1) Vf(x)} r(x x+) 0,

when x+ has been determined as an interior maximum of f(x) on the line
connecting x to y.

3. Nonconvex problems of type (1). The only additional rule we have to
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obey is that, if for some value of i, f(yk) <. 0, then any active linearization
off,(x) in the linear subproblem (i.e., a constraint in the subproblem which
determines the solution yk) should be taken out in the next subproblem.
By applying this rule no part of the feasible region will ever be definitely
cut off. The test corresponding to this rule need not be carried out at each
step for all i provided each value of i is reconsidered from time to time.
A geometrical illustration of a noneonvex problem, where the above

mentioned rule is applied at each step, is given in Fig. 3.
Nonlinear equations can be handled with the MFD method by using the

trick mentioned in footnote 3. The MFD method can be extended to
problems wih an infinite number of constraints such as the Chebyshev
approximation problem. A requirement is that for all x R {x if(x, t)

\ /
\

\ \

\
\

FIG. 3. Linear objective function, two nonlinear nonconvex constraints, r 1/2
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_<- 0, T}, we have that {t T Jr(x, t) 0} is finite. The determination
of zk will involve the solution of problems of the type min {},(t) [t T},
where

(t) max {f(x + h(y- x), t) -< 0}.

The minimization problem is a nonlinear programming problem itself. In
the Chebyshev approximation problem },(t) can be explicitly determined.
A number of questions of a computational nature will need further

investigation.
Is it worthwhile to remove nonactive linearizations from the linear

subproblems and, if so, how often should this be done?
What is the best value of r? Should it be changed or fixed once and for

When should the additional linear relations based on the principle of
conjugated directions be dropped from the subproblem?

ttow often should we carry out the test mentioned under point 3 for
the nonconvex problem?

What is the best policy with respect to the t, mentioned in footnote
3, which has to be introduced if no x is immediately available; for
instance, if there are nonlinear constraints? Should we start with a
large value of t or should we gradually increase ?

It is to be expected that the MIP and the MFD methods will be the
best methods for the general nonlinear programming problem. Which of
the two methods is to be preferred will probably depend on the nature of
the problem, particularly on the amount of nonlinearity and the activity of
the constraints.
For problems with linear constraits and a nonlinear objective function

both methods are equivalent to normal methods of feasible directions.
They only differ in the way they handle the nonlinear constraints. In MFD
the nonlinear constraints are supposed to be sufficiently linear, so that
successive linearizations lead to rapid convergence; in MIP they are added
to the objective function. Hence, if the assumption of near linearity is
valid, the MFD method is the best, but if the problem has very little
resemblance to the linear programming problem the MIP method should be
selected. Nonlinear scheduling problems mostly belong to the first class,
many design optimization problems to the second class. A summary of some
properties of the MIP and MFD methods is also given in the appendix.

One could try to determine z by maximizing f(x) in the triangle determined by
x, y, and z-1 under the condition that the maximum should be feasible, x+1 could
then be chosen on the line connecting x and z. This would lead to a sequence of two-
dimensional nonlinear programming problems, which can only be easily solved in
special cases.
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Appendix. Some features of various methods.

Nonconvex programs
Finite for linear programs
Finite for quadratic programs
Efficient for linearly constrained pro-
grams

Efficient for problems with only a few
nonlinearities

Efficient for unconstrained programs..
Infinite number of constrains possi-

ble
Intermediate solution (near-)feasible..
Upper bound in convex programs
Speed of convergence
Amount of work per step
Accuracy of calculations
Simplicity of computer program

Dual
methods

N
Y
Nb

Small
step

gradient
methods

Y

N

N

N
N

N
Y
N
3
2
2
1

Large
step

gradient!
methods

Y
Y
y

Y

Y
Y
Nh

2
3
2
3

Interior
point

methods

Y
N
N

N

N
yo

Ng

Y
N
2
3
2
2

MIP
method

Y
Y
Y

Y

Vd

Ng

Y
N
2
2
2
2

MFD
method

Y
Y
Y

Y

yd

Y
Y
Y
1
3
2
3

Y and N are Yes and No answers to the question.
1 favorable; 2 reasonable; 3 unfavorable (all in comparison to other

methods).
Remarks.
A simple change in an MAP computer program will make it finite for linear

programs but it will then no longer be a small step gradient method.
b With the accelerating device the cutting plane method is finite for quadratic

programs.
Not all large step gradient methods are finite, for example the gradient pro-

jection method is not.
d The MFD method will be more efficient than the MIP method.
The interior point methods will be more efficient than the methods of feasible

directions.
The class of solvable problems is restricted.
A modification of the (modified) interior point methods may work (see footnote

4).
h In a few methods of feasible directions an upper bound can be obtained at rela-

tively little cost.
Needs further computational study.
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ON THE PROBABILITY DISTRIBUTION OF THE OPTIMUM
OF A RANDOM LINEAR PROGRAM*

ANDR/S PR]KOPAf

1. Introduction. In the present paper we shall consider linear program-
ming problems

max ctx,
(1.1)

Ax b, x >= O,

where A is an m X n matrix, c and x are n-dimensional vectors, and b is
an m-dimensional vector. We shall suppose that A, b, c have random ele-
ments and components, respectively. As t is a function of the variables in
A, b and c,

(1.2) v (A, b, c),

it is also a random variable and its probability distribution is what we are
interested in. This problem is of basic importance and is conceivable as a
stochastic sensitivity analysis of a linear programming model. The question
how the transformation A, b, c -- operates under the presence of random
influences in A, b, and c does not play just the role of a sensitivity analysis,
however. In fact, in A, b, c we may have not just small random disturbances
but random variables of significant variation.
The problem in its general form has been considered by Tintner [2], [3],

and Babbar [1]. In these papers it is supposed that the random variation
does not change the optimal basis in the sense that the subscripts of the
optimal basis vectors remain the same for all possible values of A, b, c.
Thus finding the probability distribution of is equivalent to finding the
probability distribution of an (also rndom) linear functional defined over
the random solution of a set of linear equations. In this respect it is also
possible.to proceed in two different ways: either to develop into a finite
Taylor series and use the leading, linear terms as an approximation to
and obtain its probability distribution, or to consider the components of
the solution as fractions of random determinants, approximate their dis-
tributions by the normal law and again approximate by the normal law
the fraction of two normally distributed variables. This method has the
handicap that it produces sophisticated approximation formulas.

* Received by the editors July 12, 1965. Presented at the First International Con-
ference on Programming and Control, held t the United States Air Force Academy,
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In 2, 3, 4, we consider systems of linear equations, the probability
distribution of a random linear functional defined over the solutions and
apply this theory for our original problem concerning random linear pro-
grams. Our approximation formulas for the characteristics of t, especially
for the dispersion, will be particularly simple, as simple as possible in this
general formulation of the problem from the point of view of practical
application, involving the primal and dual optimal solutions of the linear
programming problem carried out with the expectations and the covariances
of the present random variables. We express our statements in limit theo-
rems and list carefully all mathematical assumptions. Our results are for-
mulated in general, containing the essential features of the problem and al-
lowing the possibility of specialization when facing a particular problem.
The results of the present paper, however, apply to the case when the

random elements in the technology matrix keep the optimal basis (basis
subscripts), obtained by computing with the expectations, with a high
probability. To more general questions we return in subsequent papers.

Since in the present approach the principal aim is to reduce to a sum of
random variables, the asymptotic normality of this sum will be supposed.
In the particular cases where the sum in question contains an increasing
number of independent random variables, e.g., A has independent elements
or it is enough if its rows or columns are independent, the limit distribution
theory of sums of double sequences of independent random variables can
be applied. (See [19].) If independence does not occur then we may suppose
the joint normality of the random variables in A, b, c which is sufficient,
or suppose simply the sum in question to be normally distributed; but
there is no detailed general theory of the limit distributions of sums of
double sequences of dependent random variables. On the other hand, any
particular problem reveals, in some specific way, how the random elements
intervene, from the knowledge of which we may assume the normality of
the approximating sum.

2. Systems of random linear equations. Consider the following system of
linear equations"

(2.1) aikx bi i 1, m.
k=l

Let us denote by B the matrix of the equations and by b the vector con-
sisting of the b’s as components and let us introduce an m-dimensional
vector c. If B is nonsingular then (2.1) has a unique solution B-lb. Suppose
now that B, c, b are all random and that all elements and components have
finite variances. We are interested in the probability distribution of the
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functional

(2.2) c’Rb, where R B-1

nd where the prime denotes transpose. In order to avoid complications
in the notation we shall suppose that B is independent of the couple c, b
and that c, b are lso independent of each other. This assumption does not
play any significant role here. We shall denote by al, am the columns
of B and by D the cross covrince mtrix of a nd a, i.e.,

(2.3) D E[(ai a())’(a a())], i, 1, ..., m,

where a() E(ai), i 1, m, und E is the expectation operator. The
expectations of B, b, c, a, b, c will be denoted by B0, b0, c0, ,
c(), respectively. R0 will denote B(. The covuriunce mutrices of und
will be denoted by C and F, respectively.

Disregarding for a while the random nuture of our quantities, we shall
give the finite Taylor expansion of around the expectations, as far as the
second order terms. It can be done by using formul well-known in mutrix
theory stating that if the inverse of a nonsingular square mtrix is R and
we modify the original matrix by adding to the element in the ith row
nd kth column then the inverse of the modified matrix will be

(r r).(2.4) R
1 + r

kraal

Hence if we change B in the manner described above and consider the
change in the functional then we obtain

(2.5) (ai -t- ) (ai)
1 -- r yix’

whore

i=1

From this i follows that

(2.6) 0g

Oa

By a double application of (2.4) we get

(2.7) (a + ) + (ak ) 2(a) 2yi x

i,k 1, ,m.

rki
i
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hence

02t- lira/(ak + ) + tt (aik ) 2tt(a)
(2.8) Oa o

yxr, i,/c 1, ...,m.

We can determine similarly the mixed partial derivatives. The result is the
following

0tt lira(2.9) Oak Oaq -.o v
7->0

(a + , aq + 7) (a q- ,
t a aq q- + a apq

xk y rqi -- Xq y r for

Let us finally mention the derivatives where c and b are involved"

(2.10)

Let us introduce the notations

(2.11)
y cR, Yo

z Rb, :co Robo,

and denote by x(), yj(O) the components of Xo, yo, respectively. Further-
more

(2.12)

a-- a(/ , B-- Bo ,
Ci Ci

()
"Yi C Co ’Y

b-- b() , b-- bo , i, tc 1,... m.

With the aid of these notations the desired Taylor expansion is the follow-
ing:

i,k=l i1 k=l

1
yifirx + xr(2.13)

i,k=l i,k,j=l

+ yr + (xyr + xyr)G
li--l+lk--ql>o
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or in a concise form,

(2.14) o yo’Xo - yo’ - Xo’ + p,

where the error term p is given by

(2.15) p x’y + 2y’Rx + Rx + R,

nd ,z is the mtrix consisting of the entries r. In the bove develop-
ment of the error term, x, y, nd R, which re functions of b, c, B, re tken

(0)tpointb() , c() ,a ,where0 < < 1.
Th.e leding term in (2.14) hs expectation 0 nd vrince

(2.16) z
(0) , (0) ’Cx yo yox + yo yo + xoFxo.

i,k=l

If the columns of B re independent rndom vectors, s it cn be supposed
in some practical cses, then z reduces to

Xk(0)(. 17) )yo’Dyo + yo Cyo + xo’Fxo,

which further reduces if 11 elements of B re independent. If lso c nd b
have independent components then we hve

z. y(0) Xk(0))2 y(0) (0)(2.xs) E )( +E( ), +E(x )t,
i,k=l i=l k=l

where

E( tk E(k2) i,k 1, mi) si E(,,2),O’ik

In the next sections we shall give sufficient conditions under which
(t t0)/ has an asymptotic normal distribution. This will mean from the
practical point of view that has an asymptotic normal distribution with
expectation 0, i.e., the value of the functional belonging to the expecta-
tions of all values involved, and variance given by (2.16) which may
specialize.

3. Limit distribution
we prove lemm.
LEMMA. Let H1, H2,

theorems for random linear equations. First

be a sequence of events with the property that

lira P(HN) 1.

Let further w and be two sequences of random variables, where w has a
limit distribution, i.e.,

lira P(w < x) G(x)
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at every point of continuity of G(x) and N tends stochastically to 0 (in sym-
bols, 0), i.e.,

lim P(I ’l > e) O, for every > 0

has a degenerate limit distribution). Under these conditions

lira P(nr q- g’v H) G(x)
N.--x

at every point of continuity of G(x).
Since this lemma is essentially Cramr’s lemma (see [18, p. 254]) ex-

pressed in a slightly modified form, we omit the proof.
In order to obtain limit theorems we can proceed in two directions. We

may keep m, the size of the system of equations, fixed, while the random
disturbances have a slowing down tendency. This is the case when, for
example, the random disturbances are due to some inaccuracy in the meas-
urements of the data which shows a decreasing tendency upon using more
data or, in other terms, a larger sample. The other possibility is to increase
m. In this case we shall also suppose implicitly that the random elements
are small as compared to the expectations, but for convergence to the nor-
real distribution the increasing size of the matrix B contributes also. First
we formulate two theorems in general forms.
THEOREMI. If a function f(zl z., zk) has continuous second order

(o)derivatives in some convex neighborhood of the point (zl(), z2(), ..., zk ),
where k is fixed, and if for a sequence of random vectors (1 (N), 2(N). .-.,
() .(v)withE(, 0, i 1, .,k,N 1, 2, -..,thefollowmgcon-

ditions are satisfied:

(2) limp(1 0f() () )<x

at every point o( continuity o G(x), where Of()/Oz means the derivative
taken at (z(), z(), ..., z()) and is the dispersion o

(3) 1 Of(1)

i() () 0 ff N - ,
where the perscript (1) means that the derivative is taken at an arbitrary
point of the convex domain and this point may also vary uith N, then we have

lim p { 1 [f(z(0) + 1() (0) () ())] x}+ f(z() <
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(0) (N)Proof. Let HN denote the event that (Zl() - 1(), zk + 8k is
(0)in that neighborhood of (Zl(), ..., z where f has continuous second

order derivatives. In this case,
(0)f(z() + () z() + ()) f(z() z

(3.) of(o) () 1 02f (1)

i()

where Of()/OzOz is the second order derivative taken at (z() +-.., z,() &- ), 0 < < 1. According to (1), lim P(H) 1.
Let us divide by a on both sides in (3.1). Then the second term on the
right-hand side tends stochasticMly to 0 according to (3). Let us denote
this term by and the first term by v. Then a direct application of the
lemma completes the proof.

Condition (3) is clearly fulfilled if

1 () () 0, i, j 1,

Before stating Theorem 2, we mention the notion of a star domain. An
open domain K around and containing a point (z, z) in the/-dimen-
sional space is called a star domain if the intersection of K with any ray
(z + tx, "., z + t), ) 0, is nn open intervM. This may contain,
in particular, every point of the ray. The point (z, z) is cMled the
seed of the domuin. This notion will be important to extend the possibility
of the Taylor-series expansion round the given point as lrge as possible.
For lter purposes we introduce notion, that of maximal star domain

around a nonsingular matrix Bo, which by definition consists of M1 matrices
of the form

B0 + t,
where for any given , runs continuously from 0 until the sum becomes
singular. That singular matrix is excluded, however.
TnonM 2. Suppose that we have a sequence of functions of an increasing

number of variables f(z z z) where k as N and each
f has a neighborhood, a star domain around a point (z) (0)..., zs) where
its second order derivatives exist and are continuous. Suppose furthermore
that we have a double sequence of random variables
with expectations 0 and finite variances, satisfying the following conditions

(y) (o) (N)(1) limP{(z + ,...,z+) Ks} 1,

where K is the abovementioned neighborhood,
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at every point of continuity of G(x) (Ofiv()/Ozi and 02fN(1)/OziOzj have the
same meaning as in Theorem 1),

(3)
1 02fN(1)

i
(N) () 0 if N "- .

(N ij= cZi OZj

Then

]imp{l[fN(zO)._[_(N) .(0) .(V) -(0) (0),... ,z + G(x)JLZv, zvkNj] <
N

at every point of continuity of G(x).
The proof is similar to that of Theorem 1.
It is worth mentioning that the fulfillment of condition (1) in Theorem

2 my be the cause of the slowing down tendency of rndom elements or
the increase of K or both.

In both theorems we used the same ide CramSr used when proving the
asymptotic normality of functions of moments (see [19, pp. 366-367],
noting that in that case the number of vribles is fixed). We can pply
these theorems for rndom linear equations. In the following theorem we
shall omit the subscript N which would refer to the fact that we have
sequence of random elements. Thus ll our previous notations concerning
rndom equations re applicnble.
TEOnEM 3. Suppose that m, Bo Co, bo are fixed and that Bo is nonsingular

and introduce the following conditions:

(1) --0, i,lc 1, m,

P {I yo’ Xo -- yo’ x}+x0’]< -(x)
0"

(2)
1

/- d, forevergz, -- <z <

(3) P --- O.O"

Then for every x,

(3.2) p(-co’Robo< x)--- (x).

Proof. Theorem 3 is an immediate consequence of Theorem 1 applied
to the function t(A, b, c) of m + 2m variables, (A0, b0, Co) as the
point around which the Taylor-series development is taken, and E, %
as the sequence of (m + 2m)-dimensional random vectors. We just have
to mention that condition (1) in Theorem 1 is ensured by condition (1)
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of Theorem 3. Various consequences of this theorem can be derived. Among
them we mention the simplest.
COROLLARY. Suppose that the m A- 2m random variables in , " and

have a normal joint distribution and

O’max -’-> 0, O’max 0, where O’max max ( s t).

Then (3.2) holds.
Proof. All that we hve to verify is the fulfillment of (3) in Theorem 3.

If we look at the detailed expression of p given by the last terms in (2.13),
we see that, separately, each term of that sum divided by converges
stochastically to 0. In fact, considering the quadratic terms /a we see
by the Markov inequality that

p > 5E()_<_m0.
o" o"

For all other terms the Chebyshev inequality can be applied.
TItEOREM 4. Consider a sequence of matrices and vectors Bo, Co, bo, and a

corresponding random sequence , % (the subscripts are omitted), where m,
the size of the matrices (equal to the dimension of the vectors), tends to infinity.
Suppose that all Bo matrices are nonsingular. To every Bo in the sequence
there corresponds a maximal star domain K where Bo -4- is nonsingular
and the Taylor expansion around Bo applies. Suppose that

(1) P(B0 + Z K) -- 1,

(2) P y0x0-t-x0’/ - y0)< --(x) < x <

() 0.

Under these conditions$

P{(-c0’R0b0) < x}---+q(x), o <x< .
The proof of this theorem is similar to that of Theorem 3. Analyzing the

conditions here, (1) and (2) are realistic as the size of the matrix increases.
The crucial point is condition (3) which may very easily fail to hold. In
fact, first of all, the fourth term containing the squares k may not be
negligible as compared to . It does not have, in general, expectation 0 even

:l: Instead of 4(x) we may suppose some other distribution function too.
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in the case where all random variables are independent. It seems, therefore,
advisable to attach the sum

1 yi(0).2 (0) (0)
ikrki Xk2 i,k=l

to the leding term, changing it into -- Y0’ -- x0.(3.3) y()i(1 ri)x()

i,k=l

We may then approximate the distribution of by a normal distribution
with the expectation

1
(3.4) co’Robo + y(O) (o) (o)

and vrince (2.16), where D has to be replaced by

(3.5) Di TiDT TD DT
(o) (o)nd T is diagonal mtrix consisting of elements -,, r in the diag-

onal. The same sum that we added to the leding term has to be subtracted
from the remainder nd it is more realistic to sy that the new remainder
divided by the dispersioa of the new leding term tends stochastically to 0.

4. Appfication to rdom linear programs. Consider the linear program-
ming problem

(4.1) ,0 mx c0 x,

subject to the conditions

(4.2) Aox bo, x O,

nd suppose that it has a unique optimal bsis B0 which, for the ske of
simplicity, we suppose to be the set of vectors a(), ..., a(). We also
suppose that A0 hs rnk m. Consider lso the problem

(4.3) t max c x,

subject to the conditions

(4.4) Ax b, x >= 0,

where A, b, c have radom elements, components, respectively. In these
problems we apply the same notations as those used concerning random
equations in 2, 3, but we observe that A has mn elements and c has n
components.
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We suppose also that B0 is nondegenerate. There is then a neighborhood
of A0, b0, Co. in which the problem (4.3)-(4.4) will preserve the subscripts
of the optimal basis. Keeping rn and n fixed, consider a sequence of random
matrices, vectors A, b, c, respectively. If we suppose that

(4.5) Zm 0,

where . max (zk, t, sk, i 1, m;/c 1, n), the prob-
ability that B (al, am) will be the optimal basis to problem (4.3)-
(4.4) tends to 1. Hence, according to our lemma, ( 0)/ will have the
same asymptotic probability distribution unconditionally or conditionally,
given that B is optimal. If, furthermore, conditions (2) and (3) are also
satisfied in Theorem 3, where all quantities, vectors, matrices are taken
from the random equation Bx b, and c means the vector consisting of
the first m components of that used in (4.3), then we may state the follow-
ing.
THEOREM 5. The optimum value of the random programming problem

(4.3)-(4.4) has an asynptotic normal distribution with expectation o, the
optimum of the program talcen with the expectations in each place, and variance
(2.16), where Xo, yo are the primal and dual optimal solutions of the first
problem; more exactly, Xo is a part of the primal optimal solution consisting

of the basic components. The neaning ofD C, F remains unchanged. Asymp-
totic normality means that the probability that ( to)/o < x tends to q(x).

It is seen from these that the present approach gives a particularly sim-
ple result which is very advantageous from the practical point of view
because in the characteristics of the random variable u such vectors and
matrices appear as the primal and dual optimal solutions x0, y0 and D,
C and F, the covariance matrices of the random variables involved.
We may also apply Theorem 4 by considering a sequence of programming

problems, where rn -- , n --, m. Here we suppose that at each problem
with A0, b0, Co there is a unique finite, nondegenerated optimum and the
probability that the optimal basis has the same column subscripts in prob-
lem (4.1)-(4.2) and in (4.3)-(4.4) tends to 1. Then if we take into ac-
count our lemma, the results of Theorem 4 are applicable, where x0 and y0

have the same meaning as before.
One practical conclusion of these results is the following" if for some rea-

son we solve the linear programming problem with the expectations, e.g.,
with predicted prices and predicted technology coefficients, but we have
information about their random variation, then we may set up confidence
limits for the optimum value which would have been the result if we had
programmed with the particular realization of the random data in A, b,
nd c.



222 ANDROS PR]KOPA

REFERENCES

[1] M. M. BABBAR, Distributions of solutions of a set of linear equations (with an
application to linear programming), J. Amer. Statist. Assoc., 50 (1955),
pp. 854-869.

[2] G. TINTNER, Stochastic linear programming with applications to agricultural
economics, Second Symposium on Linear Programming, vol. 1, National
Bureau of Standards, Washington, D. C., 1955, pp. 197-227.

[3] ------, Les programmes linaires stochastiques, Revue d’conomie Politique, 67
(1957), pp. 208-215.

[4], A note on stochastic linear programming, Econometrica, 28 (1960), pp.
490-495.

[5] H. M. WAGNER, On the distribution of solutions in linear programming problems,
J. Amer. Statist. Assoc., 53 (1958), pp. 161-163.

[6] J. V. TALACKO, On stochastic linear inequalities, Trabajos Estadtst., 10 (1959),
pp. 89-112.

[7] A. MADANSKY, Inequalities for stochastic linear programming problems, Manage-
ment Sci., 6 (1960), pp. 197-204.

[8] S. VhJDA, Inequalities in stochastic linear programming, Bull. Inst. Internat.
Statist., 36 (1958), pp. 357-363.

[9] H. W. KVHN AND R. E. QVANDT, An experimental study of the simplex method,
Proc. Symp. Appl. Math., 15 (1963), pp. 107-124.

[10] A. T. LONSET, Systems of linear equations with coecients subject to error, Ann.
Math. Statist., 13 (1942), pp. 332-337.

[11] ------, On relative errors in systems of linear equations, Ibid., 15 (1944), pp. 323-
325.

[12] --, The propagation of errors in linear problems, Trans. Amer. Math. Soc.,
62 (1947), pp. 193-212.

[13] G. E. P. Box AND J. S. HVNTER, A confidence region for the solution of a set of
simultaneous equations with an application to experimental design, Bio-
metrika, 41 (1954), pp. 190-199.

[14] R. E. QUANDT, Probabilistic errors in the Leontief system, Naval Res. Logist.
Quart., 5 (1958), pp. 155-170.

[15] l-I. ]). MILLS, Marginal values of matrix games and linear programmes, Linear
Inequalities and Related Systems, H. W. Kuhn and A. W. Tucker, eds.,
Princeton University Press, Princeton, 1956, pp. 183-193.

[16] A. C. WILLIAMS, Marginal values in linear programming, J. Soc. Indust. Appl.
Math., 11 (1963), pp. 82-94.

[17] E. BODEWIG, Matrix Calculus, North-Holland, Amsterdam, 1956.
[18] I-1. CRAMR, Mathematical Methods of Statistics, Princeton University Press,

Princeton, 1946.
[19] B. V. GNEDENKO AND A. N. KOLMOGOROV, Limit Distributions jor Sums of In-

dependent Random Variables, Addison-Wesley, Reading, Mssachusetts,
1954.



J. SIAM CONTIOL
Vol. 4, No. 1, 1966
Printed in U.S.A.

ITERATIVE SOLUTION OF NONLINEAR OPTIMAL CONTROL
PROBLEMS*

J. B. ROSEN
Abstract. The solution of nonlinear, state-constrained, discrete optimal control

problems by mathematical programming methods is described. The iterative solution
consists essentially of Newton’s method with a convex (or linear) programming prob-
lem solved at each iteration. Global convergence of the iterative method is demon-
strated provided a convexity and constraint set condition are both satisfied. The
computational solution of nonlinear equation control problems makes use of a previ-
ously developed method for state-constrained linear equation problems. The solution
method for nonlinear problems is illustrated by means of two numerical examples.

1. Introduction. The optimal control problem considered here is a rather
general type of discrete problem. We wish to minimize a convex function of
the state and control vectors, where the control vectors must lie in a speci-
fled convex set. In addition the state vectors must also satisfy specified
constraints at each discrete time, as well as initial and terminal conditions.
Furthermore, the system dynamics may be given by a nonlinear recursion
relation provided that the nonlinearity is convex in an appropriate way. A
discrete system of the type considered here may represent a process which
is actually discrete (see, for example, [3], [1]), or it may be obtained from
a finite difference approximation to a continuous system in which we wish
to minimize a convex functional. Such an approximation is always required
when a numerical integration, using a digital computer, is part of the
solution process.
The purpose of this report is to describe a computational method for

solving this general type of discrete problem, and to show by means of the
relevant theorems that the method will always work when the appropriate
assumptions are satisfied. The method is an iterative procedure that deter-
mines a sequence of admissible trajectories (state and control vectors
satisfying all constraints); the sequence converging to an admissible tra-
jectory that satisfies the necessary conditions for optimality. The method
has been used to obtain numerical solutions to several small nonlinear test
problems. In addition to showing that it is not difficult to implement the

* Received by the editors June 28, 1965. Presented at the First International
Conference on Programming and Control, held at the United States Air
Force Academy, Colorado, April 15, 1965.

Computer Sciences Department and Mathematics Research Center, University
of Wisconsin, Madison, Wisconsin. This research was sponsored in part by the Na-
tional Aeronautics and Space Administration under Research Grant NGR-50-002-028
and in part by the Mathematics Research Center under Contract No. DA-11-022-
ORD-2059.
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scheme described here, these numerical results show that, at least for the
test problems considered, the number of iterations required is small.

In a previous publication [14] a statement of the Kuhn-Tucker condi-
tions was given for the nonlinear state-constrained problem considered
here. A computational procedure for systems described by linear recursion
relations was also given based on a convex (or linear) programming com-
puter code. Numerical results described there show that this computational
procedure is efficient for typical linear systems. The method described in
the present paper takes advantage of this efficiency by solving a sequence
of such linear problems. From this point of view the method of the present
report may be thought of as Newton’s method (see, for example, [9]) with
a convex (or linear) programming problem solved at each iteration. The
use of various forms of Newton’s method for the numerical solution of opti-
mal control problems has been proposed in a number of earlier publications
[4], [6], [10], [12]. The two important differences between the method de-
scribed here and these earlier proposals are that (1) in the present method
global convergence is assured when a convexity and constraint set condition
are both satisfied, and (2) large changes in both the control and state
vectors may take place at each iteration until these vectors are close to their
limiting values, thereby greatly accelerating convergence during the early
states. The limiting convergence rate is quadratic, as expected in Newton’s
method.
Another way of looking at this method for nonlinear problems is that at

each iteration we get an admissible and optimal trajectory which satisfies
a linear recursion relation which differs to some extent from the true non-
linear recursion relation. At each iteration the amount by which the lineari-
zation is in error decreases, so that in the limit the trajectory obtained is
an optimal solution to the linearized problem obtained by linearizing about
the limiting trajectory. Since it is the recursion relation which is linearized,
the limiting trajectory is the optimal solution to a control problem described
by linear recursion relations. It therefore follows that for the class of dis-
crete nonlinear problems considered, the optimal solution has the properties
of a solution to a discrete problem with linear recursion relations.
The requirement that the state vectors satisfy specified constraints

usually increases the difficulty of the optimal control problem (see, for
example, [5] and [13, Chap. 6]). In the approach used here to solve the
state-constrained discrete problem, the convergence proof uses the fact
that the state vector at each discrete time belongs to a convex compact set.
In this sense then, the liability of the state-constrained problem has now
become an asset. The existence of state constraints also introduces a sym-
metry into the problem, so that the usual sharp distinction between the
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(independent) control vectors and (dependent) state vectors largely
disappears.
The method described here applies to a recursion relation in the form of

a system of inequalities, and might represent a finite difference approxima-
tion to a system of differential inequalities. By the use of a modified objec-
tive function, the problem usually considered corresponding to a system of
differential equations can be handled. The "classical" two-point boundary
value problem can also be solved in this fashion by allowing the control
vector to represent the error in the difference equations and minimizing
this error.

It should be emphasized that while the convexity assumption is needed
in order to prove convergence, the computational method can be applied
even when this assumption is not satisfied. In many such cases the iterative
method will still converge, and if so, the trajectory obtained will satisfy the
necessary conditions for an optimal trajectory. Furthermore, at each itera-
tion a linear constraint minimization problem with either a convex or linear
function is solved. Because of this, the method will almost lways converge
to a trajectory, which is at least local minimum of the objective function,
rther than n rbitmry sttionry trajectory. It should lso be mentioned
that the method considered here requires only the Jcobin mtrix (first
prtil derivatives) of the system equations, nd does not need the Hessian
matrix (second partial deriwtives) s required by some other compute-
tional schemes [6], [10], [12]. For mny nonlinear problems this may permit
gret reduction in the computation required.
While the iterative method described ws developed for problems rising

in control theory, it may lso be used to solve ny finite-dimensional con-
strained minimization problem of the general type considered. In this
respect the method is lso contribution to the solution of nonconvex
mthemticl programming problems.

2. Problem formulation. The discrete optimal control problem we shall
consider here is to determine m + 1 state vectors xi* E and m contr(l

vectors ui* E which satisfy (2.2), (2.3) and (2.4) and such that

(2.1) E z(x*, u*) min E (x, u)
i=0 i=l

for all vectors xi and u that satisfy the recursion relation

(2.2) x+l x f(x u), i O, 1, m 1,

with

(2.3) u UiEr, i= 0,1,...,m- 1,
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and

(2.4) x XcE", i= 0,1, ,m.

The subsets X and Ui are assumed to be compact and convex. We assume
that z is a convex function from each direct product X X U to E1. We
also assume that f is a function from each X X U to E". An additional
assumption on the differentiability and convexity of the components of f
will be needed later. It should be mentioned that the results obtained
actually hold (with obvious modification) for the more general case where
o and f may depend explicitly on the index i. When the discrete problem is
obtained from a continuous problem, this corresponds to the explicit
dependence of z and f on time. However, in order to avoid the complication
of additional subscripts we will limit consideration to the simpler case.
A discrete problem of this type may arise directly, or it may arise as a

finite difference approximation to a continuous system. For example,
suppose that in the original continuous system we wish to determine a
control u(t) with range U(t) for each [0, T], and a trajectory x(t)
with range X(t) for each [0, T], such that the functional

T

(2.5) Jo r(x(t), u(t) dt

is minimized, and x(t) and u(t) satisfy the system of differential equations

(2.6) 2 ](x, u), [0, T].

The sum (2.1) then represents the simplest approximation to the integral
(2.5), and the recursion relation (2.2) the simplest finite difference approxi-
mation to the system (2.6), if we let At T/m, At (r, and f At ].
The form of (2.2) may be retained even when more sophisticated finite
difference schemes are used to approximate (2.6), but the relationship
between f and ] will become more complicated. The use of a more accurate
implicit finite difference scheme when f is linear has been considered in
[14]. It should be emphasized that in this paper we solve the discrete
problem for a fixed value of m, and that we are interested in convergence
(for fixed m) to an exact solution of the nonlinear discrete problem. The
convergence to the solution of the continuous problem as m will not
be considered here.

In order to show convergence of the iterative procedure we will consider
the discrete system (2.1), (2.3) and (2.4), with (2.2) replaced by the
system of inequalities

(2.7) xi+l x <- f(x u), i O, 1, m 1.

Such a system of inequalities may arise as a discrete approximation to a
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system of differential inequalities of the form a5 <-](x, u). On the other
hand, if one really wants to solve (2.2), this is accomplished by obtaining
an optimum solution to (2.7) with an appropriately modified objective
function, as discussed at the end of this section.

In order to simplify notation we proceed as in [14], and denote
a specific control (u0’, ul u_l) and corresponding trajectory
(x0’, xl ,..., x by a single vector z E, where s m(r n) n.
Thus, a solution to the discrete system is specified by the vector

x0’ x(2.8 z X, Uo Ul ,’’" U,_

We will also denote by Z E the direct product of the sets X and U,
that

m--1

(e.) z II x x II c.
i=0 i=0

SO

Since the sets X and U are convex and compact, Z is also convex and
compact. We can now represent the objective by means of the function

m--1

(2.10) 4(z) a(z, ui).
i---O

It follows from our assumption concerning that (z) is convex ot Z.
Finally we represent the =mn equations (2.2) or inequalities (2.7) by
means of a function v(z) from E to EZ. We let

(2.11)
v.j fj(x, u) - x.

i= 0,1, rn 1, j- 1,...,n.

The equations (2.2) are then given by v(z)= O, and the inequalities
(2.7) by v(z) >= O. In this notation we can restate our problem (2.1),
(2.3), (2.4) and (2.7) as follows"

(2.12) (z*) min {4(z) z Z, v(z) >= 01.

Some remarks on the nature of the admissible set

s {zlz z,v(z) >= 01
are in order here. The set Z is by assumption convex and compact, and in
fact will usually be a polyhedral set in E". The admissible set corresponding
to the original discrete problem (2.2), (2.3) and (2.4) is given by

s {z z z, v(z) 0}.

The set $1 is convex only if v(z) is linear in z, that is, f(x, u) is linear in x
and u. If one or more components of f are nonlinear in x or u, the set $1 is
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nonconvex. For a general nonlinear function f(x, u), the set S is also non-
convex. The iterative procedure of the following sections can be applied to
such problems and will, in fact, often converge. However, there is no
guarantee in the case of a general nonlinear f that the procedure will
always converge. In order to prove convergence we require that each
component of v(z) be a convex function. It should be emphasized that
this is not the requirement which makes S a convex set (except in the
limiting case where v(z) is linear). The set S is convex if each component
of v(z) is a concave function. Thus the convergence argument holds for the
minimization of a convex function over a certain kind of nonconvex region.

If we actually want to satisfy (2.2) we must obtain a solution to the
problem (z*) minzesl (z); that is, we require v(z*) O. In order to
achieve this and still solve a problem in the form of (2.12) we let

(2.13) (z) (z) -t- a v,,

where a is a sufficiently large positive constant. Since each component
vi, is a convex function, (z) is a convex function. We then solve
min,es(z), which is in the form of (2.12). It is shown in the Appendix
that provided the constraint set S satisfies a certain condition (essentially
the same condition which insures convergence) there will always exist a
value of a such that any local minimum of $(z) for z S is also a local
minimum of (z) for z S
We are now able to describe the iterative method for solving the discrete

optimal control problem in terms of the (in general, nonconvex) mathe-
matical programming problem (2.12).

3. Linearized problem.. Let Z be a compact convex subset of E, and v(z)
be a function from Z to E with v C2(Z). We assume that for some
z Z we have v(z) > 0 and define a subset of E by

(3.1) S

Since z S, the set S is not empty. Also since S is a closed subset of Z
it is compact but, in general, not convex (see Fig. 1).

If we let Vz(y) be the X s Jacobian matrix of v evaluated at z y, we
can define for each fixed y C Z the linear function on Z,

(3.2) w(z, y) v(y) + v(y)[z y].

For each y Z we obtain a subset of E" given by

(3.3) W(y) {z w(z, y) >= 0}.
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v(z) =o
Fc. 1. The convex set Z and subset S

Now we consider the point-to-set mapping

(3.4) r :Z -+ Z,
given by

(3.5) ry W(y) 1Z.

This is illustrated in Fig. 2.
THEOREM 1. The set Fy is compact and convex. Furthermore, if each com-

ponent of v(z) is convex on Z, then for each y S,

(3.6) y ry S.

Proof. For each y, the set W(y) is the intersection of halfspaces, a
closed convex set. Therefore the intersection of W(y) and the compact
convex set Z is compact and convex. Next we note that since y S,
(3.7) w(y, y) v(y) >_>_>= O,
so that y W(y). Then since y Z, we have y Fy.
Furthermore, by the convexity of v(z), we have for any (y, z) S X S,

(3.8) v(z) >= v(y) q- Vz(y)[z y] w(z, y).

Then for each z W(y),

(3.9) v(z) >-_ w(z, y) >= O,
so that for every z W(y) Z we hve z S, or Fy S.
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FIG. 2. The convex subset ry C S for y C S

Directly from (3.6) we get the following.
COIOIIARY. Fy maps S onto S.
The constraints for the problem have now been defined in terms of

the convex subset Z and the function v(z). The objective function is given
by a function (z) from Z to E which is continuous and convex on Z.
The iterative procedure, starting with an initial point y0 S can now be
stated in a concise form. A sequence {y} is obtained which satisfies

(3.10) (y’+1) rain (z), j 0, 1, ....
Such a sequence is obtained by solving a well behaved convex constrained
minimization problem with z Fy’, to get the minimum (y+) at a

point y+ Fy. The convexity of the subset Fy and the function (z)
insure that a global minimum of (z) for z Fy is attained at z y+.

Suppose that the sequence {y} converges to a limit point y*. We would
like to be able to state that the point y* is the optimum solution to the
partially linearized problem obtained by linearizing the constraints
v(z) >= O, about z y*. That is, we want

(3.11) (y*) rain (z).
zE Fy*

In terms of the original discrete optimal control problem (2.1), (2.3),
(2.4) and (2.7), this is equivalent to the statement that the control
* * i- 0,1 m, give anu,, 0,1,...,m- 1, and tra,jectory x,
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optimal solution to the problem obtained by linearizing (2.7) about u*
and x*.

However, without some further assumption, the relationship (3.11) may
not hold. This is shown by the following simple two-dimensional example.
Let

(3.12) Z {z]0 _-< z _-< 1, 0 -< z2 _-< 1}

and

(3.13) v(z)

so that the feasible set S is given by

(3.14) S {z 4(zl 1/2)2 z2 =>_ 0, 0 =< zl -<_ 1, 0 =< z2 1}.

This is illustrated in Fig. 3. Also let (z) z. We have

(3.15) w(z, y) v(y) + 8(yl 1/2)(zl y) (z2 y.),

so that for yO (1, 0) we get

(3.16) ry

FIG. 3. Two-dimensional example
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The solution to (3.10) for j 0 is easily seen (from Fig. 3) to be yl _.
The sequence {y’} obtained in this way converges to y*= (1/2, 0), with
(y*) 1/2. But Fy* is the interval [0, 1] on the zl axis, so that
minzer. (z) 0, and is attained at z (0, 0) y*.

In order that the limit point y* always satisfy (3.11) it is sufficient that
the mapping Fy be continuous. The mapping Fy is continuous (both upper
and lower semicontinuous) if for any point yl

_
S and any point y2 S

in the neighborhood of yl, there is some point of Fy close to each poi_
of Fy2. The continuity of Fy follows from two assumptions we make con-
cerning the set S.
(1) For each y S, the Jacobian matrix vz(y) has full row rank, that is,
rank -< s.
(2) For each y S, the convex set Fy contains interior points.
These two assumptions are essentially the Kuhn-Tucker constraint qualifi-
cation for the set S (see, for example, [2]). The proof that (1) and (2)
imply the continuity of Fy is given in the Appendix. A slightly stronger
assumption than (2), which however involves only the rank of an aug-
mented Jacobian matrix, is also given there.
The difficulty in the previous two-dimensional example occurs because

the assumption (2) above is not stisfied. In particular, for y* (1/2, 0),
Fy* is just the interval [0, 1]. As a result the mapping Fy is not continuous
in the neighborhood of y*.
The first assumption above is always stisfied when the fuction v(z)

is defined by (2.11), as shown in the following.
LEMMA. If V(Z) corresponds to the discrete recursion relation, as given by

(2.11), then assumption 1 is satisfied.
Proof. Directly from (2.11) we hve that

(3.17) 0vi,. 0,
DXi+,p

Pj,

for i 0, 1, m 1;j 1, n. Therefore the Jacobian mtrix vz
contains a square (mn (mn) lower triangular matrix with elements -1
along its diagonal. Since such a matrix is nonsingular and since v has mn
rows, v hs full row rank.

4. Convergence of iterative procedure. The iterative procedure will now
be considered in more detail. We again consider the convex function from
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Z to E1, with CI(Z). Since S is compact, (z) is bounded and attains
its minimum for z S. In particular, let

(4.1) / min $(z).
z6Z

For each y S, the set ry is compact so that the minimum of $(z) for
z ry is attained. We let

(4.2) (y) mine(z).
zEry

We now show that because of the continuity of Fy, the function ,I,(y) is
continuous for y E S.
LEMMA. y is continuous for y S.
Proof. For yE S, let (y) be attained at zE Fy, that is

(yI) (z). Now choose y2 E S close to y, and let (y2) be attained at
z so that (y2) (z) Suppose (z) < (z1) Now by the continuity of
Fy we can choose 1 E ry close to z. Then by the continuity of (z) we
have (2) close to (z). But since (z) -<_ (z) for every z E F91, we have

(4.3) (Z2) (Z1) (1),

so that (z1) is close to (z2).
A similar argument holds for 4(z1) -< 4(z).
Starting with y0 S we generate a sequence of vectors {y’} as follows:

(4.4) 4(y-+1) rain (z), j 0, 1, ....
zEFy]

Note that if Z is a polyhedral set then ry is a polyhedral set determined
by specified linear inequalities. Furthermore, (z) is a convex function, so
that for each y" we solve a straightforward convex programming problem
with linear constraints.
THEOREM 2. Every vector of the sequence {yJ} is in S. The corresponding

sequence of values /(y’)} is monotonically decreasing. The sequence {y}
contains a convergent subsequence converging to a point y* S such that

(4.5) , <= 4(y*) <= (y), j 0, 1,

and

(4.6) (y*) min (z).
zEFY*

Proof. By Theorem 1, we have yi E Fyi c S, so that each y" is in S.
Also since yi pyi we must have

(4.7) 4(yi+1) min (z) =< (y),
zEryi

so that {(y)} is monotonically decreasing.
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Since S is bounded the sequence {y’} contains a convergent subsequence.
Let y* be the limit point of such a convergent subsequence. Since S is com-
pact, y* S, and (y*) > . Furthermore, from the monotonicity of the
sequence {(y)} the relation (4.5) must hold.
To demonstrate (4.6), we observe that since y* S, we have y* ry*,

so that

(4.8) T(y*) rain 4)(z) -<_ 4)(Y*).
z Fy*

Now suppose that ,I (y*) < (y*). Then by the continuity of I, (y) we can
pick/ sufficiently large so that I,(y) < (y*). But from (4.2) and (4.4)
we have (y+)= T(y), so that (y+)< (y*), which contradicts
(4.5). Therefore we must have I(y*) (y*).
TIEOgEM 3. Let y* be a limit point of {y’}. Then y* is the global minimum

of the partially linearized problem aboul the point y*. Furthermore, the opti-
malily conditions (the Kuhn-Tucker necessary conditions) which must be
satisfied at a global minimum of the problem (2.12) are, in fact, satisfied at y*.

Proof. The set ry* is the intersection of Z and the convex set W(y*)
obtained by linearizing the constraints v(z) >= O, about z y*. It follows
immediately from (4.6) that y* is a global optimum solution to this partially
linearized problem.
As mentioned in the previous section, the assumptions (1) and (2) on

the set S are equivalent to the Kuhn-Tucker constraint qualification. It is
shown in their original paper [11] that with this qualification the optimum
solution z* to a general nonlinear problem has the property that the gradient
V(z*) must belong to the convex cone of inward normals to the active
constraints at z*. The solution y* to the partially linearized problem about
y* will, of course, also have this property. Therefore, V(y*) belongs to
the convex cone of inward normals to the active constraints at y*, i.e., the
Kuhn-Tucker necessary conditions for a global minimum are satisfied
at y*.

5. Computational solution. The computational solution of the nonlinear
discrete optimal control problem (2.1)-(2.4) is considered in this section.
We will assume that the convex compact sets U and X are convex poly-
topes defined by specified linear inequalities (see Appendix). In order to
apply the computational method we need only make the additiona,1 assump-
tion that the functions z(x, u) and f(x, u) are of class C on each X X U.
However, in order to insure the validity of the convergence proof (Theorem
2) we must make an additional assumption concerning f and an assumption
about the linear inequalities defining the X and U. We assume that each
component f. of f, j 1, n, is either convex or concave on X X Ui.
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Fori= 0,1,...,rn- landj 1,...,nwelet, L(x, u) + x, x+,,
(5.1) f,. for f;. convex on X X U,

v,i \-0,. for f concave on X X U.
The function v(z), with components v,i, is thus a convex function on Z.
Furthermore, the equations (2.2) are now equivalent to v(z) O.
As discussed in the Appendix the linear inequalities which define the
X and U are specified in terms of the vector z by a’z- b O,
i 1, k, giving the polyhedral set Z. We make the following assump-
tion about these linear inequalities. Let S be a boundary point of Z,
i.e., v() =0, and a’-b=O, i= 1,...,. Then the (l+) Xs
matrix consisting of Vz() augmented by the rows a(, i 1, , is of
full row rank (=/+ ). According to the Lemma at the end of 3, Vz(y)
is always of full row rank, so this assumption is essentially a condition on
the vectors a. As shown in the Appendix it follows from the full rank
condition that ry is a continuous mapping. The convergence proof of
Theorem 2 is applicable because v(z) is convex and ry is continuous.
At each iteration we wish to solve a mathematical programming problem

of the form,

(5.2) min {(z) a(z b O, i 1, ; w(z, y) 0}.

This is a linear constraint problem with m(r-t-n) A-n variables and
k -4- constraints. For small problems a direct computational solution of
(5.2) causes no difficulty. In many practical cases however, the number of
state variables is greater than the number of control variables, i.e., r < n.
In such a case there is a considerable computational advantage in treating
the linearized problem (5.2) as the linear problem was treated in [14]. In
effect, the linear relations w(z, y) 0 are used to solve explicitly for the
vectors xi, i 1, m, in terms of x0 and the ui, i 0, 1, m 1.
Substitution for the vectors xi in (z) and the inequalities a’z- b >= 0
reduces the original problem (5.2) to one in only mr -4-n variables. This
reduced problem may then be solved by an appropriate linear constraint
method which takes advantage of the particular form of . For example, if

is quadratic, a quadratic programming method may be used.
In the important case where is linear, a further efficiency is made

possible by treating the reduced problem as the dual problem, and solving
the corresponding primal linear programming problem. This permits us to
take advantage of the fact that the variables of the reduced problem (the
control variables) are not required to be nonnegative, and that there are
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more inequality constraints than variables. The corresponding primal
problem consists of mr- n equations in mn-- nonnegative variables.
The numerical examples discussed below are of this type.
The use of the linear equality relations w(z, y) 0 has the additional

computational advantage that no modification of the true objective function
is required. On the other hand possible theoretical difSculty may arise
since even with v(z) convex it is usually not true that y" Fy when Fy is
determined by w(z, y) O. Thus the monotone behavior of (y’) is not
gua,ranteed. However, no such difSculty has been observed in the actual
numerical clcultions.

In order to illustrate the application of the iterative method we will.
discuss two numerical solutions to a nonlinear problem. The problem con-
sidered is a discrete approximation to the following continuous scalr
(n 1) problem:

rain Jo u dt,

subject to 2 f(x, u), lu(t)l _-< 1, for [0, 1], and x(0) 1, x(1) 1/2,
where f(x,u)=-x--x2- u(t). An additional state constraint is
imposed in the second example. The initial trajectory used to start the
iteration was x(t) 1, for [0, 1].
For these examples the simplest (forward) finite difference scheme was

used, namely,

x+ x Af(x u), i O, 1, m 1,

tf(x u) + x x+ ( /t)x +/t(x)
(5.4) - Atu x+ i O, 1, m 1.

For x known, the linearized system which must be satisfied by + and
u+ is

X+ +w + + [1 + At(2x y)]i + AtUi+1 At(XiJ)
(5.5)

=0, i=0,1,...,m-- 1.

This system is solved using the specified initial value for x(0) to give the
x]+ explicitly as linear functions of the u]+,

U
i+1

U0
j+(5.6) x+ d+( -, ), i 1, m.

The following linear programming problem (in the dual form) is then
solved t each iteration to give the new optimal control u+,

(5.3)

so that
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i-O, 1,...,m-- 1"

mind’lull--1 <_u <_ 1, i-O, 1,...,m-- 1;
u ,=0

(5.7)
1/2 <= &+(u,,-, u-, uo) <= 1/21"

The corresponding state trajectory x+1, i 1, ..., m, is then given by
(5.6).
The iteration was started with x= 1, i O, 1,..., m, and a value

of m 20 (At 0.05) was used. The results for the first numerical.
example are shown in Figs. 4 and 5. Convergence was achieved (within the
desired accuracy) in three iterations. However, the difference between x
and x* x is too small to be shown graphically (Fig. 4). Note the rapid
convergence even though the initial guess, x, for the traiectory was very
poor and did not even satisfy the terminal boundary condition. The
corresponding optimal control u* is shown n Fig. 5. The monotone be-
havior of the function value is verified by the successive values of

=-01 u’. These were 1 -0.286, 2 -0.946, and 3 -0.950.

o .o .o .7oTIME
FG. 4. Initial and optimal state trajectories for nonlinear numerical example
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--1-

TIME 1.0

FIG. 5. Optimal control for nonlinear numerical example

For the second example the state constraint, x(1/2) =< -1/2, was imposed.
This o course eliminates the solution shown in Fig. 4. The sequence of 5
state trajectories obtained is shown in Fig. 6. The corresponding function
values were 1= 2.792, 2__-0.144, 3__-0.656, 4=-0.972, and
5= -1.008. The contro! from the first iteration u and the optimal
control u* are shown in Fig. 7. All of the state trajectories (except for the
initial guess) are seen to satisfy the state constraints. It is interesting to
observe that the method not only concerges to a different trajectory
but that the added state constraint is not active for this limit trajectory.
Thus the state constraint forces the solution away from its previous se-

quence and allows it to converge to a different local minimum. On the other
hand, in some other nonlinear state-constrained cases which have been
computed by this method, a state inequality constraint of the type imposed
here has remained active for the limiting trajectory. Finally, it slould be
noted that for both cases the limiting control has the properties of an. opti-
mal control for a discrete linear problem, that is, n( 1) switch..gs and
m n( 19) values of u* 1.

Appendix. In this Appendix we prove that the assumptions (1) and (2)
of 3 imply the continuity of Fy. We also show the validity of the modified
objective function (2.13).
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TIME
FIG. 6. State trajectories for nonlinear example with added state constraint

1.0

We first state a condition on the rank of an augmented Jacobian matrix
which insures the satisfaction of the assumption (2) of 3. In order to
state this condition we must have an explicit statement of the constraints
which define the compact set Z.
We will assume that Z is the polyhedral set determined by the system of

/c linear inequalities

(A.1) ai z bi O, i= 1,...,

or

(A.2) Z= {zlA’z-bO},
where A is an s X matrix with specified columns ai, and b Ek is
specified. Let denote a boundary point of Z. Then we must have at least
one active constraint at 5, that is, ai’ b. 0 or at least one value of i.
We will denote by fi (z) the matrix whose columns represent the active
constraints at z. Similarly, let l’(z) represent the Jacobian matrix of the
vector (z) which contains all components of v(z) for which v(z) n
That is, (z) 0, and ’(z) z(z).
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--1-

TIME

FIG. 7. Controls for nonlinear example with added state constraint

We will denote the boundary points of S by aS. It follows that for every
y OS, the matrix

(A.3) /(y) [?(y) ft.(y)]

is defined and has at least, one column. We will say that/}(y) satisfies the
full rant condition at y OS if the columns of/}(y) are linearly indepen-
dent.
Assumption (1) implies that /(y) satisfies the full rank condition at

every y OS which is also interior to Z. This is true because for such a
point fi (y) 0, and (y) certainly has full column rank since it consists
of selected columns of v’. Furthermore, assumption (2) is implied by the
full rank condition on/, as shown by the following.
LEMMA. Let [(y) satisfy the full rank condition for every y OS. Then

for each y S, the convex set Fy contains interior points.
Proof. First suppose S is an interior point of S. Since S Z, is an

interior point of Z. Furthermore, w(, 9) v()) > 0, so that is an
interior point of W(). Therefore is an interior point of
Now suppose OS. The set F is the polyhedral set determined by the

/c q- linear inequalities

(A.4) r {z]w(z, ) >= 0, A’z- b >- 0}.
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Now consider the point z . We may assume without loss of generality
that

i= 1,...,<_l,(A.5) w,(, ) v,() => , i + , -.., ,
,_ t-0, i- 1,.-.,]=< /,(A.6) ay--bi>__e, i= ]+ 1,...,k,

for some e > 0. Then the columns of V() are the gradient vectors Vvi(),
i 1, ..., , and the columns of fi_() are the vectors a, i 1, ..., ].
Since /() satisfies the full rank condition, its columns are linearly in-
dependent and there exists no vector r Ek+t, except r 0, such that
B()r O. Then by a variation on the Farkas lemma (see [8, Theorem 2.9,
p. 48]), there exists a vector E such that

(A.7) ’/() > 0.

Now consider the point

(A.8) 9 + ,
where > 0 is chosen sufficiently small so that

’Vvi() < e, i -t- 1,..., l,
(A.9) __,

za < , i= /+ 1, ..-,k.

Now consider w(, ), i 1, ..., l, and a(.- b, i 1, ..., k. From
(A.5), (A.6), (A.7) and (A.8) we have w(, ) > 0, i 1, , and
a b > 0, i 1, ...,/. From (A.5), (A.6), (A.8) and (A.9) we have
w(,) >0, i= ,+1,...,l, and a’ -b>0, i= /+ 1,...,k.
Therefore, is interior to every constraint of F9 and is an interior point of

TnnORM 4. The mappin9 Fy is continuous for y S.
Proof. Because v(z) C on the compact set Z a uniform bound , exists

such that for any (z, yl, y) S X S X S,

(A.10) ]]w(z, yi) w(z, y2)]] __< ,y[ yl

Also since v(y) is of rank for y S, the symmetric matrix vv’ is positive
definite at every point of S. Therefore a uniform bound/3 exists such that

for every y S.
Suppose we are given yX S and z I’y1. Then given any e > 0, we
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now show that we can choose > 0 so that, for each y2 S with
I[Y Y2[I --< t, we can find z Fy such that l[z zll __< .

If z Fy, the theorem is true with z z. Now suppose z Fy, that
is, at least one component of w(z1, y2) is negative. Without loss of generality
we assume that wi(z, y2) < O, for i 1,..., k _-< l, and w(z y)=>-0,
for i= ]c+l,..-,l. Since z Fy1, we have wi(z,y) >= O, for
i= 1,...,1. Let E be the vector with i= wi(z1,y) <0,
i 1, ...,k, and= 0, i /c+ 1, ,1. Then

y y(A.12) [l < Iwi(z, )-w(z, )[, i= 1,...,1,

so that

y ylIluII < I[w(z1, 1) )ll < ll(A.13)

where the last inequality follows from (A.10).
We first assume z is an interior point of Z. Then there is an e with

0 < el <= e, such that z Z for z zlll {1. Choose el/fl, and let
y be any point in S with Ily y] . Now choose as above, and let

(h.14) z z (y)v, (y)]-.

From (3.2) we have

w(z, y:) v(y) + v(y)[z1- y]- (y ) (y)[(y)v (y)]-1
(A.15)

W(Z1, ye) O,

so that z W(y). Furthermore from (A.14) and (A.11) we have

(A.16) ]z:- z]] ’[vz(y)v,’(y)]- .
Since [[y-y] e/, we get from (A.16) and (A.13) that

But this shows that z Z, and therefore z ry. Finally since e N e, we

IIz  111 shown.
The other possibility we must consider is that z Yy is a boundary

point of Z. Since Yy has inerior points and is a convex set there are interior
points in the neighborhood of every point of ry (see, for example, [7]).
In particular there exist ca, 0 < ea N e/2, and z Yy, such th.a
z- ?l[ /2 nd IIz- z[[ implies that z is interior to Z. Now

choose e/, and replace z by z in the previous argument. This gives
a point z ry" with IIz z[ a /2. It follows that Ilz zlll .
We now prove the statement abou the modified objective function

(2.13) made at the end of }2. We define the s X (1 + ) augmented
Jaeobian matrix B(y) [v’(y) (y)]. Let (z) be as in (2.13).
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THEOREM 5. Let B(y) have full column rank for every y S. Then a value
of a exists such that every local solution of
(A.17) rain/(z) [z Z, v(z) => 0}

is also a local solution of
(A.18) min {(z) z Z, v(z) 0}.

Proof. Since C and B(y) has full column rank on the compact set
S, there are constants al and el such that for any y S,

(A.19) IIv(y)[I -_< al,

and

(A.20) ]lB(y)rII >= elllr]l, r E+.
We choose a > a/el. Let y* be a local minimum of (A.17). Because of
the rank condition on B(y), the necessary Kuhn-Tucker conditions are
satisfied at y*. The relevant conditions are that there exist vectors p _>- 0
and q 0 such that

(A.21) v,’(y*)p + (y*)q V(y*) V(y*) + a Vv,(y*)
i=l

(A.22) v(y*)pi O, i 1, 1.

We let r’ (pj a, p a, qj, ..., q), and write (A.21) as

(A.23) B(y*)r V(y*).

From (A.19) and (A.20) it follows that

(A.24)

or Irll /,. But this requires I- PI /1/1 < O/, i-- 1,..., l,
or pi>0, i= 1,-..,1. Then from (A.22) we must have v(y*) =0,
i 1, l, so that y* is a feasible solution of (A.18).
Now suppose y* is not a local minimum of (A.18). Then for some point

y { Z, arbitrarily close to y, we have v(y1) 0 and (yl)< (y.).
But then (yl) < $(y.), so that y* is not a local minimum of (A.17).
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STEEPEST DESCENT WITH INEQUALITY CONSTRAINTS ON
THE CONTROL VARIABLES*

RINALDO F. VACHINO?
A nurnber of Mgorithms have been developed in the lust few years for the

iterative solution of variational problems. The methods of Bryson and
Denham [2] and of Kelley et al. [12] have been applied by them and other
authors to problems whose control and state variables are subject to
inequMity contraints.
The present study deals with a particular class of variational problems,

those problems characterized by closed control function space and further-
more those problems whose control variables that are subject to inequality
constraints appear linearly. This study presents an adaptation of Bryson
and Denham’s method of steepest descent to solve this class of problems.
Other authors have proposed similar schemes for coping with this class of
problems; see [5], [9], and [10].

Introduction. Consider a class of problems whose control vector variable,

u(t) Iv(t) z(t)],

is an m-dimensional vector; v(t) is a k-dimensional vector of continuous
functions, such that v(t) V, where V is an open set of a Euclidean space
Ek; and z(t) is an (m k)-dimensionM vector, each of whose components
is subject to a two-sided constraint of the type

(1) Iz(t)l-< 1, i 1, ..., m-
that is, z(t) Z, where Z is a closed, bounded set of an (m ])-dimen-
sional Euclidean space, the unit hypercube. Thus u(t) U V >< Z
for all [to, s]. Consider, furthermore, the class of problems whose
system equation has the form

(2) f(x, u) (x, v) + g(x, v)z,

where the vector-valued function k and the matrix g are assumed to be
continuous and sufficiently differentiable with respect to all their arguments.
The vector-valued function f is assumed to have finite discontinuities at
those points where u(t) is discontinuous, and to possess left- and right-hand
derivatives with respect to x and u at each discontinuity.
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Force Academy, Colorado, April 15, 1965.

The Frank J. Seiler Research Laboratory, Office of Aerospace Research, United
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The preceding equation has a wide variety of linear and nonlinear
problems as special eases; it differs from the more general problem formula-
tion by the fact that the control variables subject to inequality constraints
appear linearly.

The Mayer problem.. The class of problems discussed in the preceding
section can be formulated as follows.
Choose the m-dimensional control vector function u(t) from a class of
piecewise continuous functions of time such that lu(t)l <__ 1, for
j /c + 1,..., m, which takes the system described by the vector-
valued differential equation

(3) f(x, u) 2 0

from its initial state x0 at time/0, to its intended final state, such that it
satisfies the vector-valued terminal condition

(4)

and minimizes the cost index

[x(ts), ts] 0

(5) [x(t), t].

The time t.f is chosen as the first time that one of the terminal conditions,
hereafter referred to as the stopping condition,

() a[x(t), t] 0,

is satisfied.
Using the theory of the maximum principle, one can formulate a Hamil-

tonian function,

(7) H[p(t), x(l), u(t)] pif(x,u),i
i=l

which for autonomous systems can be shown to be stationary if its total
derivative vanishes,

dH OH dp OH dx OH du
(8)

dt =10p--- d--{ + + O.
= Ox dt OuJ dt

The first two terms can be made to vanish by choosing

(9) dx OH
i 1, ..., n,

dt Opt’

(10) dp OH
i 1, n,

dt Ox

which are the classical canonical equations. The remaining terms of (8)
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can be rewritten as

(11)
dt

H, -// O.

The required differentiability of H is assured by the choice of the functions
p according to (10), whose solutions possess continuous time derivatives
everywhere, except at the points of discontinuity of u(t), and by the
definition of system (3).
Thus if H is to be an extremal with respect to u(t), its variation must

vanish with respect to all possible variations in u(t) from the optimum
function u(t). One can write the condition

(12) H(p, x, u) >- H(p, x, u),

and the optimum control can be defined as

(13) u(t) arg max H(p, x, u),
uEU

if and only if

H (p, x, art max H(p, x, u) max H(p, x, u).
uEU uEU

Returning to the specific formulation appearing on the right-hand side
of (7) one can show that the components of z(t) take on only their extreme
values; that is, they exhibit a bang-bang behavior and have a finite number
of finite discontinuities where these control variables switch from one

extreme value to the other one. Forming a Hamiltonian with the differential
condition (2),

(14) H(p, x, v, z) prk(x, v) + prg(x, v)z,

it, can be verified that the optimum choice of z stems from

(15) H(p, x, v z > H(p, x, v, z)

and that this condition is fulfilled if one maximizes

(16) (p, e(x, v)z) (g(x, v)p, z),

for all [/0, s] by choosing

(17) z signum [gr (x, v)p].

Thus the components of z take on only their extreme values; each compo-
nent is piecewise constant and changes value when the corosponding com-

ponent of the argument of (17) changes sign. This condition guarantees that
systems describable by differential equations linear in the control variables
that are subject to ineqality constraints can be described during succeeding
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subintervals of time by a different system of differential equations. This con-
dition fails, however, in those cases when the argument of (17) vanishes for
finite intervals of time, thus giving rise to singular subarcs.

Reformulated problem. Let N be the total number of distinct disconti-
nuities in all of the components of z(t) in (0,tl), and let t= t.,
s 1, N, be the ordered times at which the N discontinuities occur.
For each subinterval [ts-1, ts], s 1, ..., N + 1, where tl l+1, the
vector function z(t) is constant, as has been determined from an application
of Pontryagin’s maximum principle. Thus one can consider the system to
be described by different sets of differential equations, each set corre-
spondin_g to a successive interval of time; for s 1, N + 1,

(18) 2 f(x, u), l,-1 -<_ -<_ t,.

Because of the conditions stipulated on f(x, u), one concludes that
during each subinterval the right-hand side of (18) is a continuous and
continuously differentiable function of the state and the control. Given a
control vector u(t), one can prove the existence and uniqueness of a solution
x(t) of (18) which is absolutely continuous and such that 2 fi(x) is
valid everywhere in the interval Its-1, t] and is subject to the initial condi-
tions x (t_) at time ts-a if the function fi (x) is continuous and Lipschitzian.
The solution for the larger interval [to, t]] can be obtained by piecing
together the solution for each subarc, with the initial state for each subarc
corresponding to the terminal state of the preceding subarc.
The solution x(t) for each subarc can also be shown to be a continuous

and a continuously differentiable function of the initial state and the
initial time at t_, if the right-hand side of (18) is continuous and Lip-
schitzian. The state vector at t_l is similarly continuously dependent and
continuously differentiable with respect to the preceding corner time
t._:. By an inductive application of the results of basic theorems of differen-
tial equations, as given in [4], one can show that the state of the system
at any time is coninuous and continuously differentiable function of
every corner time that precedes it, as well as being a continuous function
of time for all [/0, t).

The steepest descent algorithm. The generalization of Bryson and Den-
ham’s method of steepest descent to problems with discontinuous optimum
solutions consists of treating the differential equations of the system as a
succession of different systems of equations, one for each succeeding
interval of time.
The succession of system equations (18) of the preceding section can be

expressed by using Heaviside step functions as
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N+I

(19) 2 _,fi(x, u)[h(t- t_l) h(t- t,)].

The variation of this differential equation relates the variation of the
rate of change of the state of the system with the variation of the star,e, the
control, and the switching times of the system.
The switching times are assumed to be variable funet,ions of time:

t. t(l), s 1, N. The effect of the variation of the corner time on
the variation of the step function h(t t,) can be evaluated by considering
the definition of the derivative of a step function and by introducing the
variation of the corner times. For each corner time one obtains the varia-
tional relation

(20) (h(t- t.) -A(t- L)6t, .s 1,... ,N,

where A(t t,) is a delta function occurring at
Given a nominal choice of the control function v(t) and a choice of the

switching times, one obtains a trajectory in. state space corresponding to
it. If the initial control vector and the initial switching times are allowed
to vary by a small amount, one obtains a corresponding variation in the
state trajectory. The equation of variation can be obtained as the principal
part of the Taylor series expansion of (19),

v+
62(t) _, [F.(t)6x(t) -t- G,(t)6v(t)][h(t t,_) h(t t.)]

(21) N+I

+ .,f,(x, u)[A(t- t,)t.- A(t-

where the matrices

(22) F.
iOx

fori, j 1,...,n, andr 1,...

LOv’j

1.
Equation (21) can be solved for the variation ix(t) in terms of the

variations v(t) and 6h, 5t this solution is readily possible by using
the system of equations adjoint to (21),

N+I

(23)

where X(t) is an n-dimensional vector of adjoint variables. If (21) is pre-
multiplied by Xr(t) and (23) is premultiplied by 6x(l) and then trans-
posed, the sum of these two products can be integrated to give
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N+I fts=l

(24)
NI t+ ()A(x, u)[( t,)t- ( t_)t._] d.
sl ts_

The timer product of the adjoint vector nd the variation of the state
vector at tx can be rearranged to show the explicit dependence on the
variation of the final time,

(25)
N+I

x’(t:)x(t:)
s=l ts_

hrL 6w dr + ),r(ts)A+l(ts)ts

where

() L, [G

(27) G i= 1,...
Lavj

(2s) q [(L f+)(t )],

(29) 5w [v... vl... t].

,n, j= 1,-..,

s 1, ...,N, i= 1,... ,n,

The matrix C., accounts for the influence of the variation of the corner times.
If there were no discontinuities in the functio f(x, u), then C would
vanish and the total variation of the state vector at the terminal time
would depend only on the variation v(t) and the variation of the terminal
time ts, as obtained in [2]. The resulting variation w(t) which arises
from the last equation involves the variation of time-dependent functions
v (t), v(t), as well as variations of time-invariant quantities
t, t. The latter can be considered to be constant functions of time,
tl(t), tN(t), and their variation can be obtained iteratively in the
same manner as the variation of the continuous control vector.

The recursive variation. The Mayer problem that has been formulated
deals with cost index and terminal conditions that are continuous point
functions of the state and time of the system; hence these point functions
are continuous functions of all switching times. Any function of the terminal
state and of the terminal time will have a variation which, as a first ap-
proximation, can be represented as a linear combination of the variation
of the state vector and of the tern’final time. Choosing the terminal condi-
tions on the adjoint vector

b
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0"

s
(31) h,(ts) -(32) ha(t:) -one can relate the total variations dq, d, and dft to (25), where in each
case the adjoint vector is a solution of (23) subject to one of the conditions
(30), (31), or (32) with the corresponding subscript.
From this point on, the derivation of the recursive variation tiw follows

that outlined in the original work of Bryson and Denham [2]. In its final
form the variation of the control w is obtained as

(33)

where

N+I

-4- E A-1LsT(t)[Xu(/) h,,a(t)I-, I.(R)]

N+I

Equation (33) gives the recursive variation of the generalized control
that produces the desired variation in the cost index and the terminal
conditions; this expression is identical in form to the variation developed
by Bryson and Denham. Hence in the same formalism developed by these
authors, one can solve for the optimum control of a different class of control
problems, and obtain iterative corrections to the choice of initial control
vectors and an iterative correction to the initial choice of switching times.
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Numerical example. In this section the method of steepest descent out-
lined in the preceding sections is applied to solve a problem with multiple
subarcs. The specific problem solved is one for which it is possible to deter-
mine a priori the number of subarcs that compose the optimum solution.
The problem that has been chosen for application of this method is one
that has appeared in the literature numerous times; perhaps the most com-
plete theoretical treatment of this problem is tha.t of Leitmann [13], who
analyzed it by applying classical techniques of the calculus of variations
and thus deduced the nature of the optimal control.

The problem. The problem can be formulated as that of transferring a
point mass a given distance over a flat surface, under the influence of a
constant gravitational field, and in the absence of atmospheric and other
disturbaaces. The obiect is to seek the minimum fuel trajectory traversed
by the point mass, from all the possible thrust profiles that will cause the
point mass to execute the desired change of state.
The system is the point mass, whose state is described by the system of

simultaneous differential equations

(40) f(x, u) u

224 (xul/x) sin u2- g

where the state vector x(t) is

x(t

the control vector u(t) is

horizontal displacement: ft
verticle displacement: ft
horizontal velocity: fps
vertical velocity: fps
mass: slugs

Fo -oS thrust magnitude control 7u(t) Lug(t)] [.direction of thrust from the horizontal_’

c effective exhaust velocity 10,000 fps,

fuel rate 0.0622 slugs/sec,

g gravitational acceleration 5.27 ft/see2.

The thrust acting on the point mass is defined as the product c. In the
presence of an inequality constraint on the fuel flow rate of the type
0 =< _-< m, one can redefine the fuel flow rate as m ul(t), where
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0 <= ul(t) =< 1. The case where u(t) =- 1 corresponds to the case of con-
tiauous constant thrust; for the present cse u(t) 1.
The initial state and the desired terminal state of the system are, respec-

tively,

0

(41) x(to) ! and x(ts)

4.2
The final mass is unspecified and is the object of the maximization process.
Thus the cost index to be minimized is

(42) 47.2 xS(tl);
the terminal constraints are

(43)

XI/1 [5000 xl(f)] 0,

: [--X(t)] 0,

[--X(t)] 0;

and the stopping condition is

(44) t [--x2(ts)] 0.

For this problem one can show that the optimum thrust profile is com-
posed of three subarcs; hence the influence of two discontinuities in the
thrust must be calculated. The times when each of these discontinuities
occurs in the initial thrust profile are to be assumed, as well as the direction
of the thrust with respect to the horizontal as a function of time.

Application of the method of steepest descent. The times tl and t are now
assumed for the times at which these discontinuities occur in the com-
ponent ul(t) of the control vector,

I10 if o=<t--<tl,
(45) ul(l) if t t_<_ t2,

1 if t2<t<-t.

At the times t and t the system equations change because of the change
in the control function ui(t). The system equation given in (40) can be
rewritten using Heaviside step functions, for each of the subintervals
indicated in (45). See Fig. 1. The rewritten system equation is

(46)
2 f[1 h(t- t)]--f[h(t- tl) h(t- t)]

+ f[(t- :) h(t- t:)],
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(t)

fl (x, u)

t
O

f3 (x, u)

t
1

t
2

t
3

FIG. 1. System equations

which yields the equation of variation,

ia? fl[1 h(t- :1)] + f2[h(t- h) h(!- t2)]

(47) -t- t3fa[h(l

+ (f f)(t )t + f(t )t.

This vector equation can be rewritten in component form:

21 x,
2 x4,

]
c (cos u c-t- : )A(t- h)atl (cos u2)5.(t

c
(48) + i (cos u:)zX(t t3)ta,
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Written in matrix form these equations of variation and their adjoints
become

(49)

(50)

where 8wr [Su 8tl 8t],

62 Fax + Law +
k -FrX,

0 1 0 0
0 0 1 0

0 0 0 0 -cUcosu
(x)

0 0 0
(x)

0 0 0 0

0 0
0 0

--cul (sin us) cN
V- (cosx (cos u)zx(t- h) -c

U2 C (sin"- (COS )(t tl) (sin ue)A(t re)

0 --A(t- tl) A(t- t)

The equations of variation and their adjoints have the property that

f0(51)

from which one can obtain the variation in the cost index, the terminal
and the stopping condition by the appropriate choice of the terminal
conditions on the adjoint variables at t; as

X(R) 0 0 0 0 1
Xt --1 0 0 0 0
|X 0 0 --1 0 0
[X 0 0 0 --1 0
[_Xa 0 --1 0 0 0

The terminal conditions at ta on the adjoint variables and the initial condi-
tions on the state variables at to comprise the total number of conditions
that are necessary in order to apply the method of steepest descent.

Digital computer results. The initial control function u(t) that was
chosen to initiate the iteration process is shown in Fig. 2. The times t
and t: associated with this curve were chosen arbitrarily; the curve itself
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was chosen to be a ramp function

(52) u(t) 1 -{- 0.005t,

where the units of u are in radins. The positive zero intercept was chose
to insure that every point in the trajectory prior to the stisfaction of the
stopping condition has a positive altitude. This was a necessary precautions.
motivated by the fact that the stopping condition w’,s chosen as the first
inst,nt in time when the vertical displacement of the trajectory becomes
negtive, that is, when the point mass reaches the ground again, after
takeoff.

Fig. 2 and Fig. 3 show the trajectories in control and state space, respec-
tively, ,ut two stages of the itertio process. Tnblc 1 gives the numcricfl
vnlue of the significant variables of the problem as a fumtiou of the number
of iterations. It can be seen that the initial choice of u(t) caused the poin
mass to translate horizontally by -4141.3 ft, with a resultant error along
the ground of 9141.3 ft and with terminal horizontal and vertical velocities
of -330.4 fps and -167.7 fps, respectively. The data tabulated in Table
1 indicate the errors in the terminul conditions; as (43) indicutes, the
terminal velocities are the negatives of the terminal velocity errors, and the
distance error equals the desired impact distance, 5000 ft, minus the actual
impact distance.

Variation in the number of disconginuities. In the problem that has been
solved in the preceding sections one could determine a priori the exact
number of discontinuities present in the optimum control. Hence in the
pplication of the steepest descent algorithm it is only necessary to deter-
mine their optimum location. Because in general it is not possible to apply
analytical methods to determine the number of discontinuities for all
problems of this type, one is forced to assume certain number of them.
The recursive vari,tion.s must then correct this number of corner times, as
well as to vry the time of their occurrence. Evea though the present
problem is sufficiently simple so theft the composition of its optimum
trujectory can be determined t priori, it is interesting to ttempt to solve
it by assumig an initial ugle of thrust with too many or too few subarcs.

Too few subarcs. Fig. 4 illustrates the nominal control function used to
start the itertive process with too few subarcs. The top curve illustrates
the portion of the initial ramp which is also shown in Fig. 2; this portion of
the initial ramp served as a first thrusting subarc. The equations of motion
of the system were integrated using this first thrusting sub,re; after time

t the system was allowed to cow,st mtil the stopping condition was me t
some unspecified lter time t,. On the succeeding iteration the variations of
the thrusting sub,re and of the time t were added to the initial choices of
these functions; the resulting nominal initial sub,re and cutoff time t + tit
were again used to integrate the differential equ,’tions of the system.



STEEPEST DESCENT 257

Angle

of

Thrust

Radians

Initial
control

control

0 10 20 30 40 50

Time in Seconds

F(. 2. Trajectories in control ,pace

At time tB’ tB A, where A is the Runge-Kutta integration step size,
a second thrusting subarc was introduced. Because of this additional
thrusting subarc, of time duration A, the stopping condition was satisfied
tt some other time t,". In subsequent iterations the corrections to the
times t,’ and t." tended monotonicully to lengthen the duration of the third
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TABLE

cle

1
30
60
90
120
150
180

Fuel
used

slugs

2.597.7
2.0895
1.9985
1.9689
1.8730
1.8121
1.7926

Distance
error

9141.3
5047.3
3207.1
2043.7
1230.9
782.8
27.5

Horizontal
velocity

error

f:ps

330.4
195.6
120.2
68.8
35.1
9.7
1.0

Vertical
velocity
error

jCs

167.7
120.6
97.5
63.6
33.7
12.2
1.8

Gradient

0.03014391
0.01728153
0.01411662
0.00896071
0.00317125
0.00097550
0.00010507

Time of
cut-off

10
10
12
13
13
14
14

0000
3500
3500
7181.
7965
1077
4682

Time of
reignition

25 0000
28 2500
29 9700
31 5301
31 4752
31 1275
31 1031

subarc, by decreasing tB’ and increasing tB’. Simultaneously the variations
in the magnitude of the ttfird subarc with time modified the third subarc
toward its optimum form. During this process the first thrusting subarc
was also lengthened in duration and altered in shape towards its optimum
form.
The lower curve in Fig. 4 shows the optimum first subarc; this first sub-

arc was also used as a starting control function and was followed by a coast-
ing subarc until some later time tc when the stopping condition was met.
At tc A the same impulsive thrust was introduced as was described in
the preceding paragraph. Again it was noted that the leading and trailing
edges of this very short thrusting subarc moved to the left and to the right,
respectively, for a number of succeeding iterations, thus developing full
third subarc.

Too many subarcs. The two runs made with too many subarcs started
with the two curves of Fig. 5. The top curve shows the initial ramp with
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three thrusting subarcs. The additional thrusting occurs somewhere in the
middle of what was the coasting subarc in the ramp illustrated in Fig. 2. As
indicated by the arrows at the extremities of this additional thrusting sub-
rc, the variation of these corner times caused this subarc to decrease in
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duration until the two times overlapped; at this time the additional center
thrusting subarc vanished.
A similar behavior was noticed when the iterative process was begun with

the lower curve of Fig. 5. This curve illustrates the "optimum" control
obtained previously, and shown in Fig. 2, but with an additional coasting
subarc introduced during the third, thrusting subarc. The arrows indicate
that here also the variations in the extremities of this extra coasting subarc
during succeeding iterations tended toward each other.

In conclusion, it can be said that in the present problem there is a clear
tendency to correct the number as well as the location of the times at which
the discontinuities in the optimum control occur. Only in one case was the
progression toward the "optimum" control slow. This was the case in-
volving the use of the "optimum" control with the additional coasting sub-
arc, as the initial control function. The slower convergence can be explained
by the fact that the step size (dP) was purposely related to the magnitude
of the gradient; consequently as the gradient tended toward smaller values,
the step size also tended toward zero. Thus the use of a "quasioptimal"
control to start the iteration process produced a small gradient, with corre-
spondingly small step sizes, which limited the progress in closing the
superfluous coasting subarc.

Conclusions. The adaptation of Bryson and Denham’s method discussed
in this study gives hope of being applicable to other problems, notably to
problems that one cannot analyze in detail a priori, using some of the
classical tools of the calculus of variations, and for which one cannot deter-
mine the composition of the optimum trajectory.

Other problems, for which one knows how many discontinuities to expect
in the state variable, can also be formulated and solved as the class of
problems that has been illustrated in this study.

Finally it must be pointed out that the extremal properties of the control
function that is generated in the present algorithm hve not been deter-
mined. Thus one can only be certain of having identified a possible mini-
mizing curve; the further identification of the properties of this curve can
only be done by means of further tests.
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DIRECTIONAL CONVEXITY AND THE MAXIMUM
PRINCIPLE FOR DISCRETE SYSTEMS*

J. M. HOLTZMAN AND H. HALKI’N:[:

Abstract. Directional convexity is a property of sets closely related to, but weaker
than, convexity. It is the existence of supporting hyperplanes at all boundary points
of a convex set that makes convexity important in optimal control theory. However,
there need be supporting hyperplanes on only one side of the sets for much of the
development. Directionally convex sets have this property. The concept of direc-
tional convexity, a property of sets, is a generalization, in the following sense, of the
concept of convexity, a property of functions. The graph of every convex function is
a directionally convex set. However, not every directionally convex set is a graph of
a function. Since directional convexity is more general than convexity (for both sets
and functions), it may unify a method of investigation which uses convex (or con-
cave) functions with another which uses convex sets. Properties of directional con-
vexity and of matrices that preserve directional convexity are given.

Directional convexity was introduced recently to extend the applicability of
results on the optimal control of discrete-time systems. It is shown here that the
results may be further generalized.

1. Introduction. A derivation of the maximum principle for a class of dis-
crete systems was given in [1]. Actually, two derivations were presented in
[1]. The first approach assumed the existence of tangent hyperplanes at
points on the sets of reachable events. The second approach did not require
the assumption of the existence of tangent hyperplanes. In both derivations;
a convexity requirement was placed on the difference equations (including
the performance state variable). It was shown in [2] that this convexity re-
quirement is restrictive for practical systems. It is almost as restrictive as
requiring linearity in the control. It was also shown in [2] that the first
approach is valid with a requirement weaker than convexity. This extends
its applicability to much wider classes of practical systems (an example of
which is given in the present paper). A further discussion of this new re-
quirement, "directional convexity," introduced in [2], will be given here.
It will be shown here that the second approach of [1] is also valid with the
new requirement of directional convexity. Other references on the discrete
maximum principle are given in [1] and [2].

2. Directional convexity.
DEFINITION. If Z is a nonzero vector and A is a set we shall say that A

* Received by the editors June 7, 1965, and in revised form September 13, 1965.
Bell Telephone Laboratories, Whippany, New Jersey.

$ Bell Telephone Laboratories, Whippany, New Jersey. Now at Department of
Mathematics, University of California at San Diego, La Jolla, California.

In this paper, it is assumed that all sets are subsets of some finite-dimensional
real Euclidean space and that all vectors are real.
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BOUNDARY POINTS

Z-S

"’ Z

FIG. 1. Illustration of definitions

is z-directionally convex if for each a, b A, each t [0, 1], there exists a
_-> 0 such that

(2.1) /a + (1 tt)b +/z A.

It is seen that directional convexity is weaker than convexity; all con-
vex sets are z-directionally convex for any vector z since in the case of a
convex set the relation (2.1) is always satisfied with 0. Some ter-
minology is now introduced.

DEFINITION. A point a is said to be a z-directional boundary point of a
set A if
(i) for every > 0, there exists b A such that a b < ,
and
(ii) for every > 0, a -t-/z A.
DEFINITION. The z-shadow of a set A is the set

{a-- hz’a A,k >= 0}.

The preceding definitions are illustrated in Fig. 1. It is easily shown that
z-directional boundary point of a z-directionally convex set A is a bound-

ary point of the z-shadow of A.
[HEOREM 2.1. The z-shadow of a z-directionally convex set A is conve

.Proof. Let S be the z-shadow of a z-directionally convex set A.
If a, b S, there exist )kl 0 and h => 0 such that a + z A ,nd

b+z A.
Then, from the z-directional convexity of A, for all [0, 1] there is a

fl => 0 such that (a + lZ) -t- (1 )(b - z) - z A or c a
(1 )b fl*z A, where

Since S is the z-shadow of A,

d=c-*zS.
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FIG. 2. Construction for Theorem 2.2

Since

d=aq- (1-)bS,

we have shown that S is convex.
DEFINITION. The matrix M is said to be a z-directional matrix if for

every z-directionally convex set A the set

B IMx:x AI
is z-directionally convex.
The z-directional matrices are thus those that preserve z-directional

convexity. Some properties of them are derived here. It will be seen that
for M to be a z-directional matrix it is necessary that z be an eigenvector
of M. For a large class ot matrices (but not all), the associated eigenvalue
must be nonnegatve.
THEOREM 2.2. M is a z-directional matrix implies Mz hz for some real .
Proof. Assume Mz hz q- b, b O, (blz} 0. Let A {z, 2z}. A is

z-directionally convex but B {az q- b, 2(az q- b)} is not z-directionally
convex (see Fig. 2). Thus M is not a z-directional matrix.
THEOREM 2.3. Mz kz, >-_ O, implies M is a z-directional matrix.

Proof. Let A be a z-directionally convex set and B {Mx: x A I.
We must prove that B is a z-directionally convex set. Let a and b B
and { [0, 1]. We must show that there exists a5 _-> 0 such that #a
q- (1 tt)b q- 5z B. There exist some a* and b* A such that a Ma*
and b Mb*. Since A is a z-directionally convex set there exists a 5" such
that a* + (1 #)b* -t- *z A. Then a + (1 )b + /*,z B.
We obtain the desired result by letting f *h.
Note that it is not true, in general, that the implication of Theorem 2.3

may be reversed. For example, the matrix

"Note that we are concerned only with real vector spaces over a real field so that
it is possible to have only real eigenvalues.

(a b} is he notation1 used to denote he scalar product of a and b.



266 J.M. HOLTZMAN AND H. HALKIN

z

xz:  r_o, "J]FOR 7,=

FIG. 3. Construction for Theorem 2.4

is a z-directional matrix with

z__

and Mz Xz, -1. There are, however, important cases in which the
implication of Theorem 2.3 can be reversed.
THEOREM 2.4. M has a nonzero eigenvalue " with eigenvector y My

and z is linearly independent of y. Then Mz Xz, >= 0 if and only ifM is a
z-directional matrix.

Proof. (Necessity.) From Theorem 2.3.
(Sufficiency.) Assume Mz z, X < O. Let A {ay + (1 a)z:

a [0, 1]}. A is a z-directionally convex set. But B
a [0, 1]} is not z-directionlly convex (see Fig. 3). Thus M is not
z-directional matrix.
THEOREM 2.5. If M is nonsingular, then Mz z, > O, if and only if
M is a z-directional matrix.

Proof. (Necessity.) From Theorem 2.3.
(Sufficiency.) Two cases can exist:
(i) M has an eigenvector linearly independent of z (the corresponding

eigenvalue must be nonzero because M is nonsingular) then Theorem 2.4
may be used.

(ii) M has no eigenvectors linearly independent of z. Let y be nonzero
vector with (y[z} 0. Then My cy + b, (b[y} 0, b 0, c a real
scalar. Assume that

Let

Mz ),z, , < O.

A {ay + a(1 a)z: a ff [0, 1]}.

A is a z-directionally convex set. But
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B lacy + ab + a(1 a)Xz: a [0, 1]}

is not a z-directionally convex set. Thus M is not a z-directional matrix.
Next we shll consider additive and multiplicative properties of z-direc-

tional matrices. The sum o two z-directional mtrices is not, in general, a
z-directional matrix s can be seen by the following example.

M and M are both z-directional matrices with z (0, 1). However,
(M + M) is not (see Theorem 2.5). A sufficient condition for (M1 + M)
to be a z-directional matrix is that M and M both be nonsingular z-di-
rectional matrices. This is proved in"
THEOREM 2.6. If and M are nonsingular z-directional matrices, al

and a O, then (alM aM) is a z-directional matrix.

Proof. From Theorem 2.5, Mz kz, 1 0, and Mz hz, O.
Then

By Theorem 2.3, alM + aM is a z-directional matrix.
THEOREM 2.7. U M < 1 and M is a z-directional matrix, then I + M)

is a z-directional matrix.

Proof. Since M is a z-directional matrix we have, from Theorem 2.2,
Mz kz, k real. Then (I + M)z l + k)z and since M < 1,]] < 1.
Thus 1 + k > 0. From Theorem 2.3, I + M is a z-directional matrix.
The product of two z-directional matrices is always a z-directional matrix.

This is proved in:
THEOREM 2.8. If M and M: are z-direcgonal matrices, then MM is a

z-directional matrix.

Proof. Let A be a z-directionally convex set. Then we have to show that
B {MM:x: x A} is a z-directionally convex set. We can also write
B as B Mly: y C}, where C {M:x: x A is a z-directionally con-
vex set. Since M is a z-directional matrix, B is a z-directionally convex set.
THEOREM 2.9. If A and B are z-direcgonally convex sets then A + B is a

z-directionally convex set.

Proof. Let x and x A + B. Then x a + b and x: a + b
with a, a A and b, b B. We have

x + (1 )x a + (1 )a + b + (1 )b.

Since A and B are z-directionMly convex sets, for each [0, 1], there are
0 and 0 such that

A + B is defined as the set {x: x x + x:, x A, x B}.
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pal - (1 )a2 W fllz A, b (1 )b2 .z B.

Therefore,

Two convex sets A and B ure separable if there exist a nonzero vector p
and a scalar a such that

(xp} a for all x A,

(x] p} a forall xB.
In other words, the two convex sets A and B are separable if there exists
a hyperplane P such that the set A is on one side of P and the set B is on
the other side. The hyperplane P is the set of all vectors x such that

An important property of convex set A is that there exists supporting
hyperplne pssing through evew boundary point of A ( hyperplne
which separates the boundary point nd the set A, see [3]). For z-direc-
tionlly convex sets we have the following fundamental separation theorem.
THEOaEM 2.10. If the set A is z-directionally convex and a is a z-directional

boundary point of A, then there exists a nonzero vector p such that

@Ix} (pa} forall x A.

Proof. If a is z-directional boundary point of A then a is boundary
point of the z-shadow of A which is convex (Theorem 2.1). Hence there
exists hyperplne separating a from the z-shadow of A nd thus from
the set A itself.

3. The discrete optization problem. We re concerned with the system
described by the difference equation

z(i + x(i) A(i)z(i) + g(i, u(i)),

where x is n n-vector (state wrible), A is n n n mtrix defined for
every i 0, 1, 1, nd g is n n-vector defined for every i 0, 1,

1 and every control u in , given set of admissible controls. We
are given n initial condition vector x0. We are lso given nonzero vector
z nd x. The set S is defined by

(3.2) S {x + hz: h rel}.

We make the following ssumptions"
(i) The sets w(i) {g(i, u): u } re closed, bounded, nd z-direc-

tionlly convex for 11 i 0, 1, lc 1.
(ii) The matrices I + A (i) re nonsngular for 11 i 0, 1, 1.



DIRECTIONAL CONVEXITY 269

(iii) The matrices I + A(i) are z-directional matrices for all i 0, 1,
..,]-- 1
Before stating the optimization problem, some additional notation is

is given. The letter, will represent a control strategy"

(3.3) l(i, u(i))" i 0, 1, ,/c 1}.

The strategy will be called "admissible" if

u(i) for all i 0,1, ...,/- 1.

The letter F will represent the set of all admissible strategies.
We shall denote by x(j; ) the value of the state variable at step j

corresponding to the solution of the difference equation (3.1) satisfying

(3.4) x(0;,,) x0

and with the strategy The optimization problem is to find a strategy
F such that

(3.5) x(]c; ,,) S

and

(3.6) (zlx(]c; ,)) is maximum.

A strategy satisfying the aboe will be denoted .
There are two differences between the optimization problem of [1] and

the one considered here. One is that, in [1], the objective is to maximize the
nth element of x(]c). In our treatment, we are being slightly more general
with maximizing in an arbitrary direction (the vector z). The second differ-
ence is that in [1] the sets

(3.7) w(i) {g(i, u)’u }, i O, 1, ]c 1,

are assumed to be convex (in addition to being closed and bounded). Here
we relax the convexity requirement on w(i) to z-directional convexity. This
relaxation of the convexity requirement considerably extends the practical
applicability of the results (see [2]).7 The set defined at the end of 5 of the
present paper could represent a w(i) and is z-directionally convex but not
convex.
The following are the results we wish to prove"
MAXIMUM PRINCIPLE. If is an optimal strategy, it is necessary that there

Conditions (ii) and (iii) will be satisfied if A(i) is a z-directional matrix and
A (i) < 1. I + A (i) has an inverse; see, e.g., [4, p. 92]. I A (i) is a z-directional

matrix by Theorem 2.7.
The treatment of the case of free end conditions is straightforward.
In [2], Gi denotes what is here called w(i).
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exists a nonzero vector p (i, ) satisfying the difference equation

(3.8) p(i, ) p(i - 1, ) Ar(i)p(i + 1, )

and condition

(3.9) (p(k, )l z >= 0

and such that

(3.10) g(i, x(i, ), v(i), p(i + 1, ) >= H(i, x(i, ), u, p(i + 1, )

for all i O, 1, t 1 and all u , where H is defined by

(3.11) H(i, x, u, p) (A(i)x + g(i, u)[ p}.

Most of the steps in proving the mximum principle re the same as those
in [1]. However, for some steps, especially where convexity is used in [1],
new proofs must be given here.
The "comoving space along a trajectory" is introduced in [1]. We shall

summarize some of the notions of [1] to which the reader is referred for
more detail. Let G(i) be an n X n matrix for i 0, 1, k and defined by

(3.12) G(k) I,

(3.13) G(i) G(i+ 1) G(i- 1)A(i), i 0, 1,..., / 1.

G-(i) exists for all i 0, 1, k 1 ([1, 6]). Since

G(i) (I + A(k 1))(I - A(k 2)) (I+A(i))

and I - A (j) is z-directional matrix forj 0, 1, ,/ 1, then G(i)
is a z-directional matrix.

Let Y be n n-dimensional Euclidean space with elements y. We shall
consider the mapping from X T into Y X T defined by the relation.

(3.14) y G(i)(x x(i, .));

y(i,., a) is defined by

(3.15) y(i, ,, ) G(i)(x(i, ,) x(i, ) ).

The set of reachable events for the space X is defined by

(3.16) W(i) Ix(i, ,):, F}.

A set of reachable events for the space Y is

(3.17) W(i, ) {y(i, ,, ):, F}.

G (i) is the discrete-time analog of the fundamental solution matrix or transition
mtrix for linear differential equations.
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The space Y is called the comoving space along the optimal trajectory
because the optimal trajectory in the space X is transformed into the
trajectory y 0 of the space Y (see (3.14)).
THEOREM 3.1. The set W(l, ) is z-directionally convex.

Proof.

k=o
where

w(j) {g(j, u): u }.

Then

W(lc, z) {--h} + {G(1)go :go w(0)} + {G(2)g :g ( w(1)}

+ + {G(k)gk_l:gk_l w(k-- 1)},

where

h G(j + 1)g(j, v(j)).

Since w(j) is z-directionally convex for j 0, 1,.-. k 1, and G(j + 1)
is a z-directional matrix, then W(k, ) is z-directionally convex by Theorem
2.9.

4. Proof of the maximum principle.
THEOREM 4.1. If , is an optimal strategy then x(k, ) is a z-directional

boundary point of W k
Proof. If x(k, ) is not a z-directional boundary point of W(k) then there

must exist a strategy, such that

(4.1) x(/, ,) x(lc, ) + z W(t)

for some > 0. Then

(4.2) <z x(k, )) > (z Ix(k, z)>,

which contradicts the optimality of .
THEOREM 4.2. If X(k, ) is a z-directional boundary point of W(k) then

y 0 is a z-directional boundary point of W(k, ).
Proof. From the definitions of W(i, ) and y (i, ,, a) we have

It is also easily shown that x(i, a) is a z-directional boundary point of W(i)
for all 0, 1, k 1. This result makes Halkin’s "principle of optimal evolu-
tion" [1] even more precise and indicates why only z-directional convexity is required.
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(4.3) W(/c, ) /x x(]c, ):x W(]c)}

and Theorem 4.2 follows immediately.
THEOnEM 4.3. If y 0 is a z-directional boundary point of W(tc, ) then

there is a nonzero vector () such that

(4.4) (G(i - 1)(g(i, u) g(i, v(i)))l () <- 0

for all i O, 1, t l and all u .
Proof. The set W(/, ) is z-directionally convex (Theorem 3.1) so that

there exists supporting hyperplane passing through y 0 (Theorem 2.10).
In other words there exists nonzero vector (), normal to the supportiag
hyperplane, such that

(.) (1()) =< 0 o W(, ).

If (a) does not satisfy the condition (4.4), then there exist
j [0, 1, ,/ 1} and u ft such that

(4.6) (G(j + 1)(g(j, u) g(j, v(j)))] ()} > 0.

Let fi F be constructed by the following two relations

(4.7) O(i) v(i), i j,

(4.8) (j) u.

It is a trivial matter to verify that

(4.9) (y(/c, , )1 ()} > 0,

which contradicts (4.5).
THEOREM 4.4. If there exists a nonzero vector () satisfying (4.4), then

there exists a nonzero vector p(i, ) defined for i O, 1, k such that

(4.10) p(i, ) Gr(i)(),

(4.11) H(i, x(i, ), u, p(i - 1, ) <= H(i, x(i, ), v(i), p(i + 1, ) ),

for all i O, 1,... tc l and all u ,
(4.12) p(i, ) p(i - 1, ) Ar(i)p(i - 1, ),

for all i 0,1, 2, ,1 1.

Proof. Identical to the proof of [1, Theorem 8.4].
THEOnE 4.5. If X X(tC, ) is a z-directional boundary point of the set

W(tc) then there exists a vector p(i, ) defined for i O, 1, tc and satis-
fying the relations (4.10), (4.11 ), and (4.12).

Proof. Theorem 4.5 is a direct consequence of Theorems 4.2, 4.3, and 4.4.
Indeed, if x x(lc, ) is a z-directional boundary point of the set W(lc)
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then, by Theorem 4.2, y 0 is a z-directional boundary point of W(/c, a).
Then we may use Theorems 4.3 and 4.4.
THEOREM 4.6. If is an optimal strategy then there exists a vector p(i, )

defined for i O, 1, ..., ]c and satisfying the relations (4.10), (4.11), and
(4.12).
Proof. By Theorem 4.1, if is an optimal strategy, then x(k, .) is a z-di-

rectional boundary point of W(k). Then we may use Theorem 4.5.
THEOREM 4.7. If is an optimal strategy then

(p(, )l z) >= o.
Proof. From (4.10) and (3.12) we have

From (4.5) and (3.14),

Also,

Since

p(, ) 0().

then

<x z(, )] ()) =< o

(r-- x(/c,a)l(a)) --< 0 for all

for all x W(/).

r z-shadow of W(k).

x(k, ) z z-shadow of

(z ()) --> 0.

y (xl,f(xl)) + (1 )(x2,f(x2)) + (0,--1) G.

of that function is z-directionally convex with z (0, 1).
Proof. We have to show that for each t [0, 1], each xl, x X, there

is a ->_ 0 such that

5. Connection between directionally convex sets and convex functions.
It may be observed that there is similarity between directional convexity,
which is a property of sets, and convexity, a property of functions. Direc-
tional convexity is, in the following sense, a more general concept than
convexity of functions. The graph of a convex function is always direction-
ally convex (this will be made more precise in the theorem proved below).
However, not all directionally convex sets may be obtained from the graph
of a function (for example, a directionally convex set which "looks like" a
quarter moon).
THEOREM 5.1. If X X, a convex set, and f(x) is a convex function of x,

then the graph
G {(x,f(x)):x X}
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We have

y (xl + (1 )x., f(xl) -F (1 )f(x2)) -F (0,-).

From the convexity of f(x),

y (x -F (1 )x,f(x + (1 )x) ) + (0,-)

for some 0. Thus by setting we have

In a similar manner, it may easily be shown that, if g(u) is linear in u
or i 1, 2, ,j; is a convex set; b re real scalars; and f(u) is a concave
unction of u, then the set of vectors

LLf(u) + b;+J
is z-direCtionlly Convex ith z (0, 0, 1)r. The bove set is not
6onvex.

6. other application o directional convexity. Let us note here
interesting p,r,llelism between two pprently unrelated problems: con-
vexity is the fund,ment,1 tool of the known existen{e theorems [5], [6],
[7], [8], for the optimal solution of systems described by differenti,1 equa-
tions nd convexity is lso the fund,mental tool of the necessG Condition
derived in Hlkin [1] for te optim,1 solution of systems described by differ-
ence equ,tions. In te present pper we show that for the second of these
problems the concept of convexity cn be replaced by the more generM
concept of direCtio,l Convexity. imil,rly i [9] it is shon that for the
first of these two problems the concept of convexity ,n lso be replaced
by direCtion,1 convexity.
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OPTIMAL REGULATION OF LINEAR SYMMETRIC HYPERBOLIC
SYSTEMS WITH FINITE DIMENSIONAL CONTROLS*

DAVID L. RUSSELLf

0. Introduction. A number of mathematicians have recently studied
problems of optimal control for systems whose motion is described by partial
differential equations. A short, and by no means complete, bibliography is
given at the end of this paper. In most of these papers the control set is a
subset of a function space. This corresponds to the assumption that control
can be exercised by a force arbitrarily distributed throughout the body
under consideration. Exceptions to this rule are to be found in [5], [8] and
[11] where boundary value control of the heat equation is considered.

It is clear that in most applications the control set will be finite-dimen-
sional. For example, the flexing of a large rocket booster is controlled by the
essentially two-dimensional deflection of the rocket exhaust.

In this paper we study finite-dimensional control of linear symmetric hy-
perbolic systems of partial differential equations. The control criterion is
minimization of the total energy of the system at a given time T after the
exercise of control is begun. We show that the optimal control exists and
satisfies a certain maximum principle. The maximum principle may, or may
not, characterize the optimal control as a "bang-bang" control. A question
akin to that of normality in ordinary differential equations arises and is
studied.
We show that a class of boundary value control problems can be included

in the problems to which our theory applies. As an example, we study the
question of optimal energy dissipation in a vibrating string with control
exercised at one endpoint.

1. The system. We will treat systems

(L) E(x) Ou A(x) Ou
0---[ - + C(x)u - B(x)f(t),

where E, A and C are n by n matrices while B is an n by m matrix, m __< n.
We assume that these matrices are in class C on the closed interval

(1.1) 0__<x=< 1.

* Received by the editors April 19, 1965, nd in final revised form October 15, 1965.
Mathematics Research Center, United States Army, University of Wisconsin,

Madison, Wisconsin. Contract No.; DA-11-022-ORD-2059. Now t the Deprtment of
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Theorems 2.1 nd 4.1.
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The vector u is n-dimensional while f is an m-dimensional vector function
measurable on the interval

(1.2) 0=<t__<

and such that or some positive number K,

(1.3) IIf(t)ll <= K, [0, ).

Here denotes the Euclidean norm in E.
The matrices E and A are both symmetric and E is strictly positive

definite on the interval (1.1). Thus the roots 1 (X),)k2 (X), n (X) of the
equation

(1.4) det (E (x) A (x)) 0

are real valued unctions of x which are in C[0, 1]. The characteristics are
the solution curves of

(1.5) dx k(x) i 1, 2, n.
dt

For this system L we shall pose the following initial-boundary value
problem (IBVP). As initial conditions we require that

(.6) u(x, o) uo(x), x [o, ],

where u0 (x) is absolutely continuous on [0, 1], and that there is an M > 0
such that

(1.7) --wherever this derivative exists, i.e., almost everywhere. For boundary
conditions we stipulate that there are n by n matrices A0, A1 such that

(1.8) Aou(O, t) =-O, Au(1, t) =--O, 0 <-_

and we assume A0 and A are such that (1.8) implies

u(O, t).A (0)u(0, t) 0, u(1, t).A (1)u(1, t) 0,
(1.9)

0_<t<

Finally we impose the consistency conditions

(1.10) Aouo (0) O, Auo (1) 0.

We remark that the boundary conditions (1.8) cannot be arbitrarily im-
posed. They must be related to the sets of positive and negative eigen-
values ) (x) of the system. For more on this, see 7.
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The homogeneous system corresponding to (L) is the system

(LH) E(x) Ou A(x) Ou
o- - + C(x)u.

Under appropriate hypotheses the following theorems are true.
THEOREM 1.1. For a given f (t) obeying (1.3) the above described IBVP

for (L) has a unique solution u (x, t) in

(1.11) D {(x, t)l x [0, 1], t [0, )}

with the properties
(i) u is continuous in D;

Ou
and

Ou
(ii) 0-- - exist almost everywhere in D;

Ou Ou
(iii) u, xx’ - and f satisfy the system equation (L) almost everywhere in D;

Ou
and

Ou
(iv) u, O--x 0-- are uniformly bounded in compact subsets of D and this

bound is independent of f so long as f obeys (1.3);
(v) u (x, t) is absolutely continuous on any line x c, 0 <-_ c <= 1, and on

any line c, 0 <= c < , insofar as that line lies in D.
THEOREM 1.2. For a given f(t) obeying (1.3) let u(x, t) be the unique

solution to the above IBVP and let u, (x, t) be the solution to the same IBVP
for the system (LH). There is an n by m matrix function V (x, t) which is
piecewise of class C in D and which depends only upon the system (LH)
(i.e, not on f) such that

.t

(1.12) u(x, t) UH(X, t) + ]O V(x, r)f(T) tiT.

Theorem 1.2 is known as Duhamel’s principle. The columns of V (x, t)
are derivatives of solutions of the IBVP for (L) with zero initial conditions
and special choices of f. Thus, .at least in principle, V (x, t) i computable.
Theorem 1.1 is proved in [14] under the assumption that

)l(x) > ),2(x) > > r(x) > 0 > hr+l(X) > > },(X). Related m-
terial may be found in [15], [16], and [17].

2. The problem. Let u(x, t) be the solution of the IBVP for (L) for some
measurable f(t) satisfying (1.3). The energy distribution associated with u
is the quadratic form u(x, t).E(x)u(x, t). By the total energy associated
with u at a time we shall understand the quantity (u, t) given by

(2.1) a(u, t) - u(x, t).E(x)u(x, t) dx.

Now let v(x) and w(x) be bounded measurable n-vector functions de-
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fined on the interval [0, 1]. The energy inner product [v, w] is defined by

(2.2) [, w] Jo v(x).E(x)w(x) dx.

It is easily verified that the set of all measurable n-vector functions v(x)
defined on [0, 1] for which

(2.3) Jo v(x).E(x) v(x) dx <

is a real Hilbert space with this inner product. Thus

(2.4) (u, t) 1/2[u(-, t), u(., t)] 1/2 u ,
where u (., t) is the function of x [0, 1] which we obtain from u (x, t) by
fixing t.

Consider the system

Ov Ov FdA(x) C’(L*) E(x) - A(x) - - L -d- (x) v,

where E, A and C are the matrices in (L) and Cr denotes the transpose of
C. This system (L*) will be called the adjoint system for (L).

Let v (x, t) be u solution of (L*) which stisfies the boundary conditions
(1.8). It has properties similar to those of u(x, t) if it stisfies appropriate
initial (or terminal) conditions.
THEOREM 2.1. The energy inner product Iv(. t), u(. t)] satisfies

(2.5) dtd-- [v(., t), u(., t)] Jo v(x, t)B(x) dx.f(t)

for almost all [0, ).
Proof. Let t be a positive real number. Since v and u are nbsolutely con-

tinuous on lines x c in D it is readily seen that

[(., t), u(., t,)] [(., o), u(., o)]
(2.6) =f0[J0"(0v(x’t) E(x)u(x,t)+v(x,t)E(x)0U(x’t))dtlOt

The properties of v and u (see Theorem 1.1) allow us to use Fubini’s
theorem and the fact that u and v satisfy (L) and (L*), respectively, to
show that

Iv(., t), u(., t)] [(., o), u(., o)]

(2.7) u(x, t).A (x) 0v(X,0x t) + u(x, t) "dA (x) v(x, t)

+v(x’t)’A(x)OU(x’t)
Ox + v(x, t).B(x)f(t) dx dt.
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The first three terms of the itltegrand in (2.7) together add to

O--(v(x, t).A (x)u(x, t)). Then since v and u obey (1.8) (and hence (1.9))
Ox
it is easy to see that (2.7) implies

[v(., tl), u(., tl)] [v(., 0), u(., 0)]

[v(x, t).A (x)u(x, t)]--0 dt- v(x, t)B(x) dx.f(t) dt

( 01 )v(x, t)B(x) dx.f(t) dt,

and from this the result (2.5) follows immediately.
When

dA(x)
(2.9) C(x) -t- Cr(x)

dx

the systems (LH) and (L*) coincide. In this case a solution u (x, t) of the
IBVP for (LH) satisfies

(2.10) d--[u(, t) u(. t)]- 0, a.e.,
dt

and hence, for all > 0,

(2.11) (u, t) (u, 0),

i.e., the energy is conserved. Thus systems (LH) which are self-adjoint
((LH) is the same as (L*)) correspond to conservative systems in the
language of physics. We shall not confine ourselves to conservative systems
--the energy may increase or we may, as is usually the case, have a dissipa-
tive system.

Let t denote a compact convex subset of Em. A measurable m-vector
function f(t) will be called an admissible control on [0, T] if f(t) 2 a.e.
in [0, T].
THE OPTIMAL CONTROL PROBLEM. Let an initial state u(x, t) no(x)

be given. Corresponding to each bounded measurable m-vector function f (t)
let u (x, t) be the solution of the IBVP. It is required to find an admissible
control f (t such that

3(u, T) rain (u], T),
f admissible

Consider the following time optimM control problem" let E be a non-
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negative real number less than g(u, 0). Find fo(t) which most quickly
reduces g (u, t) to the value E. A solution of this time optimal problem is
readily seen to be a solution of the above-posed optimal control problem
where T is the first time at which g (u, t) is equal to E. The converse need
not be true, however. A solution of the optimal control problem we have
posed need not be time optimal in any sense.

3. Existence and uniqueness. Let a time T > 0 be fixed. Let 3e denote
the Hilbert space of n-vector functions defined on [0, 1] for which the
inequality (2.3) is satisfied and let the inner product in this Hilbert space
be the energy inner product given in (2.2). By a (u0, T) we shall denote
the set of all functions u(., T), where u(x, t) is the solution of the
IBVP for (L) with initial state u (x, 0) u0 (x) for some admissible con-
trol f(t). a(Uo, T) is the set of attainability from u0 at time T. It has been
shown in [13] that a (u0, T) is closed. In the present instance we can prove
in addition that a (u0, T) is compact.

According to Theorem 1.2, for a given admissible control f (t), we have

T

(3.1) u(z, T) u(x, T) - Jo V(x, T -)f(-) dr, z [0, 1].

Let {u(. T)} be an arbitrary sequence of points in a(u0, T). Then for
each positive integer k we have

T

(3.2) uk(x, T) u(x, T) + Jo V(x, T- r)fk(r) dr, z [0, 1].

Consider now the Hilbert space consisting of all m-vector functions f(t)
defined on [0, T] whose norms (in the usual Euclidean sense) are square
integrable over that interval. We employ the usual inner product. Since
t is compact and convex, the set of all admissible controls f(t) on [0, T] is a
closed, bounded, and convex subset of . A familiar theorem from func-
tional analysis states that such a subset of is compact in the weak topology
of .

Let lf (t)l be a subsequence of If (t)/which converges to some f (t)
in the weak topology of . From what we have written above it is clear that
f (t) is also an admissible control. Then for each x in [0, 1],

T T

/ / d,
a0

nd it follows that the subsequence lu(", T)I of lug(’, T)I converges
pointwise on [0, 1] to u(., T), where u(x, t) is the response to f(t), given
for each (x, t) [0, 1] [0, T] by the formula (1.12), But, using Theorem
1.1(iv), theu (. T) and u (. T) satisfy a common uniform Lipschitz condi-
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tion (i.e., are equicontinuous) for x [0, 1]. Hence lul:. (" T)} converges
uniformly to u (. T)} for x [0, 1]. Then certainly u/,: (. T) converges
to u(. T) in the energy inner product topology of . Since ul(- T)}
may be any sequence in ((u0, T) and 5C is a metric space we see that
a (u0, T) is compact.

Since the function 5 (u, T) is continuous for u ( (u0, T) it assumes an
absolute mifimum on that set. Hence:
THEOREM 3.1. Let the IBVP be posed for the system (L) and consider the

optimization problem on the interval [0, T]. There is at least one solution

f (t for this optimization problem.
Our next task vill be to discover in what sense, if any, the optimal con-

trol f0 (t) is unique.
Let E be a positive real number. Consider the subset of 3C given by

NE {v 11/2[[v[[ =< E}.

’Given an initial state u0(x), it is clear that there is an admissible control
f*suchthat (nz*, T) E if and only if a(u0, T) N < 0, where t
denotes the empty set.

Let fo(t) be any solution of the optimization problem. Then it is clear
that E g(u, T) is the smallest number such that ((u0, T) 1 NE .
THEOREM 3.2. Let the initial state Uo (x) and the terminal time T be given

and let f (t) and f.(t) be any two solutions of the optimization problem.
Then u (x, T) =--- u (x, T). Hence there is a unique terminal state ur(x)
for the given optimization problem which is independent of the optimal control.

Proof. Let E g (u, T) (ux, T). Then it is clear that

(3.5) u(. T) a(uo, T) N,, us:(., T) a(Uo, T) N N,.

Since ((Uo, T) and N are convex, so is their intersection. It follows that

(3.6) 1/2uX( T) + 1/2uf( T) u(’ )(., T) ((Uo, T) f’l N.

If Ufl (:, T) i uf2 (x, T), it is easy to show that g(1/2u - 1/2u, T) < E
and hence a(u0, T) ’1 N., for some E’ < E. But this would violate
the assumption that f and ft. are optimal. Hence

(3.7) u: (., T) : (., T),

and the proof of the theorem is complete.
We are still far from showing the uniqueness of an optimal control func-

tion. But the uniqueness of the terminal state ur(x) will enable us to show
that an optimal control must satisfy a certain maximum principle. From
the maximum principle a certain "normality" condition can be developed
which will show that an optimal control is unique under certain circum-
stances.
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4. The maximum principle. We have shown in the preceding section that
the unique terminal state ur(x) corresponding to the initial state Uo(X)
and an optimal control fo(t) is the unique point of intersection of et (u0, T)
and NE, where,E is the minimum attainable energy.
LEMMA 4.1. For each us (., T) a (Uo, T), we have

(4.1) [ur, ur] _-< [ur, us(’, T)].

Proof. If ur(x) O, there is nothing to prove. Let us ssume ur(x) 0
nd let w 3C be such that

(4.2) [ur, u r] > [ur, w].

For 0 =< X =< 1 consider

(4.3) w (x) (1 X)ur (x) + w (x).

Then letting [ur, w] [ur, ur] a, a > 0, we have

[wx,wx] (1 X)2[ur,ur] +X2[w,w] +2h(1 X)[ur,w]

/(1 ) + 2h(1 ),)}[ur, ur]
(4.4)

2x + , (2 + [w, w])

(1 hZ)[ur, ur] 2Xa -F Xz(2a + [w, w]).

It is clear then that for sufficiently small }, > O,

(4.5) [wx, wx] < [ur, ur] E.

Hence for such h, wx a(u0, T) and this implies w a(Uo T). This
completes the proof.
Now let v (x, t) be the solution of the boundary value problem for (L*)

which also satisfies the terminal condition

(4.6) v(x, T) ur(x), x ff [0, 1].

From Theorem 2.1 we have, for each admissible control f(t),

[ur, uf( ., T)] [v(., T), uZ( ., T)]

(4.7)
Iv(., 0), u0] + J0" v(x, t)B(x) dx f(t) dt.

Using the result of Lemma 4.1 together with (4.7) immediately yields"
THEOREM 4.1. (Maximum principle) Let the IBVP for (L) be given with

initial state Uo(X). Let fo(t) be a solution of the optimization problem for
T > O. Let ur(x) be the unique terminal state for this problem and let v (x, t)
be the solution of the boundary value problem for (L*) with terminal condition
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(4.6). Then for almost all [0, T],

] fo(t) max v(x,t)B(x) dx .f(t).(4.8) v(x, t)B(x) dx,

5. Nature of the optimal control. In 4 we developed a necessary condition
for optimality of a control function fo(t) in the form of a maximum prin-
ciple. The usefulness of this maximum principle is not yet clear. For ex-
ample, suppose it is possible to reduce the system to the zero state at time
T, i.e. ur(x) - O. Then v (x, t) 0 and the maximum principle is vacuous.
We will later show by example that in such a case the optimal control
function f0 (t) may be a smooth, even analytic, function of time. Thus we
cannot state any equivalent of the "bang-bang" principle for the system
as a whole which will be strictly comparable to the corresponding principle
for ordinary differential equations.
We will concern ourselves now with those situations wherein the terminal

state ur (x) 0 is not attainable and hence v (x, t) 0. Here we may expect
that the maximum principle will yield some information on the properties
of f0 (t), an optimal control. For example, on any subinterval [to, tx] C:: [0, T]
where . v (x, t)B (x) dx O, the function f0 (t) must almost everywhere
lie on the boundary of gt.

In order to develop an analog of the normality condition already known
for linear ordinary differential equations, let us suppose now that our system
is

E OU A OU + B x f(t) A aU
0-- 0-- l=o 0-- + B(x)f(t),

where E, A and B, 0, q, are constant matrices. Moreover, let us
assume a to be a polyhedron in E whose one-dimensional faces (i.e.,
edges) are parallel to unit vectors wl, w2, wr in E".
The optimal control fo(t) can fail to be a uniquely determined piece-

wise constant function only if there is an interval [to, t] (::: [0, T] of nonzero
length and a wi such that

(5.1) v(x, t)B(x) dx.wi O, [to, tl].
Jo

Then, clearly,

(5.2) d--t v(x, t)B(x) dx.w =-- O, (to,

Inasmuch as v(x, t) has the same differentiability properties as stated for
u(x, t) in Theorem 1.1 we can write
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B(x) dx.wOr(x, t)(.3)
ot

Using the fact that v(x, t) obeys (L*) and integrating by parts we see that

)B(x) x=t)
5.4)

(-Av(z,

If this process of
(i) differentiation, wih respee
(ii) use of he equation (L*),
(iii) integration by parts
is repeaed q + 1 imes we find

But, since B (x) is a polynomial of degree q in x.

dq+lB(x)
=--- 0()

dx
x [o, ],

) ;B x
l! -(5.7)

dx =o =(1-- ]c)!Bx k _< q.

Hence

(E_iA)k+l(_l)k (1, t)
(1 lc) B=o Otq-k l=k,

(5.s)

)}o otq- B "wi 0, (to, h).

The condition (5.8) involves only the boundary values of v(x, t) and
its derivatives with respect to t.

If we denote the left-hand side of (5.8) by h (t).w, then the condition

(5.9) h (t)’wi 0 on any subinterval of [0, T]

may be regarded as a sort of normality condition. We must strongly empha-
size, however, that normality is now a property of the initial state uo(x)
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and T via ur(x) and v (x, t) and not, in general, a property associated with
the system (L) as such. In addition, precautions must be taken to assure
that the differentiations performed above are legitimate. An example will
help to clarify these questions.

6. Example. The vibrating string. Let a string with uniform linear density
p be stretched over a unit distance with tension r. Let us measure distance
along the string by means of the variable x. We shall study vibrations of
the string in a plane. Hence we denote the displacement of the string from
its equilibrium position by a scalar function w (x). Under suitable conditions
the equation of motion can be taken to be

Ow Ow(6.1) p -- r 0-- O.

Let us impose at x 0 the boundary condition

(6.2) (0, t) 0,

and let control be exercised at x 1 by setting

(6.3) w(1, t) ](t).
We shall require that d](t)/dt be an absolutely continuous function whose
derivative, d](t)/dt, which exists almost everywhere, satisfies

(6.4) 1 _< d2](t) <_ 1.
dt

Consider the change of variable

(6.5) w(x, t) y(x, t) -k- x](t).
It is readily seen that y (x, t) obeys the equation

(6.6) 02Y e
Ozy

Ot - xf(t)

along with the boundary conditions

(6.7) y(0, t) 0, y(1, t) 0.

In (6.6) we have taken c rip and f(t) -d’](t)/dt. Hence

(6.8) --1 __< f(t) <= 1.

At a given moment the vibrational energy (as distinguished from
energy due to translational or rotational motion of the entire string) is
given by

1[ (Oy) (oylEv y t) - o \-${/ + \ / .J
(6.9)

p F(o Y c
2 f L\--i/ + )Jdz.
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For convenience we set

(6.10) (y, t) 1_ Ev(y, t).
P

To obtain a system of first order partial differential equations we let

_Oy Oy (ul)(6.11) u_
Ot

u2
Ox

u
"It2

Then we have

Multiplying on the left by the matrix

we obtain

(6.13) E Ou A O___u q_ B(x)f(t),
Ot Ox

where

(6.14) E=/ 0)c
and hence is symmetric and positive definite,

(6.15) A (0c )
and is thus synmetric, while

(6.16) B(x) =().
The boundary conditions (6.7) clearly imply

(6.17) u (0, t) --- 0, v. (1, t) 0,

and this in turIl implies

(6.18) u(O, t).Au(O, t) =- O, u(1, t).Au(1, t) O.

Hence the system (8.13) is of the type considered in this paper.
The total energy

(6.19) g(u, t) u(x, t).Eu(x, t) dx
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is clearly such that g(u, t) -= g(y, t). Given an initial condition
u (x, 0) u0 (x), where u0 (x) is absolutely continuous with uniformly
bounded derivative on [0, 1] and satisfies

(6.20) Uol (0) 0, Uol (1) 0,

let us consider the problem of determining a control function f0 (t) such. that
8 (u, T) is as small as possible for some T > 0.

It is clear that in this case the systems (LH) and (L*) coincide:

(LH) E0U A 0u.
Ot Ox

Thus (LH) is a conservative system. Hence let v(x, t) be the solution of
(LH) which satisfies

(6.21) v (0, t) -= 0, v (1, t) ---- 0,

and the terminal condition

(6.22) v(x, T) uo(x, T).

Then the optimal control fo(t) satisfies

(6.23) v(x, t)B(x) dx fo(t) max v(x, t)B(x) dx

or

xvl x, dx f max xv x, dx

fo XVl X, t) dx

With the identifications (see (6.11))

OZ
(6.25) v -t v2

Ox

we see that

(a.)

Thus whenever

Oz(x,ot t) dx) fo(t) {( fomax X

(..z,x, t)
dx O,

Ot

we have
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(6.27) fo(t) --sgn x
Ot

In order to explore this situation further, let us suppose there is a sub-
interval [to, tl]

_
[0, T] whereon

dx =- O.Oz(x, t)(6.28) x 0-----
Then for (to, t) it can be shown that

Oz(x, t) Oz x, t)(6.29) x
O Ox

But, integrating by parts and noting that z (0, t) z (1, t) 0, we see that
(6.29) implies

(6.30) Oz(x, t) =-- O, (to,

In order to progress a little further, let us consider the very special case
wherein

Oz(x, t) Vl(x, T) --O.
Ot

Since z (x, t) is a solutioa of

(6.31) Or-- c O, z(O,t) z(1, t) =--0, z(x, T) y(x, T),

it is a well-known fact that

(6.32) z(x, t) 1/2[Y(X + c(T t)) + y(x c(T t))],

where we have extended the definition of y (., T) to (- , by requiring

(6.33) y(x) --y(--x),

(6.34) y (x - 2) y (x).

Then (6.30) implies

l [Oy(x -- c(T --t)) -t- Oy(x --c(T --t)),
2 [ Ox Ox ]=

(6.35)
Oy(x -[- c(T t))]’ =--- O, (to, tl).

Hence we conclude that the optimal control function f0 (t) always assumes
unique values +/- 1 on [0, T] unless y (., T) contains a segment of the form
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y coast. In particular, if y(x, T) 0, x [0, 1], then fo(t) assumes
unique extremal values on some subintervals of [0, 7’] if T >__ 1/c.
The calculations in (6.30) are a special case of the work done for a

general system in 5. The fact that (6.13) comes from the second order
scalar equation (6.6) simplifies things in that the steps (i), (ii), (iii)
following (5.4) need only be performed once. For the general first order
system where B (x) is a polynomial of degree 1 these steps must be per-
formed twice.

If y (., 0) w (., 0) is such that 02y (x, O)/Ox is uniformly small on
[0, 1] and y(., 0) is a smooth function, say analytic on [0, 1], then the
results given in [15, pp. 508-511] show that there is one and only one
analytic function fo(t) defined on [0, i/c] such that y(., l/c) w(., l/c)

0. Such a control is obviously optimal. In addition, if Oy (x, O)/Ox 0
in all neighborhoods of x 0, then it is also time optimal.
We summarize the results for the vibrating string as follows" (i) if

y (., T) contains no segment y coast., the optimal control is a unique
"bang-bang", i.e., extremal, control; (ii) if y(., T) is not identically zero
and T >= l/c, then fo(t) is uniquely determined and extremal on at least
one subinterval of [0, T]; (iii) in certain cases where y (., T) can be made
equal to zero, the control may never be extremal--it may be a smoothly
varying function which never reaches the boundary of the control set.
If T > 1/c one can construct examples wherein the optimal control is not
unique.

It would be preferable, of course, to characterize the optimal control in
terms of y (., 0) but this appears to be very difficult.

7. Boundary value control. In the example of 6 it was very easy to trans-
form the problem into one for which our theory is applicable. In general,
the transformations which carry a boundary value control problem into a
problem of the type described in 1 are more complicated.

In this section we will discuss the control of a system

Ow Ow(L1) E(x) -ff[ A (x) -ff nt- C(x)w

by means of varying boundary conditions

(7.1) Aow(O, t) Bof(t), Aw(1, t) Big(t).

We assume that f(t) and g (t) are absolutely continuous vector functions
of dimensions r and s, respectively, such that, where defined,

(7.2) df at, dg
d d--[

where 2r and 28 are compact convex subsets of E and E", respectively,
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whose interiors we assume to be nonempty. A0 and A1 are the matrices
described in 1.

If the boundary conditions (7.1) are to make sense a number of condi-
tions must be fulfilled. Our discussion of these conditions is very brief and
the reader interested in greater detail is referred to [15, pp. 471-475].
We will assume that the equation

(7.3) det (E (x)k A (x)) 0

has distinct roots ) (x),): (x), hn (X) such that

(7.4) ),(x) > h+(x), x [0, 1], i 1,2, ...,n- 1,

and for some m, 1 m n,

(7.5) (x) > 0 > +1 (x), x [0, ].

Corresponding to each of the eigenvalues ),i (x) of the matrix E-1 (x)A (x)
there is a left (i.e., covariant) eigenvector li(x) which is a unit vector with
the property that

(7.6) l(x)E-I (x)A (x) k(x)l(x).

For each x [0, 1] the set Il(x) i 1, 2, n} forms a basis for E".
The scalar quantities l (x). w (x, t) satisfy certain ordinary differential

equations along the corresponding characteristic curves dx/dt k(x).
Consider some boundary point (0, t), > 0. The "incoming" characteristics
are those for which k(x) < 0, i.e., those for which m < i =< n. Hence
the quantities li (x). w (0, t), m < i =< n, are fixed as terminal values for
certain solutions of ordinary differential equations. Thus for some real
numbers , m < i -< n, we already have

(7.7) l(x).w(O, t) < p, m < i <-_ n.

The equations (7.7) together with

(7.8) Aow (O, t) Bof (t

(A), where L0ismust determine w(0, t) uniquely. Hence the matrix
L0

the n m by n matrix whose rows are the l (x), m < i _-< n, must hve
rank n nd in addition, (7.7) nd (7.8) must be consistent. A similar

condition holds on the matrix (A, where the rows of L1 are the vectors
\L!

l(x), 1 <= i -< m.
Since gtr and t8 have nonempty interiors, (7.1) imply that

(7.9) range B0

_
range A0, range B

_
range A.
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Let Fo and F1 be complementary subspaees for the null spaces of Ao and
A1, respectively. Then the restrictions flo and d of Ao to Fo and As to
F, respectively, are invertible. Setting

(7.10) /o- o-lBo, 1- -IB,
(7.1) becomes

(7.11) Ao(w(O, t) Bof(t)) O, AI (w(1, t) Big(t)) O.

We define a new dependent variable v (x, t) by

(7.12) v(x, t) w(x, t) G(x)h(t).

Here h (t) is the (r q- s)-dimensional vector whose first r components are
those of f(t) and whose last s components are those of g (t), while

(7.13) G(x)h(t) (1 x)Bof(t) q- xBg(t).

Then v (x, t) satisfies

Ov OvE(x) -t A(x) - q- C(x)v
(7.14)

v" dG(x) dh(t)
dx A dt[_

Let

dG(x) q_ C(x)G(x)(7.15) Dl(x) A (x)
dx

and

(7.16) D2 (x) E (x)G (x).

Let u (x, t) be the vector of dimension n q- r q- s whose first n components
are those of v (x, t) and whose last r s components are those of h (t). Let

(7.17) ,p(t) dh(t)
dt

Then (t) is a measurable vector function such that
=> 0. We see then that u (x, t) satisfies the system

(L)

ou
7 (0A (x)

+ (Co(X) D(x))0
u -t- \It+8 ,(t),

where [r+s is the r + s by r + s identity matrix. The boundary conditions
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now re

(7.18) (0A O0)u(O,t)0, (A01 )u(1, t)-0,

nd these clearly imply, because of (1.9), that

(7.19) u(O,t).(Ao 00) u(0, t)-0 u(l,t).(0A1 00)u(l,t) 0.
Hence the system (L.) stisfies the conditions lid down in 1 nd our
theory is applicable to it.

Minimization of

l f01 (0E(x) 0 )(u, T) - u(x, T). L+ u(x, T) dz

(7.20)
1 fo 1

constitutes minimization of the energy in the v coordinates plus term
which serves to measure the displacement of the v coordinates from the w
coordinates. (See (7.12).) One my introduce weighting scheme here, if
so desired, by multiplying both sides of (L) by ny mtrix of the form

(7.21) (n ;)
where P is any symmetric and positive definite r + s by r + s matrix.

Finally we remark that Theorem 1.1 is true for solutions of L because
it is true for solutions of L and (t) satisfies (7.17).

8. Conclusion. We have presented here a rather brief introduction to
finite-dimensional control of partial differential equations of a certain type.
While a maximum principle has been obtained it is clear that it does not
tell as much about the optimal control as the corresponding principle does
for ordinary differential equations. We hope this paper will stimulate further
research in this area. Results concerning controllability would be particu-
lafly interesting.

Finally we remark that the result of Theorem 1.2 lends itself to approxi-
mate numerical solution of the optimization problem by means of quadratic
programming techniques. For partial differential equations to which the
method of separation of variables is applicable one can approximate the
solutions using certain systems of ordinary differential equations. More
detail on these approximate methods may be found in [14] which is an
earlier version of this paper.
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STABILITY OF A CLASS OF DIFFERENTIAL EQUATIONS WITH
A SINGLE MONOTONE NONLINEARITY*

KUMPATI S. NARENDRA AND CHARLES P. NEUMAN$

1. Introduction. In recent years considerable interest has been shown in
the study of the stability of dynamical systems using the second method of
Lyapunov. By this approach, the stability of a dynamical system is guar-
anteed by the determination of a positive definite function whose total
time derivative along a motion of the system is negative definite. The class
of nonlinear dynamical systems discussed in this paper is composed of a
linear plant characterized by the transfer function G(s) and a nonlinear
feedback element f(. whose urgument is a linear combination of the
system state variables.
The purpose of this paper is to examine in detail the absolute stability

(global asymptotic stability) of a class of dynamical systems which satisfy
neither the Popov theorem [1] nor the extended Popov theorem [2], [3], [4].
Specifically, by introducing a new Lyapunov function and utilizing the
Meyer [5], Kalman [6], and Yakubovich [7] Lemma, frequency domain
stability criteria are obtained for the linear plant G(s) in the case of both
monotone increasing and odd monotone increasing nonlinear feedback
functions. The study of this class of dynamical systems was initiated re-
cently by Zames [8] and Brockett nd Willems [9]. For infinite sector
problems these frequency domain stability criteria (sufficient conditions
for absolute stability) are applicable to linear plants whose transfer func-
tions have some real nonzero zeros; for finite sector problems these criteria
are applicable to a system whose characteristic equation evaluated at the
maximum stable feedback gain has some real nonzero zeros or real nonzero
poles.
The results presented in this paper demonstrate that the assumptions of

monotone increasing nd odd monotone increasing feedback functions
lead successively to less and less restrictive conditions on the linear part of
the system, the plant. Moreover, the frequency domain stability criteria
derived in this paper provide a direct, systematic method for the generation
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of explicit Lyapunov functions. Finally, examples are included in order to
illustrate the ideas developed in this paper.

2. Problem statement. The completely controllable, completely ob-
servable, single-input, single-output continuous-time dynamical system
[10] treated in this paper is described by the vector matrix equations

2. Ax q- bu,

(2.) u -f(),

o" hTx,
for all ->_ to, where x, the state of the system, is a real n-vector; A is a real
constant n X n stable matrix; u(. ), the system input or control function,
and (. ), the system output, are real scalar time functions; and b, the in-
put transformation, and h, the output transformation, are real constant
n-vectors.

Since the triple [A, b, hi is completely controllable and completely ob-
servable, a basis in the state space X may be chosen so that this triple has
the canonical (phase-variable) form [11]

0 1

A=

(2.2) --al --a2 --aa

The transfer function of the linear part of the system, the plant, is com-
puted by taking the formal Laplace transforms of (2.1a) and (2.1c) and
utilizing the canonical representation (2.2). This transfer function is

(2.3) G(s) hr(sI A)-lb h,s’- q- hn-1 s’-2 -t- + h2s q-- hl
s + a, sn-1 q- a,_l s’-2 q- q- a= s q-- a,

Moreover, since the dynamical system is completely controllable and
completely observable, the transfer function G(s) p (s)/q(s), where p (s)
and q(s) are relatively prime polynomials with real coefficients and q(s) is
the characteristic polynomial of A. The degree of the numerator polynomial
is less than the degree of the denominator polynomial so that G( o O.
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In addition, the control u -f(o.), where o. h’x is a linear combina-
tion of the system state variables. The continuous nonlinear function
satisfies

(2.4) f(0) 0, 4(o.) > 0, o. -# 0,

and is either (a) a monotone increasing or (b) an odd monotone increasing
feedback function. These two classes of nonlinearities have the additional
geometrical properties which are expressed by:
LEM.a 2.1. Iff(. is a monotone increasing function, then for any o1 and o-.

{f(o.1) /(o.2)1(o.1 o.2) >_- 0.

LEMMA 2.2. If f( is an odd monotone increasing function, then for any o1

and o.2, and any f(. such that 0 < o.f(o.) < o.2, 0 <= e < +
(2.5) o.lf(o) of(o-1) f(rl)f(o) <- [o.lf(o.1) +

Proof.
(i) If o.1 or 0-2 is zero, then the left-hand side of (2.5) is identically zero

and the right side is nonnegative.
(ii) If sgn 0"1 sgn o.2, then o.f(o.) -< o.f(o.1) d-
(iii) If sgn o-1 sgn o.., then the left-hand side is less than -o.f(o.1)

and -jf(o.1) -<_ o.f(l) -t-
These lemmas will be employed to derive sufficient conditions for the

absolute stability of the class of dynamical systems with monotone increas-
ing feedback functions (4) and of the class of dynamical systems with odd
monotone increasing feedback functions (5).

Within this framework, therefore, the purpose of this paper is go investi-
gate in detail the following problem:

Given. The completely controllable, completely observable, single-in-
put, single-output continuous-time dynamical system (2.1) whose linear-
ized system f(o.) Ko. is asymptotically stable for all feedback gains K
lying in the open sector (0,/).

Find. Sufficient conditions for the absolute stability of this dynamical
system when the open-loop system is asymptotically stable and the non-
linearity is (a) a monotone increasing feedback function and (b) an odd
monotone increasing feedback function.

3. Mathematical preliminaries. The ideas required for the development
of this paper are now presented through a series of three lemmas [12].
LEMM 3.1. If -- and s are no eigenvalues of A then

(3.1) ( + n)([ + A)-(d A)-1 (d- A)- + ( + A)-.
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(s + )(7I + A)-I(sI A)-1

(7I - A)-l{(y/q- A) + (sI A)} (sI A)-1

(sI- A)-I+ (TI+A)-l.
If G(s) has a zero at s -7, then

G(8) (8 - )(rn-18n-2 - rn-28
n-3 - - r28 - rl) (8 + )R(8),

where R(s) rr(sI A)-15 and r col (r r2 r3 rn_ rn-1 0).
The important result for transfer functions with nonzero zeros is stated

by the following"
LEMMA 3.2. /f G(s) has a zero at s --7, then hr(TI - A )-lb O, and

hr(vi

_
A)_l(si A)_lb G(s)

=_ R(s).

Proof. Premultiplying (3.1) by h r and postmultiplying (3.1) by b yields

(s + 7)hr(7I + A)-l(sI A)-b hr(sI A)-lb + hr(vI + A)-lb,
so that

hr(Ti + A)_l(si A)_lb G(s)

Finally, Lemma 3.1 is applied to yield the analogous lemma for finite
sector problems.
LEMMA 3.3. If h r(Ti + A)-lb 1//, then

hr(ni + A)_l(si A)-lb G(s) + 1/,
where s -7 is a zero of G(s) + 1/[.
The proof of Lemma 3.3 is identical to that of Lemma 3.2; the algebraic

details are omitted here.

4. Monotone increasing functions. The second method of Lyapunov is
now employed to derive sufficient conditions for the absolute stability of
the dynamical system (2.1) with monotone increasing feedback functions.
For this purpose introduce as a candidate for the Lyapunov function

1 f0
hr

V x - xrPx + o f( de
(4.1)

foriTx+ f() d, (p pr >= 0),
i=l
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where all scalar multipliers (Greek letters) are nonnegative and the se-
quence of n-vectors {r} is to be determined. The infinite and finite sector
problems are treated separately.
The following statement of the Meyer-Kalman-Yakubovich (1VIKY)

Lemma [5] is employed throughout the development of this paper.
LEMMA. Let A be a real n X n matrix all of whose characteristic roots have

negative real parts; let 3" be a real nonnegative number, and let b and tc be two
real n-vectors. If
(4.2) 3’ q- Re {t(ioI- A)-lb} >= 0

for all real , then there exist two real n X n symmetric matrices P and D and a
real n-vector q such that
(i) PA + A rP 2qqr- 2D,
(ii) Pb 2q,
(iii) D is positive semidefinite and P is positive definite,
(iv) {x R:xrDx O} {x R:qretx 0}

4.1. The ite sector problem for monotone creasing functions.
First, the following sufficient conditions are derived for the absolute sta-
bility of the system (2.1) in the case where the linerized systemf(z) Kz
is asymptotically stable or all positive feedback gains K.
THEOREM 4.1. Consider the single-input, single-output, completely con-

trollable, completely observable dynamical system (2.1) where A is a real
n X n stable matrix, the linearized system is asymptotically stable for all K > O,
and f(. is a monotone increasing function such that

f(O) O, zf(z) > 0 for O.

Let , w, w be real numbers such that hr(I A)-b 0 for
i 1, 2, v. Then the dynamical system (2.1) is absolutely stable if there
exist nonnegative constants a, o fl, such that

(n) -= e0;=0ifandonlyif=0, i= 1,2,...,v;a 0;

Proof. Since h rA sI A )-b sh r sI A )-b h rb, Lemma 3.2
shows that hypothesis (b) is equivalent to

hrA



300 KUMPATI S. NARENDRA AND CHARLES P. NEUMAN

Let r r (7/)hr(vJ + A.)-, where s -v is a zero of G(s); so that
rrb O,i 1, 2, ...,
The MKY Lemma shows that there exists a positive definite matrix P

and an n-vector q such that

(4.3) PA - ArP -2qqr 2D,

(4.4)

where 0hb. Since G(s) is a minimum phase transfer function, h Zb 0.
Hypothesis (b) and the MKY Lemma demonstrate that the function

(4.1) is positive definite.
The time derivative of (4.1) along any motion of system (2.1) is

(z) zr(PA + ArP)z -f(hrx)xr{Pb oArh} ohrb{f(h%)}
(4.5)

+ rrAxf(rrx) rrbf(hx)f(rrx).
=1

By adding and subtracting azf(z), a > 0, and the semidefinite quantity

{f(hrx) f(rrx)}(h r)rx 0
i=l

to (4.5), this time-derivative is rewritten

1 xr(PA + Arp

Pb (h +oA’h +(h r) zf(hrz)
i=1

i=l

The definition of r implies

(4.7) rrA - (r h) r rr,
By substituting (4.3), (4.4), and (4.7) into (4.6), this time-derivative of

(4.1) becomes

?(x) --xrqq% 2V/qrxf(h ’x) f:(hrx) oo-f(o)
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Upon completing the square, this time-derivative (4.8) of the function
(4.1) is written

(x) -(qrx + %/f(o-) )2- azf(z) xrDx
(.9)

I =I

Lemma 2.1 shows that this time-derivative is nonpositive definite. It
therefore remains to demonstrate that the only solution of (2.1) that re-
mains in the set where (x) 0 is the null solution x(t) 0. Assume x(t)
is a solution of (2.1) that remains in the set where (x) 0 for all and
x(0) x0. From the second term z(t) hx 0. Thus, x(t) is a solution
of Ax so that x(t) etxo From the first term, q’etxo O. From the
third term, x’Dx 0 and so by part (iv) of the MKY lemma x0 0. Thus
the only solution of (2.1) that remains in the set where 0 is the trivial
solution x(t) 0.
Hence, V(x) defined by (4.1) is a Lyapunov function which demonstrates

the absolute stability of the dynamical system (2.1) for all monotone in-
creasing feedback functions (2.4).

Comments. (i) Physically, hypothesis (b) of Theorem 4.1 requires that
the product of the plant transfer function G(s) and the multiplier be a
positive real fu,nction and therefore be realizable as the driving-point im-
pedance of a passive electrical network. Moreover, since

1-- e 0,

this multiplier is recognized to be the partial-fraction expansion of the driv-
ing point impedance of an RL electrical network and may be rewritten

where0 c 1, i 1,2,...,v.
(ii) It is interesting to note that the Popov multiplier a + s is the driv-

ing point impedance of the RL network composed of series resistor-in-
ductor combination. The phase ngle of this multiplier starts t zero nd
increases monotonically to 90. The phase ngle of the multiplier used in
Theorem 4.1 Mso lies between 0 nd 90 but is not monotone increasing
function of requency. Thus, necessary condition for the ppliction of
the Popov theorem nd Theorem 4.1 is that the Nyquist plot of G(s) be
restricted to the first, third, nd eurth quadrants.

(iii) In Theorem 4.1 there is an n-vector r nd there re scalars , ,
nd e for ech rel nonzero zero of G(s). Thus, these results re pplicble
to systems whose plant transfer unctions hve some real nonzero zeros.
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The application of the systematic procedure of Theorem 4.1 for the con-
struction of the explicit Lyapunov function (4.1) is now illustrated by the
following example. Only the main results of this example are presented here;
the tedious algebraic calculations have been omitted.
Example 4.1. Fourth order system with two real zeros. Consider the single

degree of freedom dynamical system described by

(4.10)

where

"2 + (a + b) + (ab -- c)2 -- c(a -- b)2 -- abcx

+ f[h3(ax + (a + )2 + "2] O,

When linear feedback is employed, the Routh-Hurwitz conditions in-
dicate that the linearized system is asymptotically stable for all positive
feedback gains. The purpose of this example is to determine whether the
nonlinear system (4.10) is absolutely stable for all monotone increasing
feedback functions.
For this problem

so that

0

-abc

1 0 0 "]
0 1 0
0 0 1 |’

--c(a + b) -(ab -t-" c) -(a + b)

b and h h3
a --fl

LlJ o1 j,

G(s) h3(s -- a)(s -{- )
(s + c)(s -t- a)(s + b)"

Since b > f > a > a > O, a suitable RL driving point impedance multiplier
is

(8) s(s - a)(s - b)
RL (s + )(s + )

() hs/ sand since G(s),, + c) is an LC driving point impedance (a
positive real function), the hypotheses of Theorem 4.1 are satisfied and
(4.10) is absolutely stable for all monotone increasing feedback non-
linearities. Moreover, the Lyapunov function which demonstrates the
absolute stability of (4.10) for all monotone increasing feedback non-
linearities is
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(4.11)

V(x) h3 x’=
a2b2c abc(a b) abc

abc(a + b) ab + c(a + b) (a + b)(ab + c)
"| abc (a + b)(ab + c) (a + b) + c

0 ab (a + b)

(a )(b )
4- a( a) o

f d

(b B)(fl a)!+ d.( )

0

(a +1 b) 3

The time-derivative of this Lyapunov function along a motion of system
(4.o) is

(x) _(a a)(b a) {f[h3(axl + (a + )x. + xa)]
( )

--f(ah(x + x.)]}h(x. + xa)
(4.12)

(b )( a) {f[h3(axl + (a + )x + xa)]
( )

f[Bha(ax + x.)]}h(ax2 + x3).

4.2. The finite sector problem for monotone increasing functions. Next,
these ideas are extended to the case where the linearized system is asymp-
totically stable for all feedback gains K lying in the finite open sector
(o,/).
THEOaEM 4.2. Consider the single-input, single-output, completely con-

trollable, completely observable dynamical system (2.1) whose linearized system
is asymptotically stable for all feedbaclc gains K lying in the finite open sector
(0, [). A is a real n X n stable matrix and f( is a monotone increasing func-
tion satisfying

(4.13) f(O) O, 0 < (f(a) < [ for O.

Let m, w., be real numbers such that hr(vJ + A)-15 1 for
i 1, 2, v. Then the dynamical system (2.1) is absolutely stable for all
monotone increasing feedback functions (4.13) if there exist nonnegative
constants a, o " " such that
(a) v- ’ ->- 0; O if and only if - O,i 1, 2, ...,v;
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= - s + i -= --> 0.

Proof. Lemma 3.3 demonstrates that hypothesis (b) is equivalent to- - o hb + Re h - o hrA

Define r r (/fl)hr(vI + A)-, where s -v is a zero of G(s)
+ 1/; so that rrb (/fl)(1/); i 1, 2, -.., v.
The MKY Lemma shows that there exist a positive definite matrix P

and an n-vector q such that

PA + A rP _2qqr_ 2D

(4.15) Pb ah - fl Arh - h r)} 2VCy q,
i=l

where ohb -- a/ O.
By the developmeng of this section, the time-derivative of the funeUon

(4.1) may be wriggen

1 xr(PA + ArP)x [Pb (ah + o Ah(x) =
+ (h r))]rxf(h’x)

i1

+ o hb f(hz) f() e r zf( ri x
i=l

(h r)rx{f(hrx) f(rrx) + f(hrx)f(rrx)
i=l

Substitution of (4.1) and (4.15) into (t.16) and completion of the
square yields

(4.17) zDz e r zf(

(h Z(h) f() + Z(h )Z()

(4.14)
nd
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Since the monotone increasing nonlinearity is restricted to lie in the
finite sector (0,/), the last term

[ 1
(h r)rxlf(hrx) f(rrx) - f(hrx)f(rrx)

is nonpositive definite for all hrx and rrx, i 1, 2, v. Moreover, the
MKY Lemma demonstrates that the only solution of (2.1) that remains
in the set where this time-derivative of (4.1) vanishes is the null solution
x(t) O. Thus the system (2.1) is absolutely stable for 11 monotone
increasing nonlinearities lying in the finite open sector (0, /).

Comments. (i) Hypothesis (a) shows that the multiplier used in Theorem
4.2 is the partial-fraction expansion of th:e driving point impedance of an

RL network.
(ii) Since the stability properties of a system with the transfer function

G(s) in the forward path and a monotone increasing feedback function
(4.13) are completely equivalent to those of a system with the plant transfer
function 1/[G(s) + 1//] and any monotone increasing feedback function,
Theorem 4.1 and Theorem 4.2 demonstrate that a theorem, completely
analogous to Theorem 4.2, can be stated for a multiplier which is the driving
point impedance of an RC electrical network whose zeros are the real poles
of G(s) - 1/[.

5. Odd monotone increasing functions. The additional assumption of an
odd monotone increasing feedback function leads to even less restrictive
conditions on the linear part of the system than the conditions derived in

4. In order to derive frequency domain stability criteria for the absolute
stability of the dynamical system (2.1.) with odd monotone increasing
feedback functions, employ the Lyapunov function

1 hTx

V(x) - x’Px - o f f() d
,0

(.)
Vl

JO

ri Tx vj=l fo
rj’ Tx

+ E f f() d + / f() d,
i1

where all scalar multipliers (Greek letters) are nonnegative and the se-

quences of n-vectors {r} and {r’} are specified by (4.7).
Theorems applicable to infinite and finite sector problems are presented

separately. Since the proofs of these theorems are completely analogous
to those of Theorem 4.1 and Theorem 4.2, the theorems presented in this
section are stated without proof.
Lemma 2.2 and Lemma 2.3 demonstrate that in the case of odd monotone

nonlinearities, the sequence of scalars {,} employed in Theorem 4.1 and
Theorem 4.2 may be either positive or negative.
THEOREM 5.1 (Infinite sector). Consider the single-input, single-output,
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completely controllable, completely observable dynamical system (2.1) whose
linearized system is asymptotically stable for all positive feedback gains K.
A is a real n X n stable matrix and f(. is an odd monotone increasing func.
tion such that

f(O) O, af(a) ) 0 for O.

Let {v} and Ivy’} be finite sequences of real numbers such that hr(vJ A )-b
0 for i 1, 2, v and h r(v’I A)-b 0 for j 1, 2, v.

Then the dynamical system (2.1) is absolutely stable if there exist nonnega-
tire constants a and o and finite sequences of nonnegative constants
[’}, {}, {7’} such that
(a) - e 0; 0ifandonlyff O,i 1, 2, ...,

v - e 0;fl O if and only if ] =O,j= 1,2,...,v;

Re G(s) a + floS + 7 1
1

(b)

+ + >0.

By he hypothesis of Theorem 5.1 and application of he MKY Lemma,
he negative semidefinie upper bound of he ime-derivaive of he
Lyapunov function (5.1) is

(x) -[q% + xf()l ,(h r) %[f(hx)

Vl v2

Dx .f() er xf(r) ,r
r xj[r %),

=i =i

where ohb O.
ThEashos tha th oly soluio of (2.1) ha rais

he se where his upper bound of he tie-deriaiYe of he
fuctio (5.l) anishs is Sh ull oluion () 0 o th hm
absolutely sable.
Coe. Th u@Ibr of Theorem .i is h Danial-fracio x-

pansion of th driving poi iedace of a scial class of 1crical
networks. This class of dridng oi ipedac has th represenatio

(5.2) 2() zc R E sL E ZRL

and has poles which re the rel nonzero zeros of the plant transfer func-
tion G(s). Thus, Theorem 5.1 my be applied to the class of systems
(2.1) whose linear plants have transfer functions with Nyquist plots lying
in all four quadrants.
Moreover, hypothesis (u) shows that the multiplier used in Theorem

5.1 may be rewritten
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where0 <- c -<_ 1, i 1,2, ...,vl,ndl __< c/ =< 2, j 1,2, ...,v2.
The following example is presented in order to illustrate the ppli-

ction of Theorem 5.1.

Example 5.1. Let

so that suitable multiplier is

s(s + aa)
(d’ + b) (s + a)

Z(s) s +a l+a(1-- a)

If a < 1, Theorem 5.2 shows that this system is bsolutely stable for M1
odd monotone increasing feedback functions. If, however, a > 1, Theorem
4.1 demonstrates that this system is absolutely stable for all monotone
increasing feedback functions.
THEOREM 5.1 (Finite sector). Consider the single-input, single-output,

completely controllable, completely observable dynamical system (2.1) whose
linearized system is asymptotically stable for all feedback gains K lying in the
finite open sector (0, [(). A is a real n X n stable matrix and f(. is an odd
monotone increasing function satisfying

(5.3) f(0) 0, 0 <zf(z) < /z2 for (r # O.

Let {} and l’} be finite sequences of real numbers such that
[hr(nd + A)-b 1 for i 1, 2, ..., v and [hr(n’I + A)-b l for
j 1, 2, v. Then the dynamical system (2.1) is absolutely stable for all
odd monotone increasing functions (5.3) if there exist nonnegative constants
a and o and finite sequences of nonnegative constants {}, {/}, l’l and
such that
() /i ’ i 0; fl 0 if and only if / O, i 1, 2,
.’.’ %.’ e.’ => 0;’ O if and only if "yj’ O,j 1,2, ..., v2;

a#O;

(b)

By the hypotheses of Theorem 5.2 and pplication of the 1VIKY Lemma,
the negative semidefinite upper bound of the time-derivative of the Lya-
punov function (5.1) is
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?(X) < --[qrx
i=1

xrDx r z)} + f(hrx)f(rrx)i=l

V2
IT fTe r xjr x),

where
Moreover, the MKY Lemm shows that the only solution of (2.1) that

remains in the set where this upper bound vanishes is the null solution
x(t) 0. Thus, the system (2.1) is absolutely stable for all odd monotone
increasing feedback functions lying in the finite open sector (0, ).

Comments. Hypothesis (a) demonstrates that the multiplier employed
in Theorem 5.2 is the partial-fraction expansion of the special class of
RLC networks hving the driving point impedance 2c represented by
(5.2).

6. Acowledgment. The authors are indebted to the referee who is
responsible for many corrections and improvements in this paper.
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THE SECOND VARIATION FOR THE SINGULAR BOLZA
PROBLEM*

B. S. GOH
1. Introduction. The Bolza problem of the calculus of variations may be

formulated thus: y(x), i 1, 2, n, is a set of n functions defined over
an interval a < x < and satisfying differential constraints

(1) (x, y, y’) 0, 1, 2, ..., m < n,

where y, y’ denote the whole set of functions and their derivatives. The
derivatives y/(x) are assumed continuous except for a finite number of
finite discontinuities, xl, x2 are endpoints satisfying a < xl < x. <: b.
The values of the unctions at these endpoints are required to stisfy end
conditions.

(2) ,[x, y(x), x., y(x.)] 0, / 1, 2, ..., p _-< 2n -+- 2.

The problem is to determine the set of unctions (if it exists) and end-
points stisfying these end conditions and the differential constraints, which
minimizes a quantity J given by

(3) J g[x y(x) x y(x.)] -F f(x, y, y’) dx,

where g nd f are known functions.
Bliss [1] shows that, assuming the unctions f, g, , , satisfy certain

conditions of a general nature, a necessary condition to be stisfied by .func-
tions y(x) and endpoints xl, x. minimizing J, is the so-called multiplier
rule. He also derives urther necessary conditions associated with the names
of Weierstrass and Clebsch. By consideration of the second variation of J, a
fourth necessary condition is obtained. In this paper, we shall examine this
last condition.

Given unctions y(x) define an arc E ia an (n -F 1)-dimensional space
in which (x, y, y., y) are coordinates. A set of admissible variations
along E is a set of two quantities , . and n functions v(x) satisfying the
equations of variation

(4) 0 , +Oy/ i O,

* Received by the editors September 7, 1965.
Deprtment of Mthematics, University of Caaterbury, Christchurch, New

Zealand.
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(5)

where the usual repeated subscript summation convention has been em-
ployed and yl y(xl), y2 y(x2). The partial derivatives in (4) and
(5) are to be calculated along E. It is demonstrated by Bliss that, provided
the arc E satisfies a normality condition (i.e., the multiplier l0 occurring in
his multiplier rule does not vanish) variations satisfying the equations of
variation (4), (5) certainly exist. Given such a set of variations along a
minimizing arc E for which the second derivatives y" (x) are continuous
(i.e., E is an extremal) the second variation of J with respect to the varia-
tions is given by

fxx2 t(6) J 2[ n(x), n(z)] + (x, n, x,

where 2 is a certain homogenous quadratic form in its arguments and

(7)

The coefficients R., Qj, Pj are evaluated along the arc E from the equa-
tions

OF OF O2F
(8) Ri 0 ’ " Qi Py (y oy’oy oy

where

(9) F f
the l being multipliers occurring in the multiplier rule. The fourth necessary
condition to be satisfied by E, if it is to minimize J, is that

(10) J(, n) => 0

for all admissible variations 1, ., n(x).
A particular set of admissible variations satisfying the conditions (4),

(5) is given by

() 0, 0, ,(x) 0.

For this set of variations J vanishes. Hence, if E satisfies the condition
(10), this set of variations must minimize J. We are accordingly led to
consider the accessory minimizing problem, viz., to minimize J with respect
to the set of functions (x) satisfying the differential and end constraints
(4), (5). The minimizing set (11) must satisfy the Clebsch condition for
this accessory problem. The function F occurring in the multiplier rule (see
(9)) takes the following form for the accessory problem:
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(12) F 2o - X0 \0-/i -t- i

Hence,

and the Clebsch condition requires that

(14) R.rr. => 0

each point of E for every set (rl, r., rn) satisfying the constraints

(15) 0 r 0.
Oy

This condition is identical with the Clebsch condition for the original
Bolza problem, so that this approach to the accessory problem provides no
fresh information. However, if the Bolza problem happens to be singular,
it will be shown that the second variation may be transformed into a new
form for which this approach yields an independent necessary condition.
A minimizing arc E is said to be singular in the following circumstances"

Let R be the n X n matrix with elements R and let denote the m )< n
matrix with elements O/Oy’. Then, if Cr denotes the transpose of

and we form the (m -t- n) X (m -t- n) determinant

(16) A
0

0 being the zero m m matrix, then E is singular if/ vanishes at any
point on it. We shall study the case where A vanishes at every point of E.

2. Elementary illustration. Consider the problem of minimizing the
integral

(17) J (P + Qy’) dx

with respect to the function y(x), where

(18) P P(x, y), Q Q(x, y),

and y is to satisfy fixed end conditions

(19) y(a) A, y(b) B.

There are no differential constraints so that

(20) R 0

identically; the problem is accordingly singular.
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The characteristic equation for the problem proves to be

OP(21) a =0,
Oy Ox

defining a single extremal in the xy-plane. Assuming that the end conditions
are satisfied by this extremal, it remains to decide whether the extremal
does, in act, minimize J.
The Clebsch (Legendre) condition requires that

(22)
Oy,2

(P + Qg’) >= O,

which is trivially satisfied.
The second variation for
v(b) 0is given by

(23) J 2

an admissible variation v(x) with v(a)

dx.

Applying the Clebsch condition to the accessory minimizing problem yields
no urther information, as we expect. However, integrating the first term
in the integrand of (23) by parts and employing the conditions v(a)

0 v(b), we can put J: in the form

Oa
(24) J.= - dx,

where a is give,n by (21). Application of the Clebsch condition to this new
orm of J still yields no new condition. However, if we put

(25)

so that J. takes the orm
,(x) ’(x),

(26) J2 - dx

nd now consider the accessory problem with regard to the unknown func-
tion (x), it is easily seen that the Clebsch-Legendre condition requires
that

(27) 0___ >_ 0.

This is a new condition which hs already been obtained for this problem
by Miele [2].

It should be noted that the end conditions v(a) (b) 0 can be
disregarded after J2 has been expressed in the form (24), since any func-
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tion n(x) not satisfying these conditions can be replaced by a modified
function (x), differing from v(x) only in arbitrary small neighborhoods
of the endpoints and such that v(a) v(b) 0; such a replacement will
result in a change in J2 which is also arbitrarily small and hence can be
disregarded for the purpose of the condition J => 0. It follows that f(x)
is not required to satisfy end conditions on its derivative.

In the next section, we shall generalize the method illustrated above to
be applicable to the general singular Bolza problem.

3. Transformation of the second variation. We now consider the second
variation for the Bolza problem in the form given by (6). The problem will
be supposed singular, such that d as given by (16) vanishes identically
along the hypothetical minimizing arc.
Employing matrix notation, we can write

(28) 2 7’ TRy’ -t- 2v’rQv + v rPv,
where v is an n X 1 matrix with elements and R, Q, P are n X n matrices
with elements R, Q, P, respectively, v r denotes the transpose of .
The matrices R, P are clearly symmetric.
The differential constraints (4) can be written

(29) ’+ 0 0,

where , 0 are m X n matrices with elements a/ay/, a/ay, respectively.
Suppose R is partitioned by lines running between its ruth and (m + 1)th

rows and between its ruth and (m + 1)th columns thus:

(RR(0) R

so thut R is an (n m) X (n m) mtrix, R is a (n m) m matrix
and R is an m X m mtrix. is similarly partitioned thus:

(31) (N]M),
where N is an m m matrix and M is an m X (n m) matrix. According
to the hypothesis applying to the Bolza problem as ormulated by Bliss,
must be of rank m and hence we can rmnge the nomenclature so that N
is nonsingular. Thus N-1 exists and premultiplying (29) by this matrix, we
obtain

(32) ([A),’ + B, 0,

where I is the m X m unit mtrix and

(33) A N-1M,
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(34)

Partitioning thus"

(35)

B N-O.

where p is an m X 1 matrix and r is an (n m) X 1 matrix, we have

tT pt tT pt tT T
-p R + R +p +

Equation (32) cn be written

or

(38) p’ -k Art’ q- Br 0.

Eliminating p’ between (36) and (38), we find that

v’’Rn’ r’’R*r + v’Hr’ + "’Kv + r’L,(39)

where

(40) R* A rR:A RA A rRar q- R,

(41) H Br(R,.A Rr),

(42) K (A rR,. Ra)B,

(43) L BrR,.B.

Substituting from (39) into (28), we see that it is possible to express
in the form

(44) 2o n’rR*n’ + 2n’rQ*v + vrP*
where

(: o)(5) * RI*
(46)

Clearly, R* and P*
P*=P+L.

are symmetric.
We have now expressed the second variation J2 in the form given in (6),

but with the integrand 2o in the form given by (44). The variations
ure subjected to the differential constraints (38) and the end conditions
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(5). We shall now prove that the new form of J2 is singular if, and only if,
the original form is singular.
We define an (n + m) X (n + m) matrix C in the partitioned form

DO -A O)(47) C= 0 I,-m 0

0 I,,,/

where D N-1. Taking determinants and expanding by minors in the
lower n rows, we find that

(48) ]CI
Thus, C is regular. Also

(49)

where

(50)

(51)

(52)

(53)

as R2 is symmetric,

(5)

by (40),

(5)

(56)

R R3r Nr

C=Cr ; RI MotC’M
E E2 E
E4 E5 E6,

oI, E

E D’RD,
E2 Dr(--RA -t- R3r),
E3 DrNr= (ND)r-- Ira,

E4 A rR. + Ra D E. r

E5 A r(R2A Rr) RA + R R,*

E6 -ArNr + Mr= (-NA + M) r O,

E -NA + M 0

by (33). Thus, (49) can be written

E E4T I
E4 RI* 0

oI. 0
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Taking determinants of both members of this equation and expanding the
right-hand determinant by minors of the last m columns and the last m
rows, we find that

(58)

It now follows that RI*I vanishes if, and only if, A vanishes, i.e., if the
minimizing arc is singular.
But the transformed second variation is singular if the determinant

0 0

(59) 0 Rl* A

I A 0

vanishes and we have accordingly proved that the transformed J is
singular if, and only if, J2 in its original form is singular.

4. Further transformation of second variation. We will now examine
the effect upon J as given by (6) and the constraining equations (4), (5),
of a nonsingular linear transformation from variations v to functions ’determined by the transformation equation

(60) , v.
In this equation, V represents an n X n matrix with elements V. which are
functions of x and such that V[ does not vanish for any x in the interval
[x, x].
Now,

(61) n’= V" q- V’f
and hence, substituting from the last two equations into (28) and (29),
we obtain

(62)

where

(63)

(64:)

(65)

and

(66)

2o f’TR’ + 2f’TQlf q- TPI,

R V*RV,
Q1 VrQV + VrRV’,
P VrPV + V’rQV + VrQrV V’rRV’,

where
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(67)

(68) 0 OV + OV’.
R1, P1 are clearly symmetric matrices.
We shall further suppose that the quadratic form , in (6) is transformed

into a quadratic form ’1 in the arguments $1, 2, il, ’i2 and that the end
constraints (5) are transformed into

(69)

Suppose that 2w has already been transformed into the form given in
(44) and the differential constraints into the form of (38). Since RI* is
a singular symmetric matrix, a nonsingular (n m) ( (n m) matrix U
can be found such that

where R4 is an r X r diagonal matrix and r is the rank of RI*. Choosing

(71) V= (/0" OU),
vI uI 0 and the transformation is regular, and it follows that
2 is transformed from the form of (44) to that of (62) with

RI= VR*V=(Io’
(72) 0 0 0

Further, this transformation replaces the constraining equation (37) by
(66) with

(73) 1 (ImIA)( OU)--(I.IAU).
We now further partition 1 thus:

(74) (Ira FI G),

F being an m X r matrix and G an m )<. (n m r) matrix. Performing
a further regular transformation having matrix V1, where
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(75) V

where m A- r + q n, we calculate that R1,61 are transformed into
2, respectively, where

(76) R2

(77)

o : o o o
oL R4000I,.Gr 0 Iq 0 0 0 Iq

0 0 0

(78) 7L.
0

It is now clear that we have succeeded in transforming 2 into the form

(79) 20 ’rR’ + 2’rQ2 + rP2,

in which the derivatives ’, i > m -4- r, only occur in the middle term, and
the differential constraints into the form

(80) 2’ + 0 O,

in which the derivatives ’’, i > m -4- r, do not occur at all. We have ac-
cordingly shown that the assumption that J and its associated constraining
equations are of this special form involves no loss of generality.

5. A necessary condition for minimization. Suppose that J2 as given by
(6) and the constraining equations (4), (5) is of the special reduced form
described at the end of the previous section. Then, if the problem is singular,
m -4- r < n. It follows that the derivatives m+r+l, V,+r+2, "", n only
occur in 2w in the expression

(81) 2Qi.’ 2’rQ

and do not occur at all in the constraining equations.
Letn-m> s=> randt=m+s+ 1, m+s+2,...,n. Supposethe

matrix Q is partitioned thus"
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Q
tQ. Q4,
Q /

so that Q1 is an (n m s) X (n m s) symmetric matrix, Q2 is an
(m + s) X (m + s) matrix, Q is an (n m s) X (m -- s) matrix,
and Q4 is an (m + s) X (n m s) matrix. This can always be done with
Q equal to the 1 X 1 symmetric matrix (Q) and, in general, this is the
only such partition. is then partitioned as

where h is an (m + s) X 1 matrix and k is an (n m s) X 1 matrix.
Therefore

Now, we have

T d
(85) k Qh dx ]cr Q h ]c - Qh l dx,

Xl

x 1 lcQlc - lc d
(86) k’’Q]c dx - xl -x (Q,)k dx,

as Q is assumed to be symmetric. It is clear that the t’ can now be com-
pletely eliminated from the integrand 2w.
Assuming that this elimination has been effected, we make the final

transformation

’, i 1, 2, m -- s,
(87) ’, i m+s- 1, m+ s+ 2, ...,n.

Because of the absence of the derivatives vt, after transformation J2 and
the constraining equations remain in the form of (4)-(6), except that the
end values of the derivatives t’, viz., ’tl, ’t2 occur in the end constraints
(5) and in the quadratic form 2. However, any restrictions placed upon
these two sets of end values do not reduce the class of sets of admissible
functions satisfying the differential constraints, for any such set can be
made to satisfy such restrictions by infinitesimal adjustments over small
neighborhoods of the endpoints and these adjustments will only affect
the integral in J infinitesimally. As a consequence, the quantities ’t,
’t can be treated as parameters playing roles similar to those of and .
Having performed the final transformation (87), the Clebsch condition

is applied to the accessory minimizing problem and can be expected to
yield a new necessary condition. We will illustrate this remark by applying
the method to a rocket optimization problem in the next section.
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6. Application to the intermediate-thrust arcs of rocket trajectories.
We will now apply the results of 4, 5 to the problem of deciding the status
of the intermediate thrust arcs which arise in optimal rocket trajectory
problems (see [3], [4]). The conclusions to which we shall be led are in
agreement with those obtained by Kopp and Moyer [5], Robbins [6], and
Kelley [7], [8] employing different methods. In this section we will use the
following set of indices: i, j, ]c 1, 2, 3; r 1, 2, 10.
The optimal rocket trajectory problem may be formulated thus" Oxlxxa

is an inertial frame. At time a rocket has coordinates x and velocity com-
ponents v its motor thrust acts in a direction having direction cosines l
and the mass rate of propellant consumption is m. Then if g(xl, x, xa, t)
are the components of the gravitational field in the frame, M is the rocket
mass, and c the exhaust velocity, the equations of motion are

(88)

(89) & vi

(90) /= -,n.

Employing the usual spherical polar angles O, b, the direction cosines can
be expressed thus:

(91) sin 0 cos , 1= sin 0 sin , la cos 0.

The rocket is to be transferred from a given point in a gravitational field at
which it has a specified velocity and mass to another given point at which
it is to have another specified velocity. This leads to end conditions

(92) v v0, x x0, M M0 at to,

(93) v v x x at tl

The problem is to choose the functions v(t), x(t), M(t), 0(t), (t), re(t)
subject to the constraints (88)-(90) and end conditions (92), (93) so that
M is maximized, i.e., the propellant expenditure is a minimum. This is
equivalent to requiring that

(9a,) J -M,

should be minimized. The times of departure and arrival, to, tl, may, or
may not, be open to choice.

Treating 0, 4, m as derivatives of functions a(t), fl(t), n(t), the above
problem is set in the form of a Mayer problem as formulated by Bliss [1]
and the argument of the previous sections is immediately applicable. Thus
the equations

(95) 0 &, , m r,
are employed to eliminate O, b, m from the problem.
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Defining a Lagrange functioa F by the equation

(96) F=Xi )i--)-cml--g -t-X+a(2i-v)

it has been shown by Lawden [3], [4] that the multiplier rule and the
necessary condition of Weierstrass can be satisfied by trajectories, called
intermediate thrust arcs, along which

(97) ) ply,

where p is a constant. It may be verified that the determinant d, (see (16)
for the problem vanishes identically, so that the trajectories under con-
sideration are singular.
Denoting the variations of v, x, M, a, , n by 7, 7+, 77,7s, 79, m0,

respectively, the equations of variation prove to be

1 [’Ol Ol 1 Og 1(98) /i cm k.-- is + iD] + -- cii i71o + 7j+ cmli 77,

(99) + 7,

(100) 7 10.

Substituting from (96) into (8), it will be found from (7) that for this
problem

(101)
2mpc
M

By employing (100) this can be simplified thus:

(02)

t 2pc ft tt pc d (7) dt- io7 dt
M dt

[pctlfttlmpc7 -- M 7 dt,
.J to

where use has been made of (90) after integration by parts. Absorbing the
terms involving end values in the form 2v, 2 reduces to the form

1 0 g
103

It is clear that 2 and the equations of variation are already in forms
corresponding to (72) and (73). The next step is accordingly to perform the
transformation whose matrix is (75) on the variations 7. This is the trans-
formation to variables $ where
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1(104) i 2ff

_
cli 10,

(105) +3 i+3,

(106) V7 $7 10,

(107) 7+ +.
In terms of the ’s, the equations of variation now take the form

1 (Ol Ol ) Og 1 1 Ci 10(108) "- cm \-- Ss + + + cmli

1(109) + + clo

$ 0,(110)

and

c2gk1 pcm(s2 -t- 92 sia 0) hk OxOx} +j+3.(111) 2w

0 does not appear in the equations of variation or in 2. We can therefore
replace 0 by 0 everywhere, as expluined in 5. When this has been done,
it will be found that the accessory problem remuins singular and hence that
the above process can be repeated.
We now transform to variations , again employing a transformation

mtrix in the form (75). The equations of transformation prove to be

(112) --1
(113) + + + clo

(114) r,
(115) i+ +.
The equations of variation now take the form

1 (Ol Ol ) 0( 1 )
(116)

1 d(M cml + 1o

( 1 )(117) + c + mcl o,
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1 pcm(8

__
sin. O) X2w - Ox Oxj

(119)

( 1)( 1 )++clo s++clo
Since 0 does not occur in either the equations of vrition or 2, we

cn now replace 0 by 0 everywhere. The resulting form of the ccessory
problem is no longer singular nd the condition (14) subject to the con-
strints (15) tkes the form

1 pcm(s+ si ) llso > 0(.eo)
M ,Ox

subject to the constraints

(121) = c, + + c.+
1 )(122) + c + ncl 10,

(123) 0.

It is evident that the constraints leave m, , 10 rbitrry nd hence (120)
implies that

1 1
pcm si0 > 0,

c g(124) pcm O, M M h dxox l l O.

It follows that p must be positive nd, by (97), that

(125) hhsh
Og

O.
Ox Ox

In the special cse when the gravitational field is an inverse squre lw
of ttmction towards the origin, we hve

(126) g ra
where r xxi, and it follows that

Oxi Ox

Hence
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02gk 9t (Xi,-hkx) 15t )a.128 ’ ’"h Ox Ox r
(Mx

But Mh p: and Mx pr cos , where is the angle between the radius
vector from 0 to the vehicle and the direction of thrust. Condition (125)
is accordingly equivalent to

3ps(9) r (3- s) 0,

whcres cos and hence,

(130) either s > ()1/ or 0 > s > (/

In Lwden [3], [4] it is shown that for the cse of the two-dimensionl
IT-rcs where the transit time is not predetermined, s stisfies the condition

(3) o s ()/.
The conditions (130) are accordingly violated and these /T-arcs cannot
form part of an optimal trajectory.
Leitmann [9, p. 182] has proved all two-dimensional /T-ares satisfy

the condition

(a2)

In exactly the same way we can prove all three-dimensionl/T-arcs satisfy
(132). I follows that/T-ares can be optimal only when s is negative, i.e.,
the thrust possesses a component which is inwardly directed to the centre
of attraction.

7. Rotes. In the investigations [5], [6] special impulsive variations are
used. These variations are generalizations of the impulsive variations used
by Kelley [1_0] to deduce a generalized Clebsch condition which is, however,
ineffective when applied to the/T-ares of the rocket problem studied in 6.

In another approach Kelley [7] firs transforms the state and control
variables according to a rule fully discussed in Kelley [1_1]. The main ad-
vantage of this approach is that it provides a method of deriving the singu-
lar extremals. However, as singular extremals re transformed into singular
extremals there is no guarantee that the classical Clebseh condition, applied
in the new system of variables, will always impose a new and effective
optimality condition, as it does in the case of the singular extremals of
Lawden’s problem in optimal rocket flight [8].

In this paper a procedure is put forward by which a generalized Clebseh
necessary condition for singular extremals my be deduced. One advantage
of this approach is that in some eases the final form of the accessory mini-
mum problem is a nonsingular Bolza problem which would permit us to
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define a generalized Jacobi’s condition. Moreover this approach allows us to
derive, without much more labor, the full generalized Clebsch condition for
problems involving more than one control variable. Thus, although condi-
tion (125) could have been obtained by studying the accessory minimum
problem in the subclass of variations vs 79 0, we have derived the ull
generalized Clebsch condition because terms involving rsrl0 and rg0 could
have occurred in condition (120).
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SUFFICIENT CONDITIONS FOR OPTIMALITY AND THE
JUSTIFICATION OF THE DYNAMIC PROGRAMMING

METHOD*

V. G. BOLTYANSKII
Abstract. The paper contains a detailed presentation of results which were pub-

lished earlier in brief in [3]. The problem of the optimal control of a plant described
by ordinary differential equations is considered. Sut?fcient optimality conditions are
derived, one of which essentially gives a correct foundation to the dynamic program-
ming method (for the class of problems being studied), while the other shows that
under the condition of existence of regular synthesis the maximum principle is not
only a necessary but also a sufficient optimality condition. Examples of the synthesis
of nonlinear second-order systems are given.

1. Introduction. We shall study the motion of a controlled plant which
is described by the system of differential equations

1
dx
dt

f(x ..., x u), i 1, .., n,

or, in vector orm, by the cquution

(2) d
dt

f(x, u).

The control parameter u which occurs on the right-hand side of system (1)
can vry within the limits of certain control region U. We pose the fol-
lowing optimal problem for (1) (see [1, p. 13]): In the phase spce X of
the vrables x, .-., x the two points x0 and x are given; from among
all the piecewise-continuous controls u(t) which transfer the phase point
moing in accordance with (1) from the position Xo to the position x find
the one for which the functional

J f(x(t), u(t)) dt

tatces the smallest possible value. The control u(t) which solves the stated
problem and the trajectory corresponding to this control will, as usual, be
called optimal.
Theorem 3 (or 4), proved below, is essentially the well-known dynamic

programming principle of Bellman [2] as applied to the optimal control
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problem considered above. As is well-known, the dynamic programming
principle, which has been completely substantiated in the ease of difference
equations does not as yet have a firm foundation for the ease of differential
equations. The reasoning which is usually used to substantiate this prin-
ciple (see [1, pp. 69-72]) requires fhe continuous differentiability of the
so-called Bellman function (see below), but this condition is not satisfied
in even the simplest examples. Theorem 3 (or 4) gives an absolutely cor-
rect foundation of a somewhat refined dynamic programming principle
(in the ease of the optimal problem being studied). The dynamic pro-
gramming principle appears in Theorems 3 and 4 as a sufficient (and not,
as is usually done, as a necessary) optimality condition; moreover, it is
proved to such a degree of generality that it allows us to include all the
known examples and a number of new ones.
As is well-known, the maximum principle [1, p. 19] is the correctly-

substantiated necessary optimality condition. We derive below the suffi-
cient optimality condition in the form of a maximum principle (Theorem
5) in addition to the sufficient optimality condition in the form of the
dynamic programming principle. In the former form the sufficient condi-
tion is convenient for practical application (apparently, in general, the
dynamic programming principle has the advantage of greater generality
but yields to the maximum principle in rigor of foundation and in con-
venience of use).. The proof of Theorem 5 is based on Theorem 3 and allows
us to establish the connection between the maximum principle and the
dynamic programming principle.
The sufficient optimality conditions which are obtained play an impor-

tant role for the following reason. The maximum principle allows us in a
number of eases to pick out uniquely the trajectories which may be opti-
mal. Are these trajectories actually optimal? To answer this question in
the ease where system (1) is linear we use the existence theorem for opti-
mal controls [1, p. 127]: since the optimal control exists and since the
maximum principle uniquely determines a trajectory which may be opti-
mal, then it is the (unique) optimal trajectory joining the two given points.
However, the existence theorem has been proved only for linear systems
(1) and, moreover, only for the time-optimal ease; fundamental difficulties
are encountered when we attempt to prove it for nonlinear systems. There-
fore, for even the simplest nonlinear systems there is no certainty that the
trajectories found by synthesizing on the basis of the maximum principle
are actually optimal. Theorem 5 indicates an escape from this situation
since, as a rule, it allows us to assert that a synthesis effeeted on the basis
of the maximum principle does indeed lead to optimal trajectories.
As examples we consider certain nonlinear equations of form (1). For

these examples Theorem 5 is the only means of establishing optimality
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since the existence theorem is inapplicable to the equations being consid-
ered.
The results of this article were presented earlier in [3] in an abbreviated

form.

2. Fundamental lemmas. In what follows we shall assume that the
functionsf(x, u), i 0, 1, ..., n, are defined, continuous, and continu-
ously differentiable with respect to x x, x, where the point
x (x1, x, x) is located in some open set V of the space X. In
other words, the functions

f(x, u), Ofi(x, u)
Ox

i,j O, 1, ..., n,

are defined and are continuous on the direct product V X U. The control
region U can be, for example, a certain set in the r-dimensional vector
space of the variable u (ul, ur). We shall say that a piecewise-
continuous control u(t), specified on the interval to -< <= tl, is admissible
relative to the point x0 V if the solution of the equation

dx

with initial condition x(t0) x0 is defined and remains in the region V for
to =< __< t. Further, we shall say that the control u(t), to <-_ <- t, which
is admissible relative to the point x0, transfers the phase point from the
position x0 to the position x if the solution of (3) with initial condition
x(to) xo satisfies the relation X(tl) Xl. The basic problem which we
shall consider in this article is the following: two points, xo and x, are given
in the region V; from all the controls admissible relative to the point Xo which
transfer the phase point from the position xo to the position x choose the one
which effects the transfer from position xo to position x with a minimal value
of the functional J.
The control u(t) which solves this problem will be called optimal in

region V. The corresponding trajectory x(t) will also be called optimal in
region V. Note that the control and the trajectory which are optimal in
region V may cease to be optimal if region V increases. If V X we
shall omit the phrase "in region V" and speak simply of optimal controls
and trajectories.
We shall now introduce the concept of a piecewise-smooth set, which is

important for what follows. Let K be some bounded, s-dimensional, con-
vex polyhedron, s _-< n, located in a vector space . of the vribles 1, ,

and let us consider it together with its boundary (i.e., as closed
set). Let us assume that in certain open set of space containing the
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polyhedron K there are given n continuously-differentiable functions

(4) 9 (, :, ’), i 1, 2, ..., n,

possessing the property that the functional matrix

has the rank s at every point K. The functions (4) effect a smooth
mapping q of the polyhedron K into the space X by the formulas:

(5) x’ (, ),8 i- 1,’" n.

If the mapping is one-to-one (i.e., different points of the polyhedron K
lead to different points of the space X), then the image L (K) of the
polyhedron K will be called a curvilinear s-dimensional polyhedron in the
space X. It is obvious that a curvilinear polyhedron is a closed and bounded
(i.e., compact) set in the space X.
Any set M V that is the union of a finite or denumerable number of

curvilinear polyhedra arranged in such a way that only a finite number
of these polyhedra intersect every closed bounded set lying in V will be
called a piecewise-smooth set in V. (The polyhdera may "cluster" at the
boundary of the set V.) If among the curvilinear polyhedra whose union
is a piecewise-smooth set M there is even one polyhedron of dimension k
while all the remaining polyhedra have dimensions -< k, then the piecewise-
smooth set M is said to be k-dimensional. In particular, any smooth sur-
face of dimension less than n which is closed in V is a piecewise-smooth
set in V because, as was proved in [4], it can be decomposed into curvilinear
polyhedra. It is obvious that any set of dimension less than n which is
piecewise-smooth in V does not contain interior points.

Let L 9(K) be a curvilinear polyhedron (see [5]) located in the region
V, and let x(t), to -<_ =< tl, be a phase trajectory in V corresponding to
an admissible control u(t), to <= <= tl, i.e., it is a solution of (3). We
shall say that the phase trajectory x(t) has a common position with the
polyhedron L of dimension less than n 1 if it does not intersect it; it
has a common position with the polyhedron L of dimension n 1 if the
following conditions are satisfied"

1. The trajectory x(t) does not intersect the boundary of the polyhedron
L;

2. If rl, r2, rk- are all the points of discontinuity of the control
u(t), then none of the points

x(t0), x(,), x(,), ..., x(,_), x(t)

belong to the polyhedron L;
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3. The trajectory x(t) is not tangent to the polyhedron L at any of its
points, i.e., if x(t’) L, to < t’ < tl then the vector f(x(t’), u(t’) does
not lie in the tangent plane of the polyhedron L drawn at the point x(t’).
In particular, this vector is not zero.

If the phase trajectory x(t) has a common position with the polyhedron
L (of dimension n 1), then each of their common points is an isolated
point on the trajectory x(t) and, therefore, because the trajectory x(t),
to _-< -< tl, is compact, there exist only a finite number of points of inter-
section ot the trajectory.x(t) with the polyhedron L.
LEMMA ]. Let u(t), to <- <- tl, be an admissible control relative to the

point xo V and let L be a curvilinear polyhedron of dimension <-n 1
located in V. Then, in any neighborhood Wo of the point Xo there exists an open
set G Wo such that for any point yo G the solution y( t) of (3) with the
initial condition y( to) yo is defined on the whole interval to <- <__ t and
has a common position with the polyhedron L.

Proof. First of all we can assume, by reducing the neighborhood W0 if
necessary, that for any point y0 W0 the solution y(t) of (3) with initial
condition y(to) yo is defined on the whole interval to =< -< t (see [5,
Theorem 16]). At first let the polyhedron L have dimension __< (n 2).
In V we choose an open manifold N of the same dimension as L containing
the polyhedron L. Such a manifold exists because the mapping (5) which
gives the curvilinear polyhedron L is defined not only on the polyhedron
K but also in some neighborhood of it.
The direct product N X [to, t] of the manifold N and the interval [to, t]

(see [6, p. 14]) is a manifold with an edge, having dimension <= (n- 1).
By P we denote the set of all points (x, N X [to, tl] such that the

Xsolution x(t; x, of (3) with the initial condition x(t’) is defined
on the interval to -< __< t’. The set P is an open subset, i.e., a submanifold,
of the manifold N X [to, t]. For every point (x, P we consider the
trajectory x(to x, i.e. the solution of (3) with the initial condit.ion
x(t’) x, and set

x(to;x, )=(x,

We obtain a mapping (obviously continuous) of the manifold P into the
region V.

Let us show that the image b(P) of this mapping is a first-category set
in V, i.e., the union of not more than a denumerable number of nowhere
dense sets. To do this we set r0 to, r tl. Recall that r, r:,
r_ are all the points of discontinuity of the control u(t). By P-, i 1,
2, lc, we denote the set of all points (x, t’) P for which r_l _-<
_-< r. It is obvious that

P PUP:U... UPs,
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and, therefore,

(P) b(Pl) [J b(P2) U [J (Pk).

Thus, it is sufficient to prove that each of the sets

(P1), (P:), "’, (P)

is of first category in V. This proof is carried out in the same way for all
the sets (P1), (Pk). Let us carry it out for (Pk).

Since for rk-1 <= -< r the right-hand side of (3) depends continuously
onx1, ...,x,tand IS continuously differentlable with respect to x,
x the point x(t; x, is continuously dlfferentlable wth respect to x,
when (x’, t’) Pk, r_ <- <= t, by virtue of the theorem on the differ-
entiability of solutions with respect to initial values (see [5, Theorem 18]).

ITherefore, the mpping (x’ t’) -- x(_l x is smooth (of Class 1)
mapping of the manifold P into V. By virtue of the same theorem on
differentiability with respect to initial values, applied to (3) for _. =<
-< .r_, the point

x(_ , z(_ x(_ z, ), ,_)

smoothly depends on x(r_ t’), i.e., in view of what has already been
proved, smoothly depends on (x,) P. By next considering the inter-
vls

< < ro < < -Tk--3 Tk--2

we finally get that the point x(to x’, t’) (x, ) smoothly depends on,x when (x, P. In other words, the mapping b, considered on
P, is smooth (of Class 1) mapping. Consequently, the set (Pk) is of
first category in V (see [6, Theorem 1, p. 15]).

Thus, the set (P) is of first category in V. Therefore, in W0 there exists
a point y0 ( (P). Let us consider the solution y(t) with the initial condi-
tion y(t0) y0. By virtue of the choice of the neighborhood W0 this solu-
tion is defined on the whole interval to =< -< t. Further, the solution y(t)
does not intersect the manifold N. Indeed, if a point t, to =< -_< h, were
to exist such that y(t’) N, then we would have (y(t’), t’) P because
the solution, y(t) is defined on the interval to <- <- t’. By definition the
solution x(t; y(t’), t’) satisfies the initial condition x(t’) y(t’) and there-
ore, by virtue of the uniqueness theorem, coincides with the solution y(t).
But then

yo y(to) x(to y(t’), t’) b(y(t’), t’) (P),

which contradicts the choice of the point yc..
Thus, the trajectory y(t) ith initial condition y(to) yo is defined on
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the whole interval to =< _<_ tl and does not intersect the manifold N and,
consequently, not the polyhedron L. From the theorem on the continuous
dependence of a solution on the initial values it follows, because the poly-
hedron L is compact, that there exists a neighborhood Wo’ c Wo of the
point y0 such that any solution x(t) of (3), satisfying the condition x(to)

W0’, does not intersect L. This solution is defined on the whole interval
to _-< __< h by virtue of the inclusion W0’ c W0. The case where the poly-
hedron has dimension less than n 1 has now been completely studied.
Now let the dimension of the polyhedron L equal n 1. Then, the reason-

ing above is applicable to any face of the polyhedron L. Since the poly-
hedron L has only a finite number of faces, there exists an open set W0"
c W0 such that the solutions x(t), satisfying the condition x(to) Wo",
are defined on the whole interval to =< =< tl and do not intersect the bound-
ary of the polyhedron L. Thus, for any open set G c W0" condition 1
stated in the definition of a common position is satisfied.

Let us proceed to consider condition 2. In V we choose an open manifold
N of dimension n 1 containing the polyhedron L. By N, i 0, 1, -.k, we denote the set of points x’ N such that the solution x(t; x’) of 3i
with the initial condition x(r) x’ is defined on the interval r0 -< =< r.
Then N is an open subset, i.e., submanifold, of the manifold N. For every

Xpoint x’ N we consider the solution x(t; ), i.e., the solution of (3)
Xwith initial condition x(r) x, and we set (x’) x(ro ). We ob-

tain the mapping (obviously continuous) of the manifold N. into the
region V.
As above, it can be established that is a smooth (of Class 1) mapping

of the manifold N into the region V. Since the manifold N (and hence
also N) has dimension n 1, the image (N) is a first-category set in V.
Consequently,

0(No) U (N) U U (N)
is a first-category set in V. Therefore, there exists in W0" a point

Y0 0(N0) U b(N) U U (N).

Let us consider the solution y(t) with the initial condition y(to) yo.
This solution is defined on the whole interval to -<_ __< h and, as is easily
seen, satisfies the condition y(r) $ N, i 0, 1, k, and, consequently,
also the condition y(r) L, i 0, 1, ..-, k. From the theorem on the
continuous dependence of a solution on the initial values follows the exist-
ence of a neighborhood W0" W0" of the point y0 such that for any solu-
tion x(t) of (3) satisfying the condition x(to) 0 the relations x(r)

L, i 0, 1, k, are satisfied. This solution is defined on the whole
interval to =< __< h.

Thus, conditions 1 and 2 stated in the definition of a common position
are satisfied for any open set G ,,,
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Finally, let us turn to the consideration of condition 3. The direct product
N X [to, tl] is manifold with an edge of dimension n. By Q we denote the
set of all points (x’, t’) N [to, tl] such that the solution x(t; x’, t’) of
(3) with initial condition x(t’) x is defined on the interval to <_- _<_ t’.
The set Q is a submanifold of the manifold N X [t0, t]. We subdivide the
manifold Q into the parts Q, Q:, Q by referring to Q as the set of all
those points (x, Q for which r-i t’ . Further, we define the
mpping of the manifold Q into the region V by setting

(x’ t’) x(to ;x, ).

As before, the mapping , considered on Q, is a smooth (of Class 1) mp-
ping.

Let us assume that the trajectory y(t) with initial condition y(to) y
W0" is, at the instant t’, t0 t’ t, tangent to the manifold N at the

point x’. The instant t’ differs from r0, r, r by virtue of condition 2
which is already satisfied when y W0". Then

X Xx t’ + dt + dx,

where dx is some vector tangent to the manifold N and dt O. In other
words,

t’ t’ x’ t’x t’ + dt x x( + dt + dx, + dt

whence, by virtue of the uniqueness theorem, it follows that

X Xx(t; x(t; + dx, + dt)

In particular, when t0 we get

x’, t’ x’ + dx, t’ + dt

This signifies that a nonzero tangent vector (dx, dt) of the manifold N X
It0, hi t the point (x,) goes to zero when the mapping which is tangent
to , i.e., the tangent mapping at the point (x’, t’), degenerates. In other
words, the point (x’, ) is not a regular point of the mapping , and there-
fore the point (x, y0 belongs to the image of a set of irregular points.
(For definitions of regular and irregular points see [6, p. 10].)
Thus, if a trajectory starting from the point y0 W0" is tangent to the

manifold N, then y0 belongs to the image of a set of irregular points under
the mapping . But, according to [7], under a smooth (of Class 1) mapping
of an n-dimensional manifold into an n-dimensionM mnifold, the image
of a set of irregular points is of the first category1. Therefore, in W0" there

Sard’s theorem, proved by him in [7], was published considerably later by Dubo-
vickii [8]; thus, for the Russian reader it is more convenient to find the formulation
nd the proof of this interesting theorem in [8]. Pontryagin [6] also cites this theorem
(Dubovickii’s Theorem, p. 25), but only a weakened estimate of the smoothness
class is given, which is not useful to us.
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exists a point y0 not belonging to an image of irregular points. The trajec-
tory y(t) starting from this point y0 is not tangent to the manifold N, i.e.,
is not tangent to the polyhedron L, and therefore has a common position
with L. In particular, the trajectory y(t) intersects the polyhedron L at
only a finite number of points without being tangent to it. From this it is
not dit?Scult to deduce the existence of a neighborhood G c W0" of the
point y0 such that when x(to) G the trajectory x(t), defined on the inter-
val to <- -<_ tl and satisfying conditions 1 and 2, also intersects L at a finite
number of points without being tangent to it. In other words, when x(to)
G the trajectory x(t) satisfies all the conditions 1, 2, 3.
Thus, Lemma 1 is completely proved.
LEMMA 2. Let u(t), to <= <- tl, be an admissible control relative to the

point xo V and let M be a set of dimension -<-n 1 which is piecewise
smooth in V. Then in any neighborhood Wo of the point Xo we can find a point
yo such that the control u(t), to <= <- h, is admissible relative to the point
yo while the trajectory y(t), to <= <- tl starting from the point yo and cor-
responding to the control u(t), intersects M at only a finite number of points
(i.e., there exist only a finite number of instants t, to <= .<:- t for which y(t)
M).
Proof. Let x(t), to <= <= h, denote the trajectory corresponding to the

control u(t) and starting from the point x0. This trajectory lies wholly
inside the region V and is compact. Therefore, there exists a neighborhood
W V of this trajectory which intersects only a finite number of the
curvilinear polyhedra comprising set M. Let us enumerate these polyhedra
asL,L2, ,L.
We shall study (3), which is obtained by substituting in place of u in

the right-hand side of (2) the control u(t) mentioned in the lemma. Then
x(t) is the solution of (3) defined for to _-< __< t and satisfying the initial
condition x(to) xo. By virtue of the theorem on the continuous depend-
ence of a solution on the initial values, there exists a neighborhood W0’

W0 of the point x0 such that any solution y(t) of (3) for which y(to) Wo’
is defined on the whole interval to <= =< tl and is situated wholly in the
region W.
By virtue of Lemma 1 there exists a neighborhood W0(1) c W0’ such that

any solution y(t) for which y(to) Wo(1) has a common position with the
polyhedron L. By virtue of Lemma 1 there exists an open set W0(2) W0(1)

such that when y(to) Wo( the solution y(t) has a common position with
the polyhedron L2. Continuing thus, we obtain the open sets

W0" c W0 c W01 c W0’ c W0.

When y(to) Wo the solution y(t) has a common position with all the
polyhedra L, L2, L,. Moreover, it is situated wholly in W because
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y(to) Wo’, and therefore does not intersect any of the other polyhedra.
Consequently, when yo y(to) Wo() Wo, the solution y(t) intersects
M at only a finite number of points.
Lemma 2 is proved.

3. Estimates of transient response performance.
LEMMA 3. In the region V let there be given a piecewise-smooth set M of

dimension _<-n 1 and the function o(x) o(x1, xn), continuous
in V, which in the set V M is continuously differentiable with respect to
x, x and satisfies the condition

(6) Oo(x)
if(x, u) < f(x, u) x V M, u U.

a=l 0X

Then if u(t), to <= <= h, is an admissible control relative to the point xo which
transfers the phase point from position Xo to the position xl, and if x(t) is
the corresponding trajectory, then

(7) f(x(t), u(t) dt >=_

Proof. Let us select an arbitrary number e > 0 and let W0 and W be
neighborhoods of the points x0 and x, respectively, such that

I(x) o(x0)l < if x W0,

I(x)-(z)l< i xW.
The trajectory corresponding to the control u(t) and starting from the

point Xo is denoted by x(t). Then x(t) is solution of (3) defined for to
-< =< h and satisfying the conditions x(to) Xo, x(h) x. By virtue
of the theorem on the continuous dependence of a solution of system of
differential equations on the initial conditions, there exists a neighborhood
W0’ W0 of the point x0 such that any solution y(t) of (3) (with the same
control u(t), to <= <= h), for which y(to) W0’, is defined on the whole
interval to <_- _<_ h and satisfies the relations

y(h)

By virtue of Lemma 2 there exists a solution y(t), to _-< __< h, of (3)
which satisfies the condition y(t0) W0’ and intersects M at only a finite
number of points. Let 01, 02, 0m_ be the instants at which the tra-
jectory y(t) intersects M and, moreover, let

01 < 02 < < Ore--1.

Further, let us set

00 to, 0,, h.
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When. 0_ < <: 0, i 1, 2, m, the point y(t) is located in the
set V M and, therefore, the function o is continuously differentiable at
the point y(t) and satisfies (6). Therefore, when 0_ <: < 0 (if differs
from the values r, ..-, r_ at which the control u(t) is discontinuous
and (2), therefore, is not satisfied) we have

do(y(t) - Ooo(y(t) dy"(t)
dt z..,=l Ox dt

&o(y(t)) ff(y(t), u(t)) <- f(y(t), u(t)).
=1 OX

Thus, everywhere on the interval to =< __< tl except at the points 00,
01, 0 and vl, r-l, i.e., everywhere except at a finite number
of points, the function oo(y(t)) has a continuous derivative and satisfies
the relation

&o(y(t)) < fO(y(t u(t))
dt

From this, because the function oo(y(t)) is continuous, it follows that the
inequality

(8) a(y(tl)) oo(y(to)) <- f(y(t), u(t)) dt

holds
Further, since y(to) Wo’ Wo, then y(h) W1. Consequently, by

virtue of the choice of the neighborhoods W0 and W1 we have"

f(x(t), u(t)) --f(y(t), u(t))l < , to <=t <__

In particular,

(9)

(10)

and, further,

oo(y(to))- oo(Xo) < ,
--o(y(tl) - oa(xl) < ,

(11) ft t
(f(y(t), u(t)) f(x(t), u(t))) dt < ftt’ e dt e(tl to),

f(y(t), u(t)) dt < It t’

f(x(t), u(t) dt - e(tl to).

Adding inequalities (8)-( 11 we find
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(x)- (x0) < *’ f(x(t), u(t)) dt + 2 + e(t- to).

In view of the arbitrariness of e, from here we also obtain the required
relation (7).
Lemma 3 is proved.
LEMMA 4. In the region V let there be given a closed set M of measure zero

in V and a continuous function co(x) which satisfies a Lipschitz condition
locally in V and which on the set V-M is continuously differentiable with
respect to x1, x and satisfies (6). Then for any admissible control
to tl, relative to the point Xo, which transfers the phase point from the
position xo to the position xl, (7) is satisfied.

Proof. Let us select a neighborhood W0 of the point x0 possessing the
property that the control u(t), to -< <= tl, is admissible relative to any
point y0 W0. Such a neighborhood exists by virtue of the continuous
dependence of a solution on the initial values. From the neighborhood W0
and a number > 0 let us choose the neighborhood W0’ in the same way
as in the proof of Lemma 3. We denote by x(t; y) solution of (3) satis-
fying the initial condition x(to) yo We’. The formula

b(yo, t) (x(t; y0), t)

defines a continuous mapping of the direct product Wo’ X [to, t] into the
direct product V X [to, hi. We choose the points to, r, r as before.
Then, on the product

Wo’ X (r:_, .), i 1,2, ...,k,

the mapping is a smooth (of Class 1) mapping by virtue of the theorem
on the differentiability of a solution with respect to the initial conditions.
Furthermore, this mapping is regular at every point of the product W0
X (ri-1, ri), i.e., has a nonzero Jacobian. Indeed, by using the varia-
tionM equations it is easy to show that the vectors

Ob(yo, t)
i 1, ..., n,

Oyo

where y0, 90 are the coordinates of the point y0, are linearly independ-
ent at any instant t. These vectors lie in the "layer" const, of the direct
product V X [to, t]. However, the vector O/(yo, t)/Ot, defined for to,, r, is different from zero and does not lie in this layer. Thus, the
vectors

This lemma and the proofs of Theorems 2 and 4 which are based on it form an

entity in themselves and are not connected with the rest of the paper. Therefore,
Lemma 4 and Theorems 2 and 4 can be omitted without affecting the understanding
of the remaining part of the paper.
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0(y0, t) Og/(yo, t) O/(yo, t)
Oyo Oyo

are linearly independent and, therefore, the mapping is regular. More-
over, the mapping is homeomorphic, by virtue of the uniqueness theorem.

Since M has measure zero in V, the set M It0 t] has measure zero
in the manifold V X [t0, t]. From this it easily follows that the set
-(M X It0, ti]) hs measure zero in the mnifold Wo’ X It0 tl]. Indeed,
the prt of the set -(M X [t0, tl]) which is located in Wo’ X (-, ri) bus
measure zero because is a smooth homeomorphism. Further, the part of
the set -(M X [t0 t]) which is located in Wo’ has measure zero
since the set Wo’ X itself has measure zero in W0’ X It0, t].

Thus, -1(M X [to, t]) is set of meusure zero in Wo’ X It0, hi. From this,
according to the general theorems of measure theory (for example, see [9,
pp. 367-371]), it follows that for almost all points yo Wo’ the seg-
ment I(y0), consisting of points of the form (y0 t), It0 t], intersects
-(MX [t0 h]) in a set of measure zero (in the sense of measure on this in-
tervM). Let us select such a point y0 and consider the solution y(t) of (3)
with the initiM condition y(t0) y0.

By virtue of the definition of mpping we hve

(y(t), t) (yo, t), to t.

It is eusy to understand that the inclusions

(y0, t) -(M X [t, t]), (y(t), t) M X [t0, t], and y(t) M

re equiwlent. Therefore, because of the wy the point y0 was chosen, the
set of those points for which y(t) M has measure zero on the interval
t t. Let us denote this set by R. Then the set [t0, t] R is of com-
plete measure on the interval It0, t]. When [t0, t] R, the point y(t)
lies in V M nd, therefore, the function (y(t)) has at this point a
derivative which satisfies the condition

(12) d(y(t)) fO(y(t), u(t)).
dt

(Compare the proof of Lemm 3.) Thus, almost everywhere on the inter-
val [t0, tl] the function (y(t) has u derivutive with respect to and saris-
ties (12).

Furthermore, the function (y(t)) is ubsolutely continuous. Indeed,
since the trajectory y(t), to t, is a compact set, the func-
tion f(y(t), u(t)) (see (2)) is bounded on this trajectory. Let K be the
upper bound of this function. Then for any two values t, lying in the
interval It0, tl] we have

p(y(t’), u(t"5 KI t’
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where p denotes distance in the space X. Since, further, the function (x)
locally satisfies a Lipschitz condition, then for any [to, tl] there exists a
constant Ks such that

(X X: X

provided only that x’ nd x" re contained in sfciently smll neighbor-
hood of the point y(t). Thus, if t’ nd t" re sufficiently close to t, then

(y(t’)) (y(t")) Kp(y(t’), y(t")) KK.] t’
In other words, the function (y(t)) locally stisfies Lipschitz condition
nd, therefore, is bsolutely continuous.

Thus, the function (y(t)) is bsolutely continuous nd stisfies (12)
lmost everywhere on the interval [t0, t]. From this it follows that (8) is
stisfied for the unction (y(t)). Moreover, (9)-(11) re stisfied by
virtue of the inclusion y0 W0’ nd the choice of the neighborhood W0’.
The wlidity of Lemm 4 ensues from (8)-(11).

4. Sufficient optimality conditions for an individual trajectory.
THEOnEM 1. Let u*(t), to* h*, be an admissible control relative to

the point Xo transferring the phase point from the position Xo to the position
x, and let x*(t) be the corresponding trajectory. For the optimality (in V)
of the control u*(t) and the trajectory x*(t) it is sucient that there exist a
piecewise-smooth set M V of dimension n 1 and a function
w( x, ) which is continuous in V, which is continuously differentiable
with respect to x, x on the set V M, and which satisfies the con.di-
tions

(13) O(x) fO(x u) < fo(x, u) x V- M, u U

l*

0"

Proof. By virgue of Lemma a, (7) is satisfied for any eongrol (),
t0 N N h, ha gransfers he phase poing from ghe posigion z0 go he position
z whence, according go (14) ig follows also hag ghe eongrol *() and ghe

trajectory x*(t), to N N t, are optimal.
The followin theorem follows nlogously rom Lemma 4.
THEOREM 2. Let u*(t), to* h*, be an admissible control relative to

the point Xo transferring the phase point from the position x to the position
x, and let x*(t) be the corresponding trqiectory. For the optimality (in V)
of the control u*( t) and the trajectory x*(t) it is sucient that there exist a
closed set M V and a function w(x) w(x, xn) which is continuous
in V, locally satisfies a .Lipschitz condition in V, is continuously differentiable
with respect to x x on the set V- M and satisfies (13) and (14)
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Note that for the time-optimal case, i.e., the case where f(x, u) 1
and the functional J h to is the transfer time from the point x0 to the
point x,, (13) and (14) take the following forms"

(13’) Oco(x) f,(x,u) <__ 1, x V-- M, u U,

(14’) t,*--t0* co(x,) co(x0).

5. The dynamic programming principle as a sufficient optimality condi-
tion. The continuous function

o(x) o(x, -..,

specified in the region V, will be called a Bellman function relative to a
point a V if it possesses the following properties"

1. co(a) 0;
2. there exists a set M (the singular set of Bellman functions co(x))

which is closed in V and does not contain interior points such that the
function co(x) is continuously differentiable with respect to x1, ..., x
on the set V M and satisfies the condition

(15) sup(ev,=l Oco(x) f"(x’ f(x’ u)) O, x V-- M.

Relation (15) is called the Bellman equation.
Note that if f(x, u) 1 the functional J takes the value J tl to

(the time-optimal problem); in this case the Bellman equation becomes

xV-M.

It is understood that all the subsequent results remain valid for this special
case &lso.
THEOREM 3. Let us assume that for (2) given in a region V c X there

exists in V a Bellman function co(x) relative to the point a V with a piece-
wise-snooth singular set. Let us further assume that for any point Xo V
there exists a control u(t) Uxo(t) which is admissible relative to the point
xo and which transfers the phase point from the position Xo to the position a
and satisfies the relation

fttf(x(t), u(t)) dt (Xo(16) --co ).

Then, all the indicated controls Uo t) are optional in V.
Proof. The result follows directly from Theorem 1 if we note that (15)

by itself implies the fulfillment of (13) and that (16) coincides with (14)
since co(x1) co(a) 0.
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The following theorem follows analogously from Theorem 2.
THEOREM 4. Let us assume that for (2) given in a region V X there exists

in V a Bellman function o(x) relative to the point a V with a closed singular
set M of measure zero, which locally (close to every point x V) satisfies a
Lipschitz condition. Let us further assume that for any point Xo V there
exists a control u(t) Uxo (t) which is admissible relative to the point xo and
which transfers the phase point from the position xo to the position a and satis-
fies (16). Then, all the indicated controls Uxo t) are optimal in V.

6. Sufficient optimality condition in the form of the maximum principle.
We shall first introduce the notion of regular synthesis for (2), wherein
we shall now assume the continuity of the derivatives Oji/Ox, Ofi/Ouk and
the validity of the relation f0(x, u) > 0. Let us assume that we are given a
piecewise-smooth set N of dimension <_-n-1, the piecewise-smooth sets

(17) pO pl p2 pn-1 p V,

and the function v(x) defined in V and taking values in U. We shall say
that the sets (17) and the function v(x) effect a regular synthesis for (2)
in the region V if the following conditions are satisfied"

A. The set p0 consists of only the one point a. Every component of the
set Pi (Pi-1 U N), i 1, 2, n, is an/-dimensional smooth manifold
in V; we shall call these components /-dimensional cells. The function
v(x) is continuous and continuously differentiable on each cell and can be
extended into a continuously differentiable function on the neighborhood
of the cell.

B. All the cells are grouped into cells of the first and second kinds. All
n-dimensional cells are cells of the first kind.

C. If a is a certain/-dimensional cell of the first kind, i > 1, then through
every point of this cell there passes a unique trajectory of the equation

(18) dx
ct f(x, v(x))

(passing with respect to the cell a). There exists an (i 1)-dimensional
cell II(a) such that every trajectory of (18) which moving around in cell
leaves the cell a after a finite time during which it strikes against the cell

II(a) at a nonzero angle and approaches it with a nonzero phase velocity.
If a is a one-dimensional cell of the first kind, then it is a segment of the
phase trajectory of (18) approaching the point a with nonzero phase
velocity.

D. If a is a certain/-dimensional cell of the second kind, i >- 1, then there
exists an (i -t- 1)-dimensional cell 2:(a), a cell of the first kind, such that
from any point of the cell a there issues a unique trajectory of (18) moving
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around in the cell 2(z); moreover, the function v(x) is continuous and
continuously differentiable on U z(a).

E. The conditions enumerated above ensure the possibility of extending
the trajectories of (18) from cell to cell" from the cell into the cell II(z)
if II(z) is of the first kind, and from the cell z into the cell Z(II (a)) if the
cell II(z) is of the second kind. It is required that every such trajectory go
through only a finite number of cells (i.e., each trajectory "pierces" cells
of the second kind only a finite number of times). In this connection any
trajectory terminates at the point a. We shall refer to the indicated tra-
jectories as being marked. Thus, from every point of the set V N there
issues a unique marked trajectory that leads to the point a. It is also re-
quired that from every point of the set N there issues a trajectory of (18)
leading to the point a, which is not necessarily unique and which is also
said to be marked.

F. All the marked trajectories satisfy the maximum principle.
G. The value of the functional J computed along the marked trajectories

that terminate at the point a is a continuous function of the initial point
z0. In particular, if several marked trajectories start from a point x0 ff N,
then the value of the functional J is the same for each.

All the known examples of linear time-optimal synthesis are special cases
of regular synthesis.
TIEOREM 5, If a regular synthesis for (2) is effected in the set V under the

assumptions that there exist the continuous derivatives Of/Ox and Of/Ou and
that f(x, u) > 0, then all the marlced trajectories are optimal (in region V).
In this sense the maximum principle is a sucient optimality condition.

Proof. We shall first prove Theorem 5 under the assumption that f0(z, u)------ 1. In this case the functional J is the time it takes the phase point to
move from position x0 to the point a. Let o(x) denote the value of the func-
tional J (i.e., the transfer time) for going from a point x to the point a by
means of a marked trajectory. The set pn-1 I.J N is denoted by M. Let us
prove that 0(x) is a Bellman function with M as its singular set. Then,
Theorem 5 will follow immediately from Theorem 3. Thus, it is necessary
to prove only that the function 0(x) is differentiable on the set V M
and that it satisfies (15).

Let x be an arbitrary point belonging to a certain n-dimensional cell
Let us select an arbitrary number to and let to -q- O(x) be the instant at
which a trajectory of (18), which starts from the point x at the instant
to, hits the cell II(), i.e., O(x) is the time of motion from the point z to
the cell II(). The point at which this trajectory "lands" on the set
will be denoted by (1 (z). From the general theorems on the differentiability
of solutions with respect to parameters it follows that () and 01 (x) are
continuously differentiable functions of x. Indeed, let x0 be an arbitrary
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point of the n-dimensional cell we are considering. Let us reverse the di-
rection of the time flow, i.e., we shall consider the system

(19) dy
dt

f(y’ v(y))

on the cell a. The trajectories of this system (in the cell a) coincide with the
trajectories of (18) but run in the opposite direction. For any point

II (a) close to (x0) we let y (t, ) denote the solution of (19) with the
initial condition y(0, ) . Then, the function y(t, ) is continuously
differentiable with respect to the set of variables t, , for > 0 and II ().
Obviously we have

(20) y(Ol(xo), l(x0)) xo.

It is not difficult to see that the functional determinant

D(y(t,())
D(t, }) t=o (0),=h (0)

is different from zero. Indeed, when 0 and (x0), this functional
determinant differs from zero since by virtue of condition C the trajectory
x(t) of (18), starting from the point x0, approaches the cell II(z) at a non-
zero angle. Consequently, this functional determinant differs from zero
also when 01(x0) and ( ((x0) since the system of variational equa-
tions is linear (see [5, p. 198, Theorem 18]).

Therefore, when x is close to x0 the equation y(t, ) x can be solved
uniquely (see (20))

(x), t= o(x).

Moreover, the functions ((x) and O(x) are continuously differentiable
with respect to x.

Further, from the point (l(x) the trajectory is extended into the cell
II(a) or Z(II(a) ). It can be established analogously that the point (2(x) at
which this trajectory leaves the cell II(z) (or 2:(11() and the time O2(x)
of motion within this cell depend differentiably on l(x), and hence also on
x. Continuing in this manner we find that the total time

-co(x) o(x) + o(x) +
of motion along a marked trajectory from the point x to the point a is (in-
side the cell a) a continuously differentiable function of the point x.

Thus, the function co(x) is continuously differentiable on V M.
It remains to establish that the function co(x) satisfies the Bellman equa-

The point y(t, ) has n coordinates (in the cell a); the point ( has n 1 coordi-
nates (in the cell II(z)).
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tion (15) on V M. Let Xo V M; x(t) denotes the marked trajectory
starting from the point x0 t the instant to, nd t denotes the instant at
which it hits the point a. Let us consider the set S consisting of all the
points which sutisfy the condition

(x) (x).
Then, close to the point x0 the set S is a smooth hypersurface in V with a
normal vector

(o) (o(x0) o(xo)
grad ox ’"" -O-x-z /"

This vector differs from zero by virtue of the relation

(21) Oo(Zo_____) f"(xo, V(Xo)) .__do(x(t)) 1.
,= Ox dt

According to condition F the trajectory x(t) satisfies the maximum prin-
ciple. Let (t) ((t), (t)) denote the covariant vector-function
corresponding to the trajectory x(t) us called for in the maximum prin-
ciple (see [1, p. 18]). We now show that the vector b(t0) is orthogonl to
the surface S t the point x0, i.e.,

(t0) h grad (x0),
or, alternatively,

(22) (t0) x O(Xo)
a 1,2, ...,n.

Ox

Let us suppose that (22) is established. Then by virtue of the mximum
principle we hve

H .(to)ff(Xo, V(Xo)) ), O(Xo) ff(Xo, V(Xo)) X
a=l a=l OX

(see (21)). From the relation H => 0 occurring in the mximum principle
we conclude that }, => 0. Moreover, }, 0 because otherwise #(t0) 0
(see (22)). Thus we hve h > 0. Further, from the mximum principle we
find that

H((to), Xo, V(Xo) H(#(to), xo, u) for every u U,

whence, by virtue of (21), (22), and the relation h > 0, we obtain. o(xo) f(xo, (:o) 1
.-- Ox" "="(t)ff(x’ V(Xo))

1 H(g/(to) x(to) u)1 H((to) X(to) V(Xo)) >
1 _. /.(to)ff(Xo, u) &o(Xo) ff(Xo, u)
=1 a-----1 0X

for every u U. Thus, (15) is fulfilled in V M because f0
_

1.
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It remains to establish the validity of (22). Let 1, 2, z be cells
of the first kind through which the trajectory x(t) passes in succession
such that x0 zl and the cell zq is one-dimensional and adjoins point a.
Let us set to , t q and let , .q-1 denote the "switching in-
stants" (i.e., the instants of transition from cell to cell), so that on the
interval

_
< < ri the trajectory x(t) moves within the cell i, i 1,

2, ..., q. For every two adjacent cells and zi+ in the sequence 1, one of the two following cases is possible (see conditions C and
D in the definition of regular synthesis)"

(a) both the cells and + have the same dimension k, and then
a+ Z(II(i)). In this case the trajectory x(t) pierces the cell H(zi) at
the switching instant , this cell being a (k 1)-dimensional cell of the
second kind;

(b) the cell has dimension k while the cell + has dimension k 1
and coincides with the cell II(.).

In both cases the "switching point" x(r) is n interior point of the cell
II(z:) nd, moreover, from any point of the cell II() a unique trajectory
of (18) starts which moves around in the cell +1. Therefore, the trajectory
x*(t) of (18), which at the instant to starts from any interior point x0* of
the cell , will pass through the same sequence of cells 1, ., ...,
and will arrive at the point a. We shall ssume that the point x* lies on the
hypersurface S sufficiently close to x0 so that the time of motion along the
trajectory x*(t) from the point x0* to the point a coincides with the time
of motion along the trajectory x(t). In other words, both the trajectories
x(t) and x*(t), which at the instant to start from the points x0 nd x0.
arrive at the point a at one and the same instant t -o(x0) -o(x0 ).
As we have already seen above, the switching instants

TO tO T1 T2 Tq tl

for the trajectory x*(t), and the corresponding switching points

* X* * *( *x (*), (),-.., x -),

which are interior points of the cells 11 (z), II(), II (O-q_l), are dif-
ferentiably dependent on the point x0*,

If the point x0 is suiticiently close to the point x0, the inequalities
r_ < r and r_ < ri are satisfied since r_ < r. Let t denote the time

i 1 2, q 1. Since eachinterval between the instants r and r
of the numbers r, r is less than each of the numbers r:+l, r+ if the.
point x0 is sufSciently close to x0, then the entire interval is located on
the real axis to the left of the interval +. Let A denote the interval from
the instant to up to the left end of the interval ;let A, i 2, 3,
q 1., denote the interval from the right end of the interval 5_ up to
the left end of the interval ; and let z denote the interval from the
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right end of the interval q-1 up to the point tl. Thus, the intervals

A,, A2,t2, Aa, ,q-1, A
directly abut each other on the real axis. Here, during the time interval
A both the phase points x(t) and x*(t) re found in the cell z, while dur-
ing the interwl & one of them s found in the cell z nd the other in the
cell z+.

Let denote the distance between the points x0 nd x0* (we ssume

that, is sufficiently smll). Because the switching instants r*, r,,
r_ nd the corresponding switching points x*(r*), * *x (), ,(Tql

re differentibly dependent on the point x0* z, it esily follows that
there exists positive constant C such that the length of ech of the inter-
vMs does not exceed Ce nd the trajectories x(t) and x*(t) re t
distance of the order of e from ech other"

(23) x(t) x*(t) Ce, to t.

As before, we let (t) ((t), (t)) denote the covriant vector-
function corresponding to the trajectory x(t) by virtue of the maximum
principle. We hve by virtue of the relation x(t) x*(t) a"-- [x"(to) x%(to)](to)

[x(h) x%(t)],(t) [x"(t0) x*"(to)],(to)

,0
2,=,(t)[x"(t) x (t)] +.=[x"(t) x%(t)]d"(t)j dt

tl(t)[ff(x(t), v(x(t))) ff(x*(t), v(x*(t)))]

[z(t) x*(t)] oH((t), x(t), ((t))) dt
a=l OX f

= OX

Thus,
tl

(24) -- (x(to) x%(to) )(to) F(t) dt,
a=l
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where

F(t) H((t), x(t), v(x(t) H((t), x*(t), v(x*(t)

[x(t) x%(t)] OH((t), x(t), v(x(t)))

H(C/(t), x(t), v(x(t))) {H((t), x(t),

+ [x*(t) x"(t)] og((t). . v(x*(t)))

.. 0H((t) x(t) v(x(t)))[x"(t) z (t)]
=1 OX

H((t), x(t), v(x(t))) S(g/(t), x(t), v(x*(t)))

+ .=[x.(t)_ x*.(t)](OH(/(t),,v(x*(t)))_O_ OH(g/(t),x(t),v(x(t)))}Ox
and is some point of the segment connecting x(t) and x*(t). Hence we
get

F(t)>= =1 (x(t) x%(t)) {H(/(t)’ ’ v(x*(t))) OH((t), x(t),

since H(g/(t), x(t), v(x(t) >= H(g,(t), x(t), u) for every u U.
Thus,

(25) F(t) >>_ G(t),

where

G(t) (x"(t) x*"(t))
(26) .foH((t), , v(x*(t))) ott(/(t), x(t), v(x(t))),

Ox Ox f"
Now if the point belongs to one of the intervals A, then the points

x(t) and x*(t) belong to one and the same cell , on which the function
v(x) is continuously differentiable. Moreover, the trajectory x*(t) lies in
small neighborhood of the trajectory x(t) (see (23)) which is a compact
set. Consequently, the following estimate is valid:

v(x*(t)) v(x(t))l <= C’. x*(t) x(t) CC’, t .
In precisely the same way

x(t) _-< *(t) x(t) _-< c.
From the continuity of the function OH/Ox in its arguments it now fol-
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lOWS that, when Ai, the difference

(27) OH(k(t), , v(x*(t) OH(/(t), x(t), v(x(t)

is infinitesimal along with (i.e., the difference tends to zero as e-- 0;
moreover, it converges uniformly with respect to t). Finally, taking (23)
into account, by virtue of (26), we obtain

uniformly with respect to A, whence we find that

(28) lim -1 G(t) dt O,
e-O {i

i 1,2, .-.,q.

If the point belongs to one of the intervals i, then we can no longer
assert that the difference (27) is infinitesimal along with , since the points
x(t) and x*(t) belong to different cells and the function v(x) can suffer a
discontinuity during the transition from cell to cell. However, the differ-
ence (27) remains bounded for all because the trajectory x(t) is compact.
Therefore, by virtue of (23), we have

lim G(t) 0

uniformly in t. Since the length of the interval 8 does not exceed Ce, we
obtain

(29) lim-1 f G(t) dt O,
e-O

i 1,2,...,q- 1.

Adding all of the relations (28) and (29) we find that

(30) lim
1 ft tl

G(t) dt O.
eO .

*Now let the point x0 approach the point x0 on the surface S, tngent to
certain vector p (pl,p, -,p ). In other words,

,
lim

x* (t0) x (t0)
lira x0 x0 p.

Then by virtue of (24), (25), (30) we have

p",(to) lira _1 (x*"(to) x"(to)),(to)
a=l eO al

lim -1 ft
eO . dto

F(t) dt >= lim -1 ft ’->0
(t) dt o.
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Since the relation

p"b,(to) >- 0

is correct for any vector p that is tangent to S, then

p".(t0) o

for uny vector p tangent to the hypersurface S; whence follows (22).
Thus, Theorem 5 is proved for the case f0 1.
Let us now proceed to prove Theorem 5 in the general cse. Let all the

conditions A-G indicated in the definition of regular synthesis be satisfied.
We select an arbitrary point x0 V and denote by x(t) the marked tra-
jectory starting from the point x0 at the instant to and by t the instant at
which it hits the point a. Since the trajectory x(t) is marked, it satisfies
(18) and the relation

(31) f(x(t), v(x(t) dt --o(x0);

furthermore, it satisfies the maximum principle.
Let us introduce the function

-(t) f(x(t), v(x(t) dt, to -<- <__ tl.

Since f(x, u) > 0 for all x, u, the function r(t) increases monotonically.
Moreover,

(32) ,(t0) to, r(t) -w(x0).

Consequently, on the interval 0 _-< -< -w(x0) we can define the function.
t(v) which is the inverse of the function ,(t). Here

Let us now set

(33) y(r) x(t(-)), 0 < - < --w(Xo).

Trajectory (33) starts from the point y(0) x0 and arrives at the point a.
We first establish the fact that the function v(x), the set N, and the

piecewise-smooth set (17), constructed for (2) and the functional

j f fO(x, u) dt, effect regular synthesis also for the system of equations

f’:(y,
(34) dy u)

dr fO(y, u)
i 1, 2,..., n,
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and time-optimality; moreover, the marked trajectories here are trajec-
tories of the form (33).

Indeed, since the trajectory x(t) satisfies (18), then for trajectory (33)
we hve"

dy(-) dx(t(r) dx(t(r) dr(r)
dr dr dt dr

fi(x(t(r)), v(x(t(r))))
fO(x(t()), ,(x(t())))

fi(y(.),v(y(.)))
i 1, n.

f(y(r) v(y(r)

Thus, trajectories of the form (33) satisfy the system of equations

(35) dY fi(y’ v(y)
i 1, n,

d- fO(y, v(y))

which plays the same role relative to (34) as (18) does relative to (2).
Let us now verify conditions A-G of regular synthesis. Conditions A

and B are not related to any system of equations; since they are fulfilled
for (2) they remain valid also when they are applied to (34). Condition C
(in which now (35) replaces (18)) is also fulfilled since trajectory (33)
satisfies (35). Note that trajectory (33) coincides geometrically with the
trajectory x(t) and, therefore, it approaches the cell II(z) at the same
angle as the trajectory x(t). The phase velocities of the approaches are
connected by the relation

dy(-) dx(t(r) dx(t(r) dt(-) dx(t) 1
d- d- dt dT dt f(x(t), v(x(t)

and, therefore, from the relation dx/dt 0 it follows that dy/d- O, i.e.,
trajectory (33), as also the trajectory x(t), approaches the cell II(z)
with a nonzero phase velocity.

Condition D is retained without change. Condition E is also satisfied"
the marked trajectories now are the trajectories (33). The validity of con-
dition G is also easily verified" the time of motion along trajectory (33)
from the point x0 to the point a equals -0(x0) (see (32)) and therefore
it depends continuously on the initial point x0. It remains only to verify
condition F, i.e., to prove that the trajectory (33) of (34) satisfies the
maximum principle.
We first write the function H for (34), in which we denote the auxiliary

variables by , "
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f(y,u)(36) H 2.

and the system of differential equations for the auxiliary variables:

dr Oy = ?(y, u) Oy
(37)

+ ,f (y, u) Of(y, u)
i 1, n.

,= (.0(y, u)) oy
To prove that trajectory (33) satisfies the maximum principle we denote
by (t) (0, (t), (t)) the covarint vector-function corre-
sponding to the trajectory x(t) of (2) by virtue of the maximum principle.
The function (see [1, p. 18]) for (2) has the form

(3s) f(x, u).

The uxiliary equations are:

O

_
Of(x, u)

i 1, n.(39)
dt Ox =o Ox

Since (t), x(t), v(x(t)) satisfy the maximum principle, these functions
satisfy (39) nd, furthermore, the relations

(40) n((t), x(t), ,(x(t))) o, 0 o,
(41) ((t), x(t), v(x(t))) ((t), x(t), u) for every u U,

re satisfied. On the basis of these relations we now show that the maxi-
mum principle is stisfied by the following vector-functions:

y() x(()), () (t()), i , ..., n, u() v(y()).

First of ll we note that the functions (r), n(r) do not vanish
simultaneously. Indeed, if for some r the relations 0
were fulfilled, then for the correspondin vlue of t(r) we would have

0,

and therefore by virtue of (40) and (38),

0f(x(t), u(t)) o,

whence 0 0 since f0 0. Consequently, the vector function
(t) (0, (t), (t)) would vanish, which is impossible. Thus,
the vector-function (t) ((t), (t), (t)) is nontrivial.
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Further, from (39), (38), (40) we have

d,p(-) dp(t(r) d(t(-) dt(r)
dr dr dt dr

{-- ,(t(v)). Off(x(t(’)), v_(x(t(v))))} 1
.=o ox’ fO(x(t()), v(x(t())))

-_.
.= fo(u(y): v(u()))

f(x(t(’)), V(x(t(T))))-,=1 fO(y(-, v(y(r))

Of"(y(’),v(y(r)))
Oy

Of(y(r), v(y(’))
Oy

Of(y(r), v(y(r)
Oy

pof(x(t(-) ), v(x(t(-)
[f(x(t(’)), v(x(t(’)

Of(y(r), v(y(r)-=fO(y(.), v(y(’)
Off(y(r),v(y(r)))

Oy

3C(p(t(r)), :c(t(r)), v(x(t(r)))) .(t(’) )ff(x(t(’)), v(x(t(r))))
a.-l

[fO(x(t(T)), V(x(t(T))))]

_. .()
--,z:.,__ fO(y(r), v(y()))

Off(y(r),v(y(r)))_
,(T)f (y(T), v(y(’)

Of(y(r), v(y(-)

Of(y(’), v(y(’)
Oy

Thus, the vector-functions (r), y(’), v(y(r)) satisfy (37). Finally, we
have

H((r), y(’) u) o,(r) f"(y(r), U)
.= f(y(r), u)

1
fO(x(t() ), u)

1
f(x(t(’)), u)

1
f(x(t(’)), u)

_, .(t())f"(x(t()), u)

{SC(b(t(v)), x(t(’)), u) of(x(t(r)), u)}

SC((t()), x(t(’)), u) ko.
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Therefore, by virtue of (40) and (41
we obtain

), taking into account that f0 > 0,

H((r), y(r), u) <-_ o, H(,(r), y(r), v(y(r)))

i.e.,

H((-), y(r), u) <__ H(,(r), y(-), v(y(r))) >= O, u < V.

Thus, trajectory (33) satisfies the maximum principle, and condition F
also is fulfilled.

Thus, trajectories of the form (33) effect regular synthesis for (34) and
time-optimality. Since Theorem 5 has Mready been proved for the case of
time-optimality, it follows from this that all the trajectories (33) are
(time-)optimal trajectories of (34).
Now we can prove Theorem 5 in the general case without difficulty.

Indeed, let u,(t), to <- <__ t,, be an arbitrary admissible control which
transfers the phase point moving under law (2) from the position x0 to
the position a; let x,(t) denote the corresponding trajectory. Thus, the
functions x,(t), u,(t) satisfy (2), and the relations x,(t0) x0,

x,(t,) a are satisfied. The corresponding value of the functional J is
denoted by J,"

J, f (x,(t), u,(t)) dt.

Let us set

-,(t) f(x,(t), u,(t) dr, to =< =< t,

then r,(t) is a monotonically increasing function with a defined inverse
t,(r), 0 _<- r

_
J,; moreover, we have t,(0) to, t,(J,) t,. It is

not difficult to verify that the functions x,(t,(r)), u,(t,(r)) satisfy (34)
and that here the time of motion along the trajectory y, (r) x, (t, (r))
from position x0 to position a equals J,. But we already know that tra-
jectory (33) is time-optimal and, therefore, the time of motion J, along
the trajectory y,(r) can be only larger than the time of motion -(x0)
along the trajectory (33)-

J, -co(x0).

Taking (41) and (31) into account, we obtain from this the inequality

f(x,(t), u,(t) dt >= f(x(t), v(x(t) dr.

But this signifies that the marked trajectory x(t) leading from the point
x to the point a is optimM.
Theorem 5 is completely proved.
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7. Examples.
Example 1. Let us consider a controlled plant whose behavior is described

by the system

(42) dx dx
u

dt
x,

dt f x2’
with a one-dimensional control region U defined by the inequalities

(43) -1 =< u _-< 1.

We shall assume that the function f is continuously differentiable in both
its arguments and satisfies the relations

(44) Of(x2, u) > 0 for all x, u,
Ou

(45) f(x, 1) > c > 0, f(x2, 1) < c, for all x2.

Any plant described by the equation 2 f(2, u), "differing slightly" from
the equation 2 u, will satisfy the stated conditions. As an example we
can cite the nonlinear equation-- u-t- 1/2 sin (2 - u).

For the controlled plant (42)-(43) we investigate the time-optimal
problem of hitting the origin from a specified initial phase state. We first
write the function

H z + f(x, u)

and the system of equations for the auxiliary unknowns 1, 2
OH

a ox--- o,
()

(b) 2 _0___H --1 . 0f(x2’ u)
Ox i)x

From the condition that the function H should be maximum it follows
that the optimal control u is determined by maximizing f(x, u) when
2 > 0 and by minimizing f(x2, u) when 2 < 0. (The control u is not
defined when . 0.) But (44) shows that f(x2, u) is maximum when
u + 1 (see (43)) andf(x, u) is minimum when u -1. In other
words, the optimal control satisfies the conditions" u + 1 when . > 0
andu -lwhen: <0.

It remains to trace out the law whereby the quantity varies. From
(46a) we see that 1 const. Now by solving (46b) as a linear equation
in 2 (considering that u(t) and x2(t) are known) we find that
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From this formula we see that if the quantity 2 vanishes at some instant
to (i.e., 20 0), then the function 2 has no other zeros (because the func-
tion e is positive for all real z) and, moreover, the function 2 changes
sign as it passes through zero. Thus, the function 2 does not change sign
more than once, i.e., by virtue of the maximum principle the optimal
control does not switch more than once. Here, any control u 4-1 having
no more than one switching satisfies the maximum principle, because
from (47) we see that by choosing the sign of the constant 1 properly
(and assuming .0 0), we can make the function (t) change sign at
any specified instant to either from minus to plus or from plus to minus
according to our wish.
Now it is not difficult to find all the trajectories leading to the origin

and satisfying the maximum principle. This is done in the same way as in
[1, Example 1, pp. 23-27]. Indeed, by virtue of what has been said above,
every trajectory which satisfies the maximum principle consists of two
segments (one of them may be absent), on the first of which u + 1, and
on the second of which u -1 (or vice versa). Let us denote by +1 the
semitrajectory of (42) obtained when u + 1 and terminating at the ori-
gin, and by _1 the analogous semitrajectory obtained when u -1
(see Fig. 1). Both semitrajectories together form a curve which we denote

Xby P. This curve divides the whole plane p2 of the variables x1, into two
parts. The part located below the curve p1 is denoted by +2, and the part
located above, by _2. The final segment of each trajectory which satisfies
the maximum principle is either along + or along z_, while the initial
segment is either in the cell + (when u + 1) or in the cell _2 (when
u -1). The indicated traiectories fill the entire plane P2 and satisfy
the maximum principle. By taking all the four cells z+, -,1 +,

_
to be

cells of the first kind, we obtain regular synthesis. Indeed, conditions A-G
are verified without difficulty. Let us only note that the trajectories moving
in the cell + approach the cell

_
at a nonzero angle, and the trajectories

moving in the cell
_

approach the cell z+ at a nonzero angle. This fol-
lows from the fact that the phase velocity vector {x, f(x, u)} has two
noncollinear directions when u d-1 and u -1 (see (45)). From
Theorem 5 it now follows that all the traiectories we have constructed are
indeed optimal. The corresponding function v(x) which effects the syn-
thesis of the optimal control has the following form"

fd-1 on the cells + and +1,
--1 on the cells _2 and z_l.

Note that all these discussions remain in force also in the case where
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FG. 1

the constant c turns out to equal zero in (4:5), i.e., where (45) is replaced
by

f(x2,1) > 0, f(x2,- 1) <0, for all x.
However, in this case, depending on the form of the function f(x, u), the
optimal control can be synthesized either on the whole plane, or in some
halfplane, or in a strip (whose edges are parallel to the xl-axis).
Example 2. As a second example consider the plant described by the

system

dx
dt

48
dx.
d--[ x + g(x, u),

with the same control region -1 =< u __< 1. We assume that the function
g is continuously differentiable in both arguments and satisfies the condi-
tions

(49) Og(x,u) < c < 2 for all x,u,
Ox

(50) g(x,1) > c’ > O, g(x, --1) < c’, for all x.
Any plant described by the equation "2 q- x g(2, u), "differing slightly"

from the equation 2 q- x u, will satisfy the stated conditions. (Compare
[1, Example 2, pp. 27-35].) As an example we can cite the nonlinear equa-
tion
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sin (2 + u).

For the controlled plant (48) also we investigate the time-optimal
problem of hitting the origin from a specified initial phase state. The func-
tion H is

H //lX -- 2(- xl -- g(x2, u)),

and the system of equations for the auxiliary unknowns is

(51)

OH

OH Og( x, u)
Ox Ox

From the condition that the function H be maximum, as in the preceding
example, it follows that u sgn 2.

Let us now trace out the law whereby the quantity . varies. By virtue
of (51) we find that

d (tan-) h12--1
45 () + ()

l (-- l 2
(g(x2’ u)) (2)

(1) - (2)

Since

() + ()
Og( x, u)

Ox

() +
1

for all real values of 1 and . (not vanishing simultaneously), by virtue
of (49) we get

--1
c < d tan-3 < _1 -c- d-i -- - < O.

Consequently, the vector (1, ) rotates clockwise (and possibly changes
its length) with an angular velocity not less than 1 (c/2) > 0 and not
greater than 1 + (c/2). Therefore, the zeros of the function b(t) (for
any x(t), u(t)) are distributed not more sparsely than by 2r/(2 c) and
not more frequently than by 2/(2 -t- c).
Now, let x0 (x01, x0) be an arbitrary point on the phase plane P.

Let us investigate the solution x(t), (t) of (48) and (51), where u 1,
satisfying the initial conditions

x(O) x0, (0) .(0) 0.(52) xl(0) X0,
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We denote by T+(xo) the negative root of the function k(t) closest to
zero (occurring in the constructed solution). Then, on the interval
T+(xo) 0 the function (t) mintins constant sign, nmely, the
sign -t-, since by virtue of (52), from the second equation of (51) we get
that .(0) -1. Thus, for the constructed solution we hve

(t) > 0 when T+(x0) < < 0; .(t) 0 when T+(xo).

The segment of the phase trajectory x(t) which we hve found, correspond-
ing to the time interval T+(xo) <- -<- O, is denoted by K+(xo). This seg-
ment ends t the point x0 its start is denoted by +(x0). Note that + is
mpping of the plane P into itself" it puts every point x0 into corre-

spondence with the point +(x0).
Completely nlogously, by considering the initial conditions

x(0) x0, x(0) x0, (0) 1, (0) 0,

we construct the solution x(t), (t) of (48) and (51) where u -1, and
denote by T_(xo) the negative root of the function (t) closest to zero.
Then, analogously we obtain

(t) < 0 when T_(xo) < < 0; .(t) 0 when T_(xo).

The segment of the phase trajectory x(t) which we hve found, correspond-
ing to the time interval T_(xo) <= <= O, is denoted by K_(x0), nd the
initial point of this segment by _(x0). The segment K_(xo) ends t the
point 0.
We now construct the piecewise-smooth curve P on the phase plane P

in the following wy. First of 11, by choosing the origin a s x0, we con-
struct the rcs z+ K+(a), r- K_(a) (see Fig. 2). Further, we de-
termine the rcs z+ and z- by setting

/ +(-_), (_( i 2,3,..-.

Finally, we let P denote the union of all the arcs + a- i 1 2,
A simple computation shows that the rcs

(53) + + +
0"3 0"2 0"1 ffl 0"2 if3

re rranged on the plane in such a wy that every two djaeent ares in
(53) have a common endpoint and these arcs have no other point in com-
mon. Therefore, the set p1 is a simple open curve (Fig. 2); the ends of
this curve are at infinity.

Let us now set

v(x)
1 below the curve p1 nd on the cells i 1, 2
1 nbove the curve P and on the cells -, i 1, 2,..-
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X

FIG. 2

Finally, we denote by pi
+ the common endpoint of the arcs i+ and +

o’i+1

and by p- the common endpoint of the arcs z- and z-+l for each i 1,
2, and we set

N [=i K+(pi-); [J [1K-(p+)].
A comparatively simple computation (see [10]) shows that the piece-

wise-smooth set N, the set a p0 c p1 c p2, and the function (x)
indicated above effect regular synthesis in the whole phase plane P2. The
corresponding marked trajectories (which by virtue of Theorem 5 are
optimal trajectories) are spirals, as shown in Fig. 2. Each such spiral
consists either of a certain, segment ab of the arc Zl

+ and the arcs K_(b),
K+(_(b)), K_(+(_(b))), (shown in dotted line on Fig. 2), or of a

certain segment ac of the arc z- and the arcs K+(c), K_(+(c)),
K+(_(+(c))), (shown in solid line on Fig. 2).
Note that if the constant c’ in (50) turns out to equal zero, i.e., if in-

stead of (50) the condition

g(x,1) > 0, g(x2, -1) < 0, for all x

is satisfied, then all the results that have been formulated remain valid
except that the synthesis is effected, in general, not in the whole phase
plane p2 but in some region V containing the origin inside it.
Example 3. In conclusion we consider the plant

This example was proposed to the author by A. A. Fel’dbum (s simplified
electrodrive circuit) nd ws computed by the student E. Roitenberg while working
under the guidance of the uthor.
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2

ul

FIG. 3

(54) 2 "UX X U

with the control region U defined by the inequalities

(55) --1 U -- 1, --1 u: 1.

For this plant let us consider the time-optimal problem of hitting the
origin. Without carrying out the computations (which nre not difficult to
reproduce) let us mention the final results, i.e., let us describe the regular
synthesis for the plant (54)-(55).
The two parabolas x (x) together constitute the set P; as N

we tke the axis x 0. Then the set M N U P divides the plane P
Xof the variables x1, into the six regions I-VI (see Fig. 3), while the point

a (0, 0) divides the set P into four branches (cells) which go off to
infinity, , , za, , which are also shown in Fig. 3. Let us now set

v(x) 1

v(z)
1

if x I, II, IV, VI, :, a4,

if x iii, V, , a

if x II, III, IV, a, a4,

if x I,V, VI, a,a:;

v(x) (v (x), ’() ).

It happens that these determine the regular synthesis for the plant (54)-
(55). The optimal trajectories consist of segments of the parabolas

x +1/2(x2) + const.

They are shown in Fig. 3. Note that two optimal trajectories start from
the points of the set N; this does not hinder the application of Theorem 5.
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Note also that Theorem 5 does not in any way rule out the existence of
other optimal trajectories (besides the marked ones). In Examples 1 and
2 there do not exist other trajectories (besides the marked ones) which
satisfy the maximum principle. In Example 3, however, infinitely many
optimal trajectories start from each point of cells I, II. Namely, in cell I
(or II) we should take u -1 (or u -1), while as u we may take
any piecewise-continuous function satisfying (55). At the instant when
the phase point hits on the set P1 a switching occurs and subsequent motion
takes place along the set P. It is easy to grasp that all the trajectories
have one and the same time of motion from the point x0 to the point a
and that all are optimal. For example, in the cells I, II we can take u: :i: 1,
u 0 (the dotted lines in Fig. 3).
As shown by the cited examples, it is very easy to verify the conditions

A-G in Theorem 5. The basic computational difficulty consists of effecting
the synthesis on the basis of the maximum principle. If the synthesis has
already been effected, then, as a rule, the conditions A-G are automatically
satisfied. Thus, the maximum principle (a necessary optimality condition),
which, as a rule, permits the synthesis to be effected, is very nearly a
sufficient optimality condition.
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A NEW REPRESENTATION FOR STOCHASTIC INTEGRALS
AND EQUATIONS*

R. L. STRATONOVICH

Introduction. Stochastic integrals and equations, introduced by Ito [1]
(also see [2, chap. VI, 3; chap. IX]), are a convenient means of studying
diffusive Markov processes and are being widely used at the present time.
In this article we propose another method of representing stochastic inte-
gral and differential equations and stochastic integrals. To a significant
extent this method is equivalent to Ito’s method, but it has a number of
advantages in computational techniques. Using this new representation we
can work with stochastic integrals in the same way as with the ordinary
integrals of smooth functions, for example, we can integrate by parts, etc.
In stochastic equations, integral or differential, we can make a change of
variables by the usual rules which are suitable in the case of differentiable
functions. This is particularly convenient for applications where the in-
vestigator has to make actual computations with diffusive processes, just
as with the usual (smooth) functions, without having to pay attention to
their specific natures, which, in general, requires more careful treatment.

Stronger reasons for the use of the new method of defining stochastic
integrals and equations appear when we have to investigate the questions
of the convergence of a non-Markov process to a Markov one by a con-
sideration of the probability functionals, and also the questions on infinitesi-
mal operators which depend on the trajectory of the diffusion process, etc.
The author arrived at the new representation as a result of actual work

with smoothed (not completely Markov) processes [3] and with conditional
Markov processes [4]. In order to avoid any misunderstanding he takes this
opportunity to state explicitly that in articles [3], [4] he used stocha,stic
integrals in the new sense and not in the sense of Ito.
We must remark that in some relations the Ito integral has its own ad-

vantages over the new integral, since the former is a martingale nd has a
mathematical expectation which can be written more concisely. Simple
formulas for the transition from one integral to the other allow us at all
times to select the representation which is most convenient for any par-
ticular purpose.

* Originally published in Vestnik Moskov. Univ. Ser. I Mt. Meh., (1964), pp.
3-12. Submitted on Jnury 15, 1963, for publication. This translation into English.
hs been prepared by N. H. Choksy.
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1. One-dimensional case. On an interval T [a, b] let there be given
real diffusive Markov process {x(t)} for which

(1)

lim M [x(t + h) x(t)
h-o+o h

lim M [x(t -+- h) x(t)]
ho+o h

lira MI[ x(t + h) x(t) >
h-O+O

I a(, t),

b(, t),

z(t) =} =o, a>O.

We assume that the functions a(x, t) and b(x, t) are continuous in both
arguments and, in addition, the second function has the continuous deriva-
tire Ob x, t) /Ox.

Further, on T let there be given a function (x, t) continuous in t,having
the continuous derivative O(x, t)/Ox and stisfying the conditions

M(x(t), t)a(x(t), t)} dt

(2)

f M{I (x(t), t) b(x(t), t)} dt < .
Let us make a -partitioning:

a t() < t2() < < t() b, A max (t+x- re).

Do. The sgoehasgie ingegral (z(), ) dz() is defined as he

limi-in4he-mean

(x(t), t) dx(t)
(3)

1.i.m. z() + z(+)
i [z(+) z()l.

0 j=l 2

On the right-hand side we could also have written

(x t] +x(tj+l)t
2 2

however, this does not essentially lter nything.
In what follows we shll prove that the indicated limit exists.
The symmetrized method of defining the integral, mentioned bove,

differs rom the method proposed by Ito. In conformity with the ssigned
orm of the dependency of the function on nd on cse (w) we hve

() (z(), ) dz() 1.i.m. (z(i), )[z(+l) z(i)],
0 j--1

where he asgerisk denoges he integral in he sense of Io.
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Under the adopted assumptions (the continuity conditions and conditions
(2)), the limit in (4) exists and, consequently, the Ito integral exists [1],
[2].
Let us prove the existence of the limit in (3) nd find the formul relating

the two indicated integrals. To do this we select the/-prtitioning nd con-
sider the difference between the limit expressions on the right-hand sides of
(3) nd (4). Mking use of the differentibility with respect to x of the
function (, t) we get

1102 = [(1 O)x(t) + Ox(t+), t][x(t+) x(t)],
1

0 < 0 <- ti t

It is not difficult to see that as A 0 the latter expression tends, with prob-
ability 1, to the integral

1 f 0 (x, t)b(x, t) dr.

In order to be convinced of this let us make an e-partition of the interwl and
replace O(x, t)/Ox by the functions

](t) sup [t), ()+1,

() inf +) [(,’(+).

Then, by denoting

Da ](t,(a))[x(+)- x( )]2,
Da [(t(a))[x("() t(+)-x( ))],

we obviously get

(5) < Da < D,
where

(){ , 2,...} {t(),j , , ...}.

By slightly modified forms of Theorems 2 and 3 from [2, Chap. VIII], the
limit,

lim () (t’)[(t+) (, t) 4t,
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exists with probability 1, so that

lim D 1 fbAO -- (X, t)b(x, t) dt

()
lira _D, 1
0 . [(z, )b(z, ) .

However, s consequence of the continuity of the derivative O(x, t)/Ox,
the differences f f nd D my be made s small as desired by de-
creasing e. Therefore, from (5) nd (6) there follows the existence, with
probability 1, of the limit,

(7) lim D lira D lira D 1 b O(, t)
b (x, t) dr.

o o +o Ox

Thus, under the stated assumptions, integral (3) exists and is related to the
Ito integral by the formula

(7’) e[z(),

almos certainly.
Nzample. Leg us consider he example eiged in [2, p. 92]. Le z() be

brownian mogion process wigh diffusion parameger b(z, ) 1. Then, instead
of he formula

1 1

we shall have for integral (a) he simpler formula

1

I can be obtained by a diree integration by pars as for ordinary integrals.. Nultidimensional generalization. In an analogous manner we define
soehasie integrals in he ease where we have several diffusion processes
x() {z(), z(t), described by he drif vector a(x,

1, and by he local diffusion matrix bo(, ), , B 1, }.
urgher, leg ghere be given ghe functions {O(x, ), 1, ..., }. We
shall assume ha he functions

a(x,
Ox Ox

are continuous in all their arguments nd also that the conditions, which are
the multidimensional generalizations of conditions (2), re satisfied. We
cn then define the stochastic integral



366 . L. STRATONOVICH

f,a
V-- (x(t) -+" x(t+) t) [X.(t+) x.(t’) ].(8) , x, t) dx. 1.i.m. q),

THEOREM l. The limit on the right-hand side of (8) exists almost certainly
and is related to the integral in the sense of Ito by the relation

(9) .(x, t) dx, q),(x, t) dx. - - - (x, t)b.(x, t) dt,

which is satisfied with probability 1.
In (8), (9), and in the following, we have assumed a summation over

two repeated indices. The proof of Theorem 1 is analogous to the proof in
the one-dimensional case.

It is sometimes convenient to treat the stochastic integral as a function of
a variable upper limit. Given the function I,(x, t), also continuous, let us
consider the sum of the integrals

(10) z(t) ,I(x, t) dt + .(x, t) dx,, <= b.

It is interesting to compute limits of type (1) for the indicated integral.
In distinction from (1), however, it is advisable to set the condition
x(t) and not z(t) . It is not difficult to convince ourselves that a
continuity condition of the type of the third equation in (1) is satisfied
with probabiIity 1. The following theorem is true.
THEOREM 2. Under the accepted assumptions, integral (10) as a function

of the upper limit is, almost certainly, characterized by the parameters

lim M z(t -l-h) --z(t) x(t) } =(,t)
h0+0 \ h

(11)
lira M{[z(t -t- h) z(t)]:
h0+0 h

x(t) ),(i[, t)b.(, t)(, t),

lira M [x"(t -- h) x.(t)][z(t -b h) z(t)] x(t)
h->O+O h -)

b.(, t)(, t).

These relations can be proven by utilizing the theory developed for the
Ito integral [2, Chap. IX, 5], and also the connecting formula (9). As can
be seen from (11), the formula for computing the mean increment
M{dz/dtlx(t)l is not a trivial one. The term
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which complicates matters, arises because of the presence of correlation be-
tween the processes x,(t), occurring as arguments of , and the increments
dx

3. Stochastic equations. In certain special cases the processes x,(t),
a 1, n} and the functions , ,, a 1, n, are such that the
process (10) vanishes identically with probability 1: z(t) O, T. We
shall say that in this case the stochastic equation

(12) ,I,[x(t), t] dt + @,[x(t), t] dx,(t) 0, T,

is satisfied and we shall investigate those connections between the processes
x(t), x(t) for which this equation holds.

Special case. Given the two processes x(t) x(t) and x:(t) y(t), let
the functions@, @, @ have the following special forms:

l(X, ) --1, (x, t) a(x, t), (x, t) m(x, t).
Then (12) takes the form

This relation may be called he ochaic ranformaion of process g()
into z(). Le us write ou he equalities 11 for he given ease, gaking into
aeeoun ha here he process z() and, consequently, also he limits on he
lef-hand sides, equal ero. his gives

10(z, ) b O,

Hence, we find ha, almos eergainly,

(z, )b,
(1)

Going on go a sgill more special ease, leg g() be a Wiener process, i.e.,
O, b 1. Then, from (14) we have

10(z, (z, ), b (z, ),

or, by solving hese equaligies for re(z, ) and (z, ), we have

10b(z, ) (z, ) bl(Z, ).(15) m(x, t)
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Thus, if the functions a(x, t) and b(x, t) are the drift and the local diffu-
sion of the diffusion process x(t) and if they satisfy the continuity conditions
mentioned earlier, then the process x(t) can be described by the stochastic
equation

[ 10b(x, t) 1 dt-- /b(x, t)dy(t),(16) dx(t) La(x’ t) - Ox

which is to be understood in the sense of the integral equation (13).
Multidimensional stochastic equation. The latter result has the following

multidimensional generalization.
THEOREM 3. If the multidimensional process x(t) {xl(t), x(t)} is

described by the equation

(17) dx.(t) =m.(x,t) dtW(T.r(x,t)dyr(t), a 1,..., r= 1,... ,1,

where m.(x, t), (T.(x, t) are continuous functions having continuous first
derivatives with respect to xl x, and lye(t), y(t)} is a system of
Wiener processes with a unit local diffusion matrix, then x(t) has the following
drift and local diffusion parameters:

1 O(Tar(18) a.(x,t) m.(x,t) +(T0w, b.(x, t) (Tar(X, t)ar(X,

Equation (17) is to be understood in the sense that the corresponding
integral relation is valid by our definition of the integral. As in the one-
dimensional case, this result follows from Theorem 2.
As is seen from (17) and (18), it is sometimes convenient to consider,

instead of the drift parameter a.(x, t) and the local diffusion parameter
b.(x, t), the vectors m.(x, t), (T.(x, t), (T.(x, t) which are defined by
(18). The vector

(19) m.(x, t) a.(x, t) 1 ((Tar
(Tr

20x
has, in comparison with a.(x, t), the advantage that it transforms in a
trivial manner under a change of variable. Thus, in the one-dimensional

case to the change of variable x -- 2 j (x) dx there corresponds the

parameter transformations

m era, (T - (T, b -- b((x) is a continuous positive function). The same situation holds in the
multidimensional case.
THEOREM 4. Under the change of variables x f(x), the vectors 6 m

transform covariantly with the vector dx:
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(20) O’.r 0"/r fit. m.Ox Ox
Consequently, (17) here transforms as if the processes x(t), x,(t) were
smooth functions of time.
The statement of the theorem regarding the vectors 6, 6z follows

directly from the tensor nature of the parameters b,e and from the definitions
in (18) of these vectors. In order to prove the covariancy of the vector m,
let us take into onsideration the known formula for the transformation of
the drift parameters:

02. 1 0 x.(21) 5. a + - Ox---- Ox- b,

Further, by the substitution

Ox
we find

Making this substitution for a second time we get

Ox Ox Oxv Oxo
Consequently,

(22) O.r 02. OZpr 022" bp
02t5 ’t3 Ox OX- O -Jr"

By subtracting half of (22) from (21) and using (19), we convince our-
selves of the validity of the last formula in (20).
Note that as a consequence of the symmetry and nonnegative-definite-

ness of the local diffusion matrix, there always exists at least one system of
real vectors 6, 6.
Namely, if U U.r is an orthogonal transformation reducing this

matrix to the diagonal form: b.u.rU brrs, then b. u.rurb and,
obviously, we can set Z.r U.r, where rank b. 1].

4. Invariant notation for the Kolmogorov equations. An invariant repre-
sentation of the Kolmogorov equations in arbitrary curvilinear coordinates
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was proposed in [5], [6]. In the first of these the consideration was restricted
to the case of a nonsingular local diffusion matrix which was chosen as the
metric tensor. In the second paper the metric tensor was assumed to be in-
dependent, but an essential restriction was introduced along another line,
namely, not the whole phase space but only the space corresponding to
one-half the variables (the coordinates, not the velocities) was chosen as
the metric space. The local diffusion matrix, on the contrary, corresponded
only to the velocity space and, moreover, was assumed to be nonsingular.
The vectors rn and 6r introduced above allow us to obtain an invariant

notation for the Kolmogorov equations in the general case of an arbitrary
metric phase space. In the special cases mentioned above, this form of no-
tation does not coincide with the forms previously suggested, but is simpler.

Starting here we shall assume that the phase variables are contravariant
components of a vector and write them as xs. According to Theorem 4 the
vectors considered therein are also contravariant and therefore we shall
write them as m and zS(r) (we write the index r in parentheses since it is
not of tensor nature).

Let us consider the Markov probability density p (x, t; x’, t’) of the transi-
tion from the point x to x’ during the time from to t’.
The Kolmogorov equation of the first kind

Op
a--d--[ Ox----- - b" OxsOx

with due regard to (18), transforms to the invariant form

(23) Op sop 1
m + "(r) o(r)

Indeed, as a function of x the transition probability p(x, t; x’, t’) is
scalar. Therefore, the expressions mS(Op/OxS), o-(p/Ox) v and, conse-
quently, also aS(Ov/OxS), are all scalars. Thus, on the right-hand side of (23),
as also on the left, we have scalars.
By an analogous substitution of formulas (18), the equation of the second

kind

transforms to the form

1 0[a"p] + - Ox,.Ox, [b"P]

(24) Op
dt’

0 [mp] ff_l 0 IcS(r) 0
Ox,s - Ox,--- - a r)p

Considered as a function of x, the transition probability p(x, t; x, t’) is
scalar density, i.e., it transforms as %/ det112 gs 11. Therefore, the
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quantities map and p are vector densities. However, if is a vector
density, then, as is well-known, the divergence (O/Ox)l is again a scalar
density. Therefore,

0 (np), 0

Ox’" Ox’
p V,

and also O(a"V)/Ox’ are scalar densities similar to the quantity ou the left-
hand side of (24).
We can introduce the probability flow

1 O[a(r)p]
@ maP - a(r)

Ox

which is a vector density. Then (24) takes the form of the conservation
equation

Op O@ O.
Ot’ Ox’s

Equations (23) and (24) correspond to one and the same iavariant
infinitesimal operator

dL m Ox--- - - aS(r) - dt.

In conclusion we note that the condition, which has been mentioned re-
peatedly, that the functions bs, , and their derivatives be continuous,
may be weakened. Thus, for example, the results are easily extended to the
case of piecewise continuity, etc., but we shall not go into this here.
The author thanks E. B. Dynkin and others for participating in discus-

sions of the author’s report on the stated questions in a seminar in the De-
partment of Probability Theory at the Moscow State University.
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THE EXISTENCE OF OPTIMAL CONTROLS FOR A PERFORMANCE
INDEX WITH A POSITIVE INTEGRAND*

M. ANVARUf AND R. F. DATKO:
1. A control problem of some current interest Ill, [2], [3] is to determine
mesurble vector valued function

u u(t) (u(t), ...,
which minimizes the functional

T

(1.1) J[u] " [(x(t), Qx(t)} + c u(t)]l dt

and is subject to the following restrictions"

dx(1.2) 2 A(t)x + B(t)u(t), where 2
dt

x (Xl,...,x),

A (t) is an n X n matrix, and B (t) is an n X m matrix;

(1.3) x(0) x0

(1.4) lim x(t) 0;

(1.5) u(t)]1 [u(t) + + u(t)]1 1.

Here it is ssumed that Q is positive semidefinite n n mtrix, c is
positive sclr, nd (,} denotes the usual inner product.

In general minimizing mpping u does not exist for such system.
However, as will be demonstrated in this note, with suitable restrictions
on A (t), B(t), nd Q minimizing mpping does exist.
We consider generalization of the bove problem where (x, Qx} is

replaced by positive definite mpping Q( x ]]) and ell u ] is replaced by
positive convex function f( u ]) which stisfies conditions to be described
below.

2. Before proceeding to the min result we will establish some fcts
concerning Orlicz spces (generalized L* spaces for 1 < p < which will
be needed in the proof of Theorem 2 in 3.

All of the definitions nd results in this section with the exception of
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Theorem 1 nd property 4 can be found in [4] or [5]. Theorem 1 is estab-
lished in Appendix 1 nd property 4 in Appendix 2.
DEFINITION 1. A function f: R+ - R+ is clled n N-function if it d-

mits the representation

(2.1) f(x) p(t) dt,

where p(t) is right-continuous for _-> 0, positive for > 0, nondecreasing,
and satisfies the conditions

p(0) =0, p() limp(t)

DEFINITION 2. Let f be as in Definition 1. The function g, which is
defined by

g(y) max (x] Y f(x) ),
xO

is called the complimentary function of f.
In [5] it is shown that g is also an N-function. In fact it is the right in-

verse of f.
DEFINITION 3. An N-function f satisfies the A-condition if there exists

a constant K > 1 such that f(2x) Kf(x) for all x 0.
Remarlc. It is easy to show that f is a convex function and from this and

the A-condition that f(mx) K(m)f(x) for all x 0, where m 0 and
K depends only on m.
DEFINITION 4. Let the N-function f and its complimentary function g

satisfy the A-condition and let B be the family of measurable mappings
u" R+ R such that

dt where
0

For any u in B we define the mapping [[." B R+ as follows"

11 0 if () 0 a.e. in R+.
Ig is a sraighforward exercise go show gha he family B is linear and

hag is a norm on B (e.g., see []).
To 1. U f and i complimear fncion aif Defiiion

l-a, hen he famil B, wih he bove norm, i eprble reflezive Banch
pce.

he proof is given, in Appendix 1.
B has he following propergies"
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(1) If {un} is a sequence in B which is bounded in norm, then there exists
a subsequence {ul} such that {Unl} --- U in B where -- denotes weak
convergence.

(2) If {un} -- u, then lim u If- ->- u II,.
If l]u]]B _-> 1, thenJ, f(I]u(t) l])dt >- ]lu]]B.3)

(4) If u, --u on the interval [0, T), where T < , and where, for
each n 1, 2, and [0, T], u,(t) =< M < + , then

rf( u fo
r

lim
Jo

(t) II) dt >= f(ll u(t) II) dt.

The proof of properties 1 and 2 can be found in any text on functional
analysis, property 3 can be found in [5], and property 4 is proved in
Appendix 2.

3. Let

(3.1a) 2(t) A(t)x(t) -k- B(t)u(t),

(3.1b) n+l(/) Q(x(t)) + f(ll u(t)]]),

where u(t)l] [u:(t)]/ and A nd B are respectively continuous
n X n and n X m matrices which are uniformly bounded for all => 0. We
assume u lies in the subset U of B consisting of all mappings u B with the
property with u" R+ -- K, where K is a compact convex subset of R which
has a nonempty interior containing the origin, and that Q" R" --+ R+ is a
continuous positive definite mapping.

Let (t) (x(t), xn+i(t) be a solution of (3.1) in the sense of Camthd-
odory. The coordinate Xn+l(t) is what is commonly referred to as a per-
ormance index.

Suppose for given u in U there is a solution x(t) of (3.1a) with
n+lxu(O) o Oandlimx,(t) O such that limt. x, (t) < . De-

note by C the set of all u in U with this property and let

J[u] Jo [Q(x,(s) + f(ll u(s) II)] ds.

THEOREM 2. Under the above assumptions there exists an optimal mapping
in U, that is, there is a (t in C such that

J(2) inf J[u].

Proof. Let J0 infEc J[u], and assume C has an infinite number of
members (otherwise there would be nothing to prove). Since J[u] is finite
for some u in C, we know J0 >= 0. Let {J[u]} {Jn} be a sequence which
converges to J0 and is bounded above by some finite constant M. Let [ek}
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be a null sequence of strictly decreasing positive constants such that
x0 > 1 > . > > k > Let t, be the first time the trajectory

x(t) x(t) strikes the surface 0 (el) of the ball x =< .
Let T1 lim tl. By assumption,

nq-1/ ; tkI
M >= Jk >- xk tk,) >--- Jo Q(xk(s))ds >-_ vtk,

where v infll,,>__l Q(x)> 0. Thus M/n >= tkl for all / and hence
TI <-_ M/v.
Consequently we can find a subindex set {n} c {n} such that"

(3.2) Itn}-- T
(3.3) {x(T)}-- x

(3.4) {Unl ___)w l(t) On the interval [0, T1], and U,

(3.5) {Xnl(t)} ___>unif X71(t On the interval [0, T], where xa is the solu-
tion ot (3.1) with u 1,

(3.6) xa(T) xl.

Justification. Since A (t), B (t), and u(t) are uniformly bounded on
[0, M/], the sequence/x(t)} is equicontinuous; hence we can find a subse-
quence which stisfies (3.2) and (3.3). Furthermore we can find a subse-
quence of this subsequence such that lug} -- in B on the interval [0, T].
The mapping 1 can be chosen such that %(t) is in K for each in [0, T].
This ollows from [7, Exercise 43, p. 439]. Hence (3.4) is true.

Just as in [6] we can show that the solution of (3.1a) with u satisfies
(3.5) and hence (3.6).
Let tn,2 be the first time the trajectory x (t) strikes the surface 0(e2) of

the unit ball x --< 2. Let

which is greater than or equal to T1 since {n} c {n} and e. < e. By the
same argument used to show the finiteness of T1 we show that T is finite.
We select a subindex set {n} c {nl} such that (3.2)-(3.6) hold, where

T. replaces Tt, n replaces n, and / replaces /t.
For each ek we repeat the above process, each time selecting a subindex

set {nk} c {n_} and obtaining a Tk which is finite and such that
Tk-1 Tk ]C 2.
We apply the Cantor diagonalization process to the index sets Ink} and

thus obtain an index set no} such that"
(1) u} -- on [0, ), where (t) k(t) for [0,
(2) the trajectory xa corresponding to is such that
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(3) {Xne(t)} .__unif xa(t) on each interval [0, Tk],
(4) a(t) is in K for each in [0, m ).
For convenience we relabel ne by n in the remainder of the proof.
We claim that limt_. xa(t) 0 and J[] J0.
First observe that x(t) +unif x(t) on any finite interval [0, T]. Since Q

is continuous this implies that

on finite intervals.
By property 4 of 2 it follows tha

lim J0 f(][ u(s) 1) ds Jo f( u(s) ) ds

on finite intervals.
Hence for any T < m and e > 0 there is an n0(T, e) such that

T pT

f< Jo
Q(x,(s) ds+ f([/u,(s)[]) ds +e < Jo + 2e

for all n n0(e, T). Since this is true for all finite T it must be true in the
limit, i.e., J[] J0.

Finally we show that the origin is the only limit point of xa(t).
Assume y0 0 is another limit point of xa(t). We construct the shell

If {.} and {xa()} y0, then the trajectory xa(t) must pass infinitely
often through S. By virtue of the boundedness assumptions on A (t), B (t),
and ’5(t) it is easy to see that the minimum time of passage through S is
bounded way from zero. Let T0 > 0 be lower bound for the minimum
passage time. By the assumptions on Q it follows that there is a > 0 such
that Q(x) for x in S. Since the passage time for xa(t) in S is greater than
or equal to T0, it follows that J[] , which is a contradiction. Hence
xa(t) has only the origin as a limit.
Remark 1. If in Theorem 2 we replace f( u(t)[[) by f([ur(t)Lu(t)]l/),

where r denotes the transpose of a vector and L is a positive definite sym-
metric m X m matrix, then the conclusion of the theorem remains valid.
This follows from the fact that [uTLu]/ has the property that if 0 < a < 1
and u and u are given, then u (1 a)u + au: satisfies

T 1/2[uLu]1 . )[uLu] + [u Lu:]

COROLLARY 1. U +(t) xr(t)Qx(t) + ur(t)Lu(t), where Q and L are
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respectively positive definite n X n and m X m matrices, then the conclusion of
Theorem 2 is valid.

Proof. Let f(y) y2. By applying Definitions 1-4 we see that f is an
N-function whose complimentary function is g(F) -F bud that both
satisfy the A-condition. By Remark 1, Theorem 2 holds for Q positive
definite and f( [ur(t)Lu( t)]1/2) U T(t)Lu(t).

Corollary i is a result due to Chang [3].
THEOREM 3. Let Q(x) xrQx, where Q is a positive definite symmetric

matrix. Then the optimal mapping of Theorem 2 is unique up to sets of meas-
ure zero.

Proof. Suppose there is fi in C such that J() J(fi) and (t) fi(t)
on some set E with Lebesgue measure greater than zero.
Choose 0 < < 1 and define the mpping u a (1 a). Because

of the linerity of (3.1) in x nd u it follows that u is in C. Moreover Q(x)
is convex function in x, i.e.,

Q(ax + (1 a)x) aQ(Xl) + (1 a)Q(x:) for 0 < a < 1.

Since f is strictly convex as a function of u and (t) (t) on set E
with measure greater than zero, it follows that

J[ul] < aJ[] + (1 a)J[] Jill,

which is impossible since J[] is the minimum for all u in C.
Remar 2. Let f(y) y, p > 1. Then the norm induced by Definition

4 has the property that if {u} u and { u [[.} u [[.,then
Un U []. 0 aS n , i.e., the convergence is strong.
Proof. The proof of the remark will follow if we can show that the induced

norm in the space conjugate to B, i.e., in Lq, is Frdchet differentiable on the
unit ball in Lq (see, e.g., [9, 3, 5, 8, pp. 111-114]).

If v 0 is in L, then v stisfies the relationship

Let v and h be mappings in Lq whose norms are equal to one.
Consider the functional

(t,
kq

dT 1.

For sufficiently small we cn apply Leibniz’ rule for differentiation under
the integral sign (see, e.g., [10, p. 359]). We obtain

O -q
Ok

i=l

(where of course the integrand is zero at points where v(r) + th(r) 0).
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By the implicit function theorem we obtain

d (0, (0)) v()I1- 2 v()h(-) d-,
dt

which defines a linear mapping, Fv, from Lq --> i. This mapping has the
representation

r ()

(again the right side is zero if v(r) 0) and is called the Gateaux gradient
of 11" IIL t .
By direct verification we see that II I’v p is integrable over R+ and has

norm equal to one. Hence rv is in B, i.e., in L.
Moreover r. Lq -- L is continuous at the point v. To see this, suppose

the contrary. Then there exist a sequence {vn} and a constant e > 0
such that Vn V llLq O, but for all n, rv rv ll- => e. However be-
cause of the strong convergence of {v} to v we can select
which converges a.e. to v. From the form of v we see that this implies
rV rVnl lib -- 0 aS nl :) which is a contradiction. Thus P is continuous

at v.
We can now apply a result due to Vainberg [11] which states: If the

Gateaux gradient of a continuous functional F on Bnach space B exists
in a neighborhood of a point v in B and is continuous at v, then it is the
Frdchet derivative of F at v.

Thus ]] has a Frchet derivative at every point of the unit ball in
Lq, which proves the remark.
THEOnEM 4. Let f(y) yP, p > 1. Then a subsequence u, of the original

sequence in Theorem 2 tends to in the strong topology, i.e.,

Proof. Since

for some subsequence, it follows that

But this implies by Definition 4 that

which is equivaleng to
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Hence we can apply Remark 2 to {u.1} and since the norm induced by
f is the Lp norm, which has the property of Remark 2.

Appendix 1. Proof of Theorem 1. Let f satisfy Definitions 1-3. Let B1
denote the family of mappings u} such that u:R+ ---> R satisfies

fo f(lu(t) [) dt <

In [4 it is shown that B is a separable reflexive Banach space if the norm
in B is defined by

U lIB1 sup u(t)[v(t) dt,

where the supremum is taken over all mappings v: R+ R such that

g(iv(t) dt 1.

The family B of our theorem is algebraically isomorphic to the direct
sum B1 B (taken m times).
From [4, p. 126] we see that the product topology of this direct sum can

be given by taking the norm to be

u sup Ilv(t)II at,

where the supremum is taken over all mappings v: R+ R such that

From [8, pp. 1-2] it follows that the conjugate spce B* of B is topolog-
icMly isomorphic to B* B* (tken m times) nd that the repre-
sentational form of continuous linear mpping v from B R is given by

(v, u} dr,

* for each i 1, m.where ui BI vi C B1
By [4, Theorem 2, p. 80] we have

(1) f \l]ull]dt <= 1.

(The proof there is for scalar mappings, but goes through verbatim if we
replace the absolute value for scalar functions by the Euclidean length

for vector valued mappings.)
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From Definition 4 it then follows that

(2) u lIB u ll for all u in B.

By Young’s inequality [4, p. 77]

(3) u(t) Ill] v(t) f(]] u(t) II) + g(I] v(t) ll).
Next we observe that

(4)

u [1< sup fo(R)l]u(t)]]]]v(t)]}dt
-< f\ ilu ii. ] + 1,

because of (3).
By (1) we see that the right side of (4) is less than or equal to 2, i.e.,

Hence (B, I1" I1) and (B, 11" 118) are topologically isomorphic under the
identity mapping. This proves that (B, I1" lIB) is a separable reflexive
Banach space.

Appendix 9.. Proof of property 4. We first establish a lemma needed in
the proof of property 4.
LEMMA. If lUg} in B is any sequence such that for all n, u,(t) II <-- M

for each in some finite interval [0, T], then given any e > 0 there is a 6() > 0
such that

f Un(t)II dl Y(ll Un(t)11) dt
1--6

for all n.

Proof. The proof follows from the fact that we can write

p(r) dr dt
all u,,(t)ll

<= fao p(r) dr dt T p(t) dt

Proof of property 4. Assume
T T

li___m fo f(llUn(t) II) dt < Jo" f(I}u(t) II) dt It.
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Lety(t) f(t)/l. Define a new norm II" ll in B which is determined by
] and satisfies Definition 4. Because of the /2-condition the norms I]-
nd ]]-]]’ > 1.re equivalent. In the new norm u 1 nd lim u

T

Let 1 Jo f(l u(t) l) dt. Then

T

lc lc lim Jo ]( u(t) ]) dt K k.li
T

ifwelet , ](Iu(t))dt, wesee that lim Z 1Hence,

where a is some positive constant greater than zero nd less than 1.
Let {n} c {n} be a subindex set such that {n} 1 a and such that
k < 1 a for all n. We now pply the above lemma choosing 0 < 3 < 1
such that

1-- 2"

Since li u ].’ => 1 there exists an n such that u ]1- > 1 . Hence
we obtain t.he following inequality

) )o
This contradiction proves property 4.
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ON A SOLUTION OF AN OPTIMIZATION PROBLEM IN
LINEAR SYSTEMS WITH QUADRATIC PERFORMANCE

INDEX*

YOSHIYUKI SAKAWA

1. Introduction. We consider a linear control system defined by

(1) dx A(t)x(t) + B(t)u(t),
dt

where x(t) is an n-dimensional state vector, u(t) is an r-dimensional con-
trol vector, and A (t) and B (t) ure n X n and n X r matrices which are
continuous in the time t. Each component u(t) of the control vector is
assumed to be constrained as

(2) lug(t) <= 1, i 1, 2, r.

The control u(t), 0 =< < , will be called an admissible control if it is
measurable and it satisfies the constraints (2).

Optimization of (1), subject to the constraints (2), for a quadratic per-
formance index has been studied by several authors [1]-[4]. Letov [1] dis-
cussed the problem using the classical calculus of variations. Wonham,
Johnson and Rekasius [2]-[4] used the Hamilton-Jacobi equation for
analyzing the problem. Chang [5] showed, under fairly strong conditions,
that there exists a unique optimal control for any choice of the initial
condition. This paper treats the problem by using a different mathematical
procedure from those mentioned above. Since the state variables are ex-
pressed, by integrating the linear differential equation (1), in a linear form
in the control functions, the quadratic performance index can be expressed
as a quadratic functional of the control functions. Thus, we are required to
minimize the quadratic functional under the constraints (2). This problem
can be considered as an infinite-dimensional nonlinear programming prob-
lena. By using the generalized Kuhn-Tucker theorem in nonlinear program-
ming, we derive a system of nonlinear integral equations as a necessary
and sufficient condition for the optimal control. The existence and the
uniqueness of the solution of the integral equations are studied. Successive
approximations for the solution of the integral equations are shown also.

2. Formulation of the optimization problem in the Hilbert space. The
solution of (1) with initial value x(0) x0 is given by

(3) x(t) X(t)xo + X(t) fo X-1(8)B(8)u(8) ds,

* Received by the editors November 17, 1965.
Department of Electrical Engineering, Kyoto University, Kyoto, Japan.
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where X(t), the fundamental matrix, satisfies

(4)
dX A X

dt
X(0) I (identity matrix).

The matrix X(t) is also called the transition matrix. The performance
index to be used in this paper is the generalized quadratic error criterion
[6]. Let xe(t) be an n-dimensional desired state vector. Let us also define
the error vector to be the difference between the desired state and the
actual state, i.e.,

e(t) x(t) x(t).

Using (3), we can write

() e(t) g(t) f.o W(t, s)u(s) ds,

where

(6) g(t) x(t) X(t)xo,
W(t, 8) X(t)x-l(8)B(8).

Clearly, W(t, s) is an n N r matrix.
The performance index is defined as

T

(7) I(u(t)) f {e*(t)Q(t)e(t) -Jr-u*(t)Cu(t)} tit,
.o

where Q(t) is an n X n positive semidefinite symmetric matrix which is
continuous in the time t, C is an r N r positive definite diagonal matrix
with positive constant elements, T is a fixed time, and * denotes the
transpose of a matrix or a vector. The matrix Q(t) is usually taken to be
a diagonal matrix with nonnegative constant elements. The problem is
then to choose an appropriate admissible control vector u(t) so that the
performance index is minimized.

In this paper, we use notations of functional analysis [6]- [10]. Let
H1 be a real Hilbert space of n-dimensional functions square integrable over
[0, T], and H2 be a real Hilbert space of r-dimensional functions square
integrable over [0, T]. Then the state vector x(t), 0 <= <= T, will be in
H1 and the control vector u(t) can be taken in H2. Let us denote the inner
product of two n-dimensional vectors x and y in the Hilbert space H1 by
(x, y)l, which is defined by

T T
(x, y) (t)y(t) dt (t)x(t) dt.

In the same way, let us denote the inner product of two r-dimensional vec-
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tors u and v in H by (u, v). Then, the performance index (7) can be
written as

(8) I(u) (e, Qe) + (u, Cu).

We define a linear integral operator L on H. by

(9) Lu fo W(t,s)u(s) ds, 0 <= <= T,

which maps H: into H1. Since W(t, s) is continuous on the domain 0 -< t,
s =< T, it is obvious that the linear operator L is bounded and Lu H1.
The performance index (8) is rewritten as

(10) I(u) (g Lu, Qg QLu)I + (u, Cu).

Equation (10) can be expanded to give

(11) I(u) (g, Qg) 2(Qg, Lu)I + (Lu, Qiu) + (u, Cu).

Let L* now be the adjoint operator of L; then L* maps H into H: and
satisfies the relation

(x, Lu)I (L’x, u)
where x H1 and u H. Equation (11) can thus be written as

(12) I(u) (g, Qg)l 2(L*Qg, u) + (L*QLu, u). + (Cu, u).

It can be proved, as shown in the Appendix, that

*L Qg (t, s)Q(t)g(t) dt,
(3)

L*QLu ] Y(s, ’)u(’) dr,

where

(14) Y(s,-) W*(t, s)Q(t)W(t, ) dt.
ax(s,)

Evidently, Y(s, r) is an r X r continuous matrix and Y*(s, r) Y(r, s).
Since

(L*QL) * L*QL,
the linear bounded operator L*QL on H: into H is self-adjoint. Moreover,
since

(15) (L*QLu, u): (QLu, Lu) >- 0

for arbitrary u H:, the operator L*QL is positive.
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Defining such ,a new operator R by

(16) R L*QL q- C,

(12) can be written as

(17) I(u) (Ru, u). 2(L*Qg, u)2 -t-- (g, Qg)l.

It is clear that the operator R on H2 into H2 is self-adjoint and positive
definite.

3. Reduction of the optimization problem to a system of integral equa-
tions. The constraints (2) can be written as

(18) 1 u,(t) >= O, i 1, 2, r.

Thus, the problem is to minimize (17), the quadratic functional of u(t),
under the constraints (18). This problem can be considered as an infinite-
dimensional nonlinear programming. For this problem, we can apply the
generalized Kuhn-Tucker theorem [11] which is an extension of the Kuhn-
Tucker theorem on nonlinear programming to more general topological
spaces. Defining a mapping , which maps H= into H, by

1 u=(t)
1 u2=(t)(9) (u)

1 ur(t)
we denote the constraints (18) as

(20) (u) _>_ o.
Since the operator R on H. is positive definite, it can be easily seen that

the functional I(u), as given by (17), is convex. It is clear that (u) de-
fined by (19) is concave. Moreover, it follows that (0) > 0, 0 H.
Therefore, from [11, Theorem V. 3.1], it follows that if u minimizes I(u)
subject to (u) => 0, then there exists a nonnegative r-dimensional func-
tion

(21) )0(t) >= 0, 0 H:,

such that, for the Lagrangian expression

(22) J(u, ),) I(u) (),, ,(u)).,

the saddle-point inequalities

(23) J(u, o) >_ j(uo, o) >= j(uo, )
hold or all u H and all , => 0, H2.
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Conversely, from [11, Theorem V. 1], it follows that if there exist u H.
and X 0, },o H2, such that the saddle-point inequalities (23) hold for
all u H2 and all k => 0, ) H, then

(24) (u) => o
and, for all u H. satisfying (u) 0,

(25) I(u) <__ I(u).

Therefore, the conditions (21) and (23) are necessary and sufficient for
u to be an optimal control.

Since k => 0 is a fixed vector in H, we write

J(u, k) Jo(u).

Let tiJo(u; ) be the Fr6chet differential of J0 at u with increment
H, which is defined by

(26) Jo(u
J(u + e) Jo(u)) lim

--,0

where is a rel number [10]. It en be shown easily that

(27)
Jo(U + ) Yo(U) ,Jo(U; ) + d(n5 )

A-2 fo = h(t)(t) dt,

where o and , i 1, r, are the components of the r-dimensional
tunctions o and , respectively. Therefore, in order that the first inequality
of (23), J(u, o) __> j(uo, k0), be satisfied for all u H2, it is necessary and
sufficient that

(28) tiJ0(u; ) 0

for arbitrary H..
Moreover, the second inequality of (23) implies that

(o, (uo) ). __< (, (uo) )
for all X => 0, k H. Hence, we obtain the inequality (u) ->_ 0 and

(29) (X, (u) ). O.

Thus, the necessary and sufficient conditions for u to be the optimal con-
trol are (21), (24), (28), and (29) in all. Henceforth, u and o are simply
written as u and , since no confusion may occur.

In view of the definition (26), the Frdchet differential of Jo at u with in-
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crement (u, H) can be ewluted as

aJo(u;) 2(Ru,)2 2( *L Qg,)2 -,
where O/Ou denotes an r X r diagonal matrix defined by

=-2

ul 0 0
0 u 0

0 0 Ur

Since aJ0(u; ) vanishes for arbitrary H., it follows that

10 =0.(30) Ru *L Qg
2au

We set L*Qg f, then from (13) and (16),
T

,
L Qg

Y(s, r)u(r) dr -F Cu(s),

W*(r, s)Q(r)g(r) dr f(s).

Clearly, f(s) is an r-dimensional tunction. Write

Y(s,)

Yll(8, T) yZ(S, r) ya,(S, r)

(, ) .(, ) (, )

Then, the relations (21), (29), and (30) can be written for each component

(31) hi(t) => 0, i 1,

(32) },i(t){1 ui2(t)} 0, i 1,
T

y(t, s)u(s) ds -- ciui(t) + Xi(t)ui(t)

r,

r,

fi(t), i 1, ..., r,

where the c are the elements of the diagonal matrix C and all positive.
From (31 and (32), it follows that
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(c)

FIG. 1. Relations between the variables

M(t) 0 if --1 < u(t) < 1,

M(t) ->_ 0 if u,(t)= 4-1.

Hence, the relation between u(t) and M(t) can be shown as Fig.
The relation between u(t) and M(t)u(t) and then the relation between
u(t) and cu(t) q- M(t)u(t) can also be obtained successively from Fig.
la as shown in Figs. lb and lc, respectively. By defining the new functions

and denoting the relation between u(t) and v(t) by

i 1,...,r,

(33) can be expressed as

(34) vi(t) q- y(t, s)(v(s) ds f(t), i 1, 2, ..., r,

or in vector form, as
T

(35) v(t) q- fo Y(t, ,)(v(s) ds f(t).

In (34), the nonlinear function )(v) is shown in Fig. 2, which can be ob-
tained from Fig. lc directly. Thus, the optimization problem has been

u(t) (v(t) ), i 1, ..., r,
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FIG. 2. Nonlinear characteristic

reduced to a system of nonlinear integral equations. In other words, (34) is
the necessary and sufficient condition for the optimum.

Defining such functions as

,(t) f(t) (t), (fi(t) + b(t)) F(t, b(t)), i 1, r,

(34) can be written as

(36) (t) -- yu(t, s)F(s, b(s) ds O, i 1, ..., r,
j--l

or in vector form, as

(37)
T

b(t) -- fo Y(t, s)F(s, (s) ds O.

Equation (37) is of the vector form of nonlinear integral equations of the
Hammerstein type [12], [13].

4. Successive approximations for the solution of the integral equations.
Since c > 0, i 1, r, it is clear from Fig. 2 that the functions F(t, ),
i 1, r, satisfy uniformly a Lipschitz condition of the form

(3s) F,(t, (1)) F(t, ()) =< 1 () () I, i , ..., r,

where a is a positive constant such that a >_ 1/c, i 1, r. Let us
define the norm of a vector x in H2 as

{ fo
T tl1]2

x (x, x)/ x(t) d
i=l

Moreover, let us introduce an r-dimensional function z(t) (zl(t),
zr(t) ), where the elements are defined by

z(t) y(t, s) ds i- 1,...,r.
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The functions yj(t, s), i, j 1, ..., r, are continuous on the domain
0 <-_ t,s <- T, hence z H2. It can be proved that if

(39) all z < 1,
then the successive approximations

(n+l)(t) __-’ fO
r

(40) =1
yij(t, s)Fi(s, () (s) ds,

i 1, ...,r, n-- 0,1,2, ...,

starting, for instance, with (0)(t) 0, converge to a unique solution of
(36). It is obvious that the existence of a unique solution of (36) implies the
existence of the unique optimal control.
In fact, from (38) it follows that

T

T

Furthermore, using the Schwarz inequality,

bi(n+l)(t) i(n)(t)

{ fo
T ,ll/2f fo

T

(/j(n) (8) cj(n--1) (8) )2 ds}l/2
Thus, we obtain

(41) 1(n+l) /(n)]] < O/]] Z ]1]1 //(n) //(n--1)]1"
Equation (41) shows that the mapping defined by the right-hand side

of (40) is a contraction mapping under the condition (39) [9]. Therefore,
under the condition (39), we can show the existence and the uniqueness
of the solution of (36).

5. Existence and uniqueness of optimal control. In the case where
cl c: c., the nonlinear characteristics, i 1, r, shown
in Fig. 2 coincide with each other. Hence, we express the characteristic
as ). In this case, the system of nonlinear integral equations (34) can be
reduced to a single integral equation with u discontinuous kernel in the
basic interval 0 =< =< rT"

..rT

(42) (t) -4- ] )(t, s)(O(s) ds if(t), 0 <= <_ rT,
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where

and

IV1(t)
( t) tv.! T)

[vrit- (r- 1)T)

/fl(t)
f(t) tflt- T)

V.it- (r- 1)T)

if0_< < T,
if T =< < 2T,

if(r-- 1)T <-_ <= rT,

if0 _< < T,
if T -< < 2T,

if(r-- 1)T <= <= rT,

(43) $(t, s) yj(t- (i- 1)T, s- (j- 1)T),

if (i-- 1)T _-< < iT and (j- 1)T _-< s <jT, fori, j 1,2, ,r.
Furthermore, defining such scalar functions as

O(t) (t) (t),
()

(](t) - (t) (t, (t) ),

(42) can be written as

rT
(45) (t) + J0 (t, s)(s, (s)) ds o, O<_t<_rT.

Equation (45) is of the standard form of integral equations of the Hammer-
stein type [12], [13].
Hammerstein [12] proved the existence of the solution of the integral

equation of the Hammerstein type, assuming that the iterated kernel
rT

Jo

is continuous. However, the kernel function $(t, s) defined by (43) is not
continuous, hence Hammerstein’s existence theorem is not applicable to our
problem. In what follows, the existence of the solution of (45) will be shown
by using Krasnosel’skii’s existence theorem [13], [14].

Let H be a real Hilbert space of functions square integrable over [0, rT].
The inner product is defined, as usual, by

rT
(x,y) -] x(t)y(t) dt, x, y H.

o
Let G be an operator on H defined by

(46) Gx (t, x(t) ),

and K be a linear operator on H defined by

xH,
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rT

(47) Kx fo $(t, s)x(s) ds, x H.

Then, the integral equation (45) can be written symbolically as

(48) - KG O.

Since the matrix Y(s, ) defined by (14) is continuous on the closed square
domain 0 =< s, r -< T, it follows that

fj0 fj0  
Therefore, the linear operator K is completely continuous [10]. From (15)
it follows that

rT rT

i,j=l

$(t, s)x(t)x(s) dt ds

yi(t, s)x(t (i- 1)T)x(s- (j- 1)T)dt ds >= O,

for an arbitrary function x H. Hence, the operator K is positive, i.e.,
all its eigenvalues are positive. Moreover, the operator K is self-adjoint,
i.e., K* K. Therefore, from the spectral theory of o.perators, the operator
K can be decomposed as

(49) K- PP*,
where P is a square root of the operator K (i.e., P K1/2) and is a positive
self-adjoint completely continuous operator on H into H, and P* is an
adjoint operator of P [14]. Then, the nonlinear integral equation (48) can
be written as

(50) -[- PP*G O.

Equation (50) is equivalent to

(51) - P*GP O,

in the sense that to a solution 4) H of (51) there corresponds a solution
PC H of (50) and, conversely, to a solution H of (50) there cor-
responds a solution P*G H of (51). Moreover, Krasnosel’skii [14] shows
that the operator I + P*GP, I being an identity operator on H, is a gradient
of the functional

1 ]o’" jo(52) ,I,(4,) (,t’, 4) -4- dt fi(t, x) dx

defined on H, where an operator F on H into H is called the gradient of the
functional I,, if
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lim
,I,( + e() ,I,(4) (r4, (), 4, ( H.

0 (!

It is clear that the function /(t, x) satisfies the Carath4odory condition
[14], i.e., it is continuous with respect to x for almost all [0, rT] and
measurable with respect to for all values of x.

According to [14, Chap. VI, Theorem 1.1], if the functional (52) is in-
creasing, i.e.,

lira I,() +
then there exists a point 0 in the Hilbert space H where the functional
takes on its minimum value and its gradient vanishes, i.e.,

ho + P*GP4o O.

Thus, if the functional ,I,() is increasing, then the existence of solution
of (51), and hence the existence of a solution of the fundamental equation
(50), can be concluded. Since

f (t,x)dx <= f ,(t, x)idx <-lu I,

using the Schwarz inequality, it follows that
rT Pdz( t) rT

Ph(t) dt <= %/-T(P4,, pep)l

%/-T(K), c )1/2 __.< /-M(, )’/,
where

M
rr r)(t,s) dtd

Consequently,

(3) xI,()) >__ 1/2(4), 4)) %/-M(, ())1/2.
Equation (53) shows that the functional I,() is increasing. Thus, the
existence of the solution of the nonlinear integral equation (45), and hence
the existence of the optimal control, has been proved.

If we assume further that the positive operator K defined by (47) is
positive definite, i.e.,

(4),K4)) > 0 if 4) 0,

then the uniqueness of the solution of (48) can also be proved as follows.
Assume that

(54) + KG O, + KG O.
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:FIG. 3. Discontinuous nonlinear characteristic

Subtract these two equations and form the inner product with (G1 G2)"

(55) a/- a]/2,/- ) + G/- GC,KG]/- KG) O.

From the definition of the function (t, x), the first term of (55) is obvi-
ously nonnegative. Since the operator K is positive definite, there is a
contradiction unless G G 0, but in this case from (54) we obtain

2. Thus, under the assumption that K is positive definite, the unique-
ness of the optimul control cn be shown.
When C 0 in (7), the nonlinear functions, i 1, 2, r, become

discontinuous as shown in Fig. 3. In Fig. 3 the vertical part of the charac-
teristic corresponds to a singular control which takes on such continuous
values as -1 < u(t) < 1. In this case, however, the existence of the
solution can not be claimed since the assumed Carath6odory condition does
not hold.

Acknowledgment. The author wishes to express his gratitude to Pro-
fessor C. Hyashi for his valuable suggestions.

Appendix. Derivation of (13). From the definition (9) of the operator L,
it follows that

(*L Qg, u) (Qg, Lu)
(56)

fo dt )Q(t) fo W(t, s)u(s) ds.g*(t

The region of integration in (56) is given by 0 =< =< T, 0 =< s =< t, which
is equivalent to 0 =< s =< T, s -< -< T. Then, changing the order of the
integration in (56) yields

c Q, ), /w*(t,)Q()() I* u() .
Equation (57) shows that



AN OPTIMIZATION PROBLEM IN LINEAR SYSTEMS 395

T

(58) L*Qg W*(t, s)Q(t)g(t) dt.

From (58) it follows that

(59) L*QLu dt W*(t,s)Q(t) W(t, r)u(r) dr.

The region of integration in (59) is given by s -< =< T, 0 =< r =< t, which is
equivalent to 0 _-< r =< T, max(s, r) -<_ =< T. Changing the order of
integration in (59) yields

L*QLu f W*(t, s)Q(t)W(t, r) d u(r) dr
ax(s,r)

(60)

Jo Y(s, r)u(r) dr.
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NEW RESULTS IN ASYMPTOTIC CONTROL THEORY*

R. S. BUCY’f

In a recent paper [1], problems of the asymptotic behavior of optimal
control, laws were formulated and a class of one-dimensional systems were
solved., The solution depended on the explicit construction of a smooth
solution to the relevant Hamilton-Jacobi equation for the control problem.
Of course this technique for the general n-dimensional problem is ineffec-
tive.
Here we consider the problem for n-dimensional systems and resolve it

by functional analytic techniques. Our major technical device is to con-
sider the control problem us that of finding the infimum of a functional f on
an appropriate Hilbert space of controls. Our existence and uniqueness
result for the optimal control, the proof of which is motivated by rther
famous result of Riesz (see [4, p. 25]), has the following corollary: if
f(un) --+ infeL2 f(u), then u tends strongly to 4, the optimal control. This
corollary s used to resolve the general problem.

1. Definitions and assumptions. We consider the following linear au-
tonomous n-vector differential equation"

(1.1)
dx Fx + Gu,

x(0) c,

where x and u re respectivdy n and m vectors and F and G are respec-
tively n X n and n X m matrices. It is well-known that (1.1) has a unique
bsolutely continuous solution, which is almost everywhere differentiable
for every u(. in the Hilbert space Lr whose norm is defined by

ul u()ll,,ds

where R is a positive definite m X m matrix. We shall, denote that solution
by (-, c). Now we shall suppose that u function K from R to R+ is
given sa,tisfying the ssumptions"

(1) K(O) O;

* Received by the editors September 1, 1965, and in revised form February 28,
1966.
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(2) K C(Rn), and [Kj], i,j 1,..., n, is

positive semidefinite for all x.
We shall associate the following real number with each c R’ and

u(.) L.
T

(1.2) V(T, c, u( )) =f0 (K(u(s,e))-t-lu(s)lIn2)ds=(eu(.,c))-l-lulr2.

Now the con.trol problem consists of the study of the functions

(1.3) V(T, c) infu(.)eLr. V(T, c, u(-))

alld

(1.4) V*(c) inf(.e. V(oo, e, u(.)).

A function u(. L will be called a control, and one which achieves the
infimum in (1.g) or (1.4) an optimal control. Our object here is go resolve
the fundamentM questions of asymptotic control heory" namely, o prove
gh.e existence and uniqueness of the optimal control . for T fixed, and
to prove that

V(T, c) V(T, e, ur.(. )) V*(e) V( oo, e, uoo.,(-))

Ur,c --Historically the above problems were resolved in the special c,ose of the
filtering problem and the quadratic control problem in [3].

2. Main results. We shall first resolve the existence and uniqueness
question.
LEMM 2.1. For each fixed T, 0 < T <= o, V( T, is continuous and

there exisls an optimal control ur.(" Lr. Further, if T is finite, he oplimal
conlrol i unique’, while if T o u,(. is unique whenever there ezists a
control u L such tha V(

Proof. For c R and u Lr and 0 < a < 1,

V(T, acx + (1 a)c) _<_ aV(T, cx, u(-))
(2.)

-I- (1 a)V(T, ce, u(.)),

since (1.1) is linear and K is convex. From (2.1) it follows that V( T, is
convex on an open set and, since by definition it is measurable, V( T, is
continuous. In order to show the existence of an optimal control, we may

Of course by definition of a control it is an equivalence class of a.e. eqtml func-
tions.
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assume that V(T, c) is finite, for otherwise the conclusion is immediate.
By the definition of the infimum it follows that there exists a sequence of
controls u. (.) such that

V( T, c, u( --+ V( T, c) as n-- .
Now, for e an arbitrary positive real number there exists an no such that
for n > no and all m,

and

V(T, c, u(.)) < V(T, c) -t- e

V(T, c, u+=(.)) < V(T, c) + ,
so that

( u(-) +u+.m(.))< ,(2.2) 1/2. V T, c, u,( )) +1/2 V( T, c, u+( )) V T, c,
2

since L is a linear space. Now the Hilbert space identity

u+u+ + u-u+ 1
2 2

(I u I + U+m r)

and (2.2) have the consequence that

u u.+., + 1/2 (,u(" c)) + 1/2 (,u/(" c))

(- ,.+u/(-, c)) < .
However, since (u( ", c)) is a convex functional of u(. ), it follows that
{u(-)} is a Cauchy sequence as e was arbitrary; in consequence, there
exists a control ur, Lr such that un converges in norm to ur,. By
Fatou’s heorem,

V(T, c, ur,) =< lira inf V(T, c, u(.)) V(T, c),

so that ur. is optimal. Suppose that ur. and v are both optimal controls,
then by our previous argument the sequence {vn}, where

v if n is even,
Yn ur, if nisodd,

is a Cauchy sequence; and hence v ur, a.e. The argument is similar for
T and is omitted.
In actuM fact, the preceding proof reveals the following interesting and

useful result, which we emphasize as a corollary.
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COPOLLARY 2.1. If U Lr and V( T, c, u(. )) --* V(T, c) as n ,
then un converges to ur.c in norm.
We may remark that Bellman [2, p. 46] proved the existence and unique-

hess of the optimal control for the special case where K is a quadratic
form. Using the Alaoglu-Bourbaki theorem for a reflexive space and the
Banach result that every weakly convergent sequence possesses a norm
convergent sequence in its convex hull, a proof of existence and uniqueaess
of optimal controls was given in [5] in a slightly more general context than
the above lemma, as a reviewer pointed out to the author. The reader
should note that this latter proof is not sufficient to establish Corollary 2.1,
which, as we shall see, is the key to our later results.
We shall now assume that V*() is finite, for which stability of F or

complete controllability of (1.1) is a sufficient condition. The next esult
gives a priori bounds on V*(c) and is partly contained in [1].
LEMMA 2.2. For T > O,

(2.3) V*(y0) q- V(T, c)

_
V*(c) -< V(T, c) -t- rain [V*(y), Y*()],

where yo ,.(T, c), y ,r.(T, c), -r.(T e, c) for > O.

Proof. By the optimality of ur. and u,yo it follows that

V*(c) V(T, c, u.(.)) + V( , yo, u.(. + T))

>- V(T, ) + V*(y0).

This establishes the right side of (2.3). Further, by the optimality of u,.,

’) v( c,u)},V*(e) =< rain {V(oo, e, u

where

=fur.(s) if 0 =< s-< T,u(s) (u..yx(s- T) if s > T,

and

(
u (s) =ur,(s) if 0 < s < T- ,

ku&(s- (T- e)) if s >= T- e.

This establishes the left side of (2.3).
It may be remarked that as V(T, c) is monotone nondecreasing :in T as

T increases, limro V(T, c) exists. The following theorems provide the
major results.
THEOREM 2.1. V(T, c) converges as T ---+ uniformly on compact subsets

of R to V*(c). Further, y0(T) and h( T) tend to zero as T tends to ifinity.
Proof. The definition of V*(c) and the optimality of u.yo have he con-

sequence that
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(2.4) V*() >- V(T, c, u.c(. )) + V(1, y0(T) ).

However, V(T, c, u.c(. )) " V*(c) as T -+ by the monotone con-
vergence theorem, and therefore

0 lim sup V(1, y0(T) lim V(1, y0(T) ).

Since V (1, is continuous and vanishes only at the origin., y0(T) -- 0 as
T -- . The argument to show that I(T) -- 0 as T -+ is similar since

(2.5) V(T, c) >_- V(T , c) + V(e, 1(T)).

Now, as y0(T) and (T) tend to zero as T -- , (2.3) shows that

V(T, c) -- V*(c) as T-- .
The convergence is uniform on compact sets by Dini’s theorem.
Now consider the sequence of controls vr,o L: defined by

ur,(s) if s-<_ T- e,vr.(s) =\ujl(s) if s> T- ,
where e > 0. These controls approximate u. as the following theorem
indicates.
THEOREM 2.2. Vr.c converges in norm in L to u. as 7’ -- . Further,

for any sequence of real numbers tending to infinity there exists a subsequence
T, such that vr, -- u, almost everywhere as n tends to infinity.

Proof. By the definition of vr, it follows that

V(, , vr) V(T e, c, ur,(.)) + V*(),
so that

lim V( , c, vr) lim V(T e, c, ur.(-))

by Theorem 2.1, if V(T e, c, ur.(. )) has a limit. Now it is clear that

V*(c) V*() =< V(T e, c, ur,(.)) -< V(T,

so thut; limr V(T e, c, ur,(’)) V*(c). Corollary 2.1 implies the
first ussertion; the second follows since convergence in measure implies the
existence of an almost everywhere convergent subsequence.
COnORY 2.2. The optimal control r,(’, c) converges a.e. to

.(-. ) as T-- .
Cono.RY 2.3. If F is stable, then

, u.o() if 0-<=<T-,v.,(s) \0 if s > T- e,

converges in norm to u:. as T oo. Every sequence of real numbers with a



402 R.S. BUCY

limit point at q- has a subsequence T, such that

vr,,c u.,c a.e. as n ---+ o.
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EQUIVALENCE RELATIONS FOR THE CLASSIFICATION
SOLUTION OF OPTIMAL CONTROL PROBLEMS*

AND

C. D. CULLUMf AND E. POLAK:[:

Introduction. This paper is concerned with the use of the concept of
equivalence in the study of optimal control problems. The idea of using
equivalence relations in the study of problems in system theory is not new,
although until recently no apparent attempt had been made to apply this
idea to the theory of optimal control. Lately, a number of papers have
gppeared by Polak [1], [2], [3], Hermes [4], Liu and Leake [5] in which
equivalence relations are defined for optimal control problems and used
to obtain theoretical or computational results for broad classes of prob-
lems. It is the purpose of this paper to formulate the ideas presented in
these papers in a more generM form. Actually, because of the type of con-
trol problem considered by the authors (the so called "open loop" prob-
lem), the definitions of equivalence given in [4] and [5] are not subsumed
by the structure developed in this paper. However, it should be clear to
the reder that a parallel development for closed loop control problems
would unite and generalize the equivalence relations defined in [4] and [5].

It is shown in this paper that equivalence relations of the type defined
herein lead to problem classification schemes which are both. intuitively
appealing and computationally useful. To demonstrate the latter, a new
computational procedure for solving optimal control problems is presented
and illustrated by examples. Finally, it is hoped that this classification.
scheme will lead to a greatly improved understanding of the invariant
properties of optimal control problems.

The dealized physical system. The mathematical structure for construct-
ing relations between optimal control problems will be based on the idealized
regulator system shown in Fig. 1. This system consists of the following ele-
ments: a plant, describable by differential or difference equations, a con.-

troller, computer, and a switch (sampler). Let X be the stae space of the

Received by the editors July 16, 1965, and in final revised form on April 25, 1966.
This research was conducted partly at the Electronics Research Laboratory of the

University of California, Berkeley, and partly at the Electronic Systems Laboratory
of the Massachusetts Institute of Technology. It was supported by the National
Science Foundation under Grant GK-569 and by the National Aeronautics and
Space Administration under Grants NsG-354 (supp 2) and NsG-496 with the Center
for Space Research.

Deprtment of Electrical Engineering, University of California, Berkeley,
Californi.

: DeparUnent of Electrical Engineering, University of California, Berkeley,
California, and Massachusetts Institute of Technology, Cambridge, Massachusetts.

403



404 c. Do CULLUM AND E. POLAK

FIG. 1. Idealized regulator system

plant, T < < -1- the time axis, and V the space of all possible
computer outputs, assumed to be such that V W X T, where IV is a set
of quantities whose elements determine the "shape" of the forcing functions
produced by the eontoller. V will be called the control space. When an input
v 5 V is applied to the controller at time to, it produces a forcing func-
tion u(s; w), 0 <- s <= r, s (t to), v (w, r).
The entire regulator system will be assumed to operate as follows. At time

t0 the switch closes momentarily, enabling the computer to read the
plant state x(t0) X, while the time to is supplied by a clock. The computer
then produces instantaneously a control v, resulting in a forcing function u
which takes the plant state from x(t0) to a point in a given terminal set
XX.

Clearly, since every feedback control law gives rise o a corresponding
open loop control lw, his definition of he regulator system does not pre-
elude he control laws implemented by fhe eompufer from being feedback
laws. However, it will be more eonvenien for he purpose hand o con-
sider he system as being open loop.

An optimal control problem. An optimal control problem is completely
determined by the following seven quantities"

(i) X* X X T, the phase space of the system.
(ii) Xi* c X*, the set of initial phases.
(iii) X* c X*, the set of terminal phases.
(iv) V, the control space.
(v) t’X* X V -- X*, the phase transition law of the system, assumed to

have the following properties"
(a) .l =- .I(., v)’X* ----> X* is one-to-one and onto for all v V,
(b) 9J(x0*, v0) (xl, to q- r0), where x0* (x0, to), v0 (w0, r0),

i.e., the last component of the image phase is to q-
(vi) F.’X* X V -- R, a real valued cost functional dependhg para-

metrically on the phase transition law.
(vii) G {g g" X* -- V, and for all x* Xi*, 9d(x*, g(x*) Xy*I, a set

of admissible control lws.
The next step is to impose a partial ordering on the set G.

DEFINITION 1. Let g, g. be any two elements of G. Then g _-< g f and
only if F(x*, g(x*)) <= F(x*, g(x*)) for every x* X*.



EQUIVALENCE RELATIONS 405

The traditional statement of the optimal control problem can now be
enunciated as follows:

Given the seven quantities specified above, find a gO G such that gO __< g
for every g G.

Such a gO will be called an optimal control law. It is quite clear that we could
think of an optimal control problem simply as the septuplet (X*, X.x*, X*,
V, ?I, Fs, G), with the task of finding an optimal control gO G always
being implied. However, to make the ensuing discussion less cumbersome,
we find it convenient to group the first six quantities in the septuplet to-
gether as part of the specification of a feasible solution.
DEFINITION 2. Let p (X*, X*, X,*, V, I, F g), g G. Then o will

be called a feasible solution to the optimal control problem specified by
X*, X*, X*, V, ?I, F. and G.

DEFINITION 3. Let P {PIP (X*, X*, X]*, V, l, F. g), g G}.
Then, for any Pi 02 t), we define an order relation between p and o by

m =< p if and only if g =< g.
This defines a one-to-one ordered correspondence between.feasible solutions,
p P, and admissible control laws, g G.

It is now natural to define n optimal control problem s follows.
DEFINITION 4. An optimal control problen is defined to be a se of feasible

solutions, differing only in their control laws, partially ordered according to
Definition 3.
The next deiinition is a logical consequence of the preceding definitions.
DEFINITION 5. A feasible solution, p0 p, is n optimal solution to the

optimal control problem P if and only if p0 <__ p for every p P.
Remarlc. For any optimal control problem there is always a. question of

existence of an optimal solution p0. In what follows we shall always assume
that an optimal solution exists.

Properties of control laws. We now establish some properties of control
laws which will. be required lter on.

LEMMA 1. Consider an optimal control problem P. Let p P be arbitrary
and let g be the corresponding control law. If Xf* {x]*} consisls of a single
element only, then g is a one-to-one map from X* into V.
LEMMA 2. Consider an optimal control problem P. Let p P be arbitrary

and let g be the corresponding control law. If
X* [x’l x* (x, to), x X to fixed}

and if

x*= {x*lx*= (xz,t),x ize(l, t0__<t< 1,

then g is a one-to-one map flom Xi* into V.
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The proofs of both these lemmas follow immediately from the assumed
properties of the phase transition law.

Equivalence relations for optimal control problems. We now investigate
possible ways of defining meaningful equivalence relations on a class of
optimal control problems. One such definition, which immediately comes to
mind, is to say that two optimal control problems, P- and P, are equivalent
if there exists an isomorphism between the partially ordered sets {P, N}
and {P, N}, i.e., if there exists a one-to-one correspondence between the
solutions of P and P such that if p, o, i 1, 2, are corresponding solu-
tions in P1 and P respectively, then p N p" if and only if p N o. This is
clearly an equivalence relation. However, so many widely disparate prob-
lems are equivalent under this definition that it makes very little sense.
Furthermore, this definition results in so little structure that it is doubtful
that it could lead to any interesting results. In what follows, the authors
propose a definition of equivalence which is more satisfying to one’s intuition
and which at the same time gives a certain amount of useful mathematical
structure. This is accomplished by adding to the definition suggested above
the condition that the isomorphism be constructed in a certain manner.

Equivalence. Let be a class of optimal control problems and let P, P
be any two problems in this class, with corresponding subscripts identifying
all of the significant quattities of P and P. Let R(G1) U g(X’) V,
and R(G) U g(X) V, with the unions taken over all g G,
i= 1,2.
DEFINITION 6. We shall say that P is equivalent to P, written P P,,

if and only if there exist two maps @12 and satisfying
(a) 1:X* X*, one-to-one and onto, and

(i) (x) x,
(ii) ( * *X) X;

(b) :R(G) + R(G=), one-to-one and onto;
such that the map , with domain G1 which is induced by,= according
to the rdation

(c) mups G onto G in tt one-to-one manner, nd
(d) induces n isomorphism between the prtilly ordered sets {P, }

n.d {P, }.

The ma,p v: induces a correspondence bel,ween solutions of P and P by assign-
ing to every solution p P with control lw g. the solution p P with control
law (g).
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Remarlc. It is trivial to verify that this i’elatiol is an equivalence relation.
At first glance, this definition may seem rather complicated and artificial

to the reader. However, a little contemplation reveals that it is simply an
extension of bn intuitive idea of generating an equivalent optimal control
problem by making a change of variables on the phase space and/or the
control space. This is best illustrated by an example.
Example 1. Consider two problems P1 and P. defined as follows. For P1 the

phase transition law is determined by the linear differential equation of the
plant and the characteristics of the controller

(1) 21 Axl q- bu,

where x En, A is a constant n n natrix, b is a constant n-vector, and u
is the scalar valued output of the controller, satisfying the condition

Hence

u(s;v)l <= 1, 0 s -, for all v

( f0 )(2) l(Xo*, v) e’(Xo -- e-bu(s; v) ds), to -- r

The final and initial sets of phases are defined by

X.I (0, tf)}, a single point,

X* to) xl Xil to < tf fixed}.{(x,,

The set Xil is the set of all states which can be taken to zero by means of ad-
missible forcing functions u in the time t] t0.
The cost hm.ction.al is defined by

N(z*,v) F(v) ](;v) d, for all z* X.*,v F.

For P, he sae ransiion law is deermined by he ime varying vector
differential equation

(3) 2 C(t)x + d(t)u,

where x En, C(t) L-(t)AL(t) L-l(t)(t), d(t) L-l(t)b, nd L(t)
is an n X n mtrix, with bounded components, whose deriwtive (t) exists
and has bounded components. In addition .L(t) is such that L(t0) I, the
identity mtrix, ud det L(t) m > 0 for 11 T. The fil nd initial
phase sets are defined by X X, X X. The cost functional

F: F, defined above, V V1, and G G.
Clearly P: has been obtained from P by mking the change of vriables

x(t) L-(t)x(t). The reader my verify that these two problems are
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equivalent with f12 defined by

*):(xl l=(Xl, h)) (L-"(h)xl, h) for all xt X1,
and the map bi2 taken as the identity map.
The equivalence relation established above partitions the class (P of op-

timal control problems into equivalence classes in a very desirable manner.
It is reasona.bly clear that if the equivalence maps, 0i, b0i, connecting a
problem P0 with problems P in the same equivalence class are known, then,
by solving one problem, one has in fact solved the entire class of equivalent
problems. Furthermore, one may also single out and examine sets of solu-
tions in each problem with the same order properties. For example, one may
use iterative techniques, such as the steepest descent method, to obtain a
sequence of solutions {p, in problem P, whose costs, for given initial
phase, converge to the cost of an optimM solution in P. If P is problem
equivalent to P, then, under the assumptions stated in the lemma below,
the image sequence of solutions [p} also hs the property that, for the
image initial phase, the associated sequence of costs converges to the optimal
cost.

Let P and P be two equivalent problems under the equivalence maps
e: and a,d let g0 and g:O be optimal laws for P and P respectively with

* * and let x* (x*).g (g).Fixx Xi,
LEMA 3. If F(x*, gi), i 1, 2, are cluster points of the sets

{F(x*, g) g G}, i 1, 2, and {p} is any sequence of solutions in
P with imje sequence {p} in P then F(x g F(x g ff and

$
only ff F(x*, g F(x g ).

Proof. Necessity. The order preserving property of the isomorphism plus
the existence of an optimal cost guurntee that F(x: g converges. If
F.(x g C > F(x: g: ), then there exists with F(x: g

exists m N such that

NThis implies ht F.(x. g2 < C, a contradiction. The sufficiency can be
proven in n similar manner.

Equivalence under optimal controls. It is reasonably clear that if one is
interested in optimal control problem classification schemes depending only
on the nature of the optimal solutions, then it is excessive to require that
all solutions f one problem have correspondingly ordered images in the
other problems belonging to the same equivalence class. We shall therefore

The point, x is said to be a cluster point of the set K if every neighborhood of x
contains a poin of K different from x.



EQUIVALENCE RELATIONS 409

confine our attention to the subsets formed by the optimal solutions of the
problems under consideration.

Let G be the set of control laws associated with the optimal control
problem P. The set G G consisting of all the optimal control laws gO in
G will be said to be the set of optimal control laws for the problem P. We
now introduce a classification scheme depending on optimal solutions only.

DEFINITION 7. Let P1 nd P. be two optimal control problems and let
p10 c P1, P2 c P2 be nonempty subsets consisting of all their respective
optimal solutions. The problem P1 will be said to be optimal control equiva-
lent to the problem P., written P1 N p if and only if p10 P2, i.e., if and
only if P is equivalent to P2 when the admissible control law sets G, G are
reduced to the optimal control law sets G, G respectively.
Remark. It is readily seen that the relation 0 is symmetric, reflexive and

transitive and that it is therefore a true equivalence relation. It will also be
observed that condition (d) in Definition 6 is satisfied trivially in the case
of optimal control equivalence and hence need not be checked.
By relaxing the conditions under which two problems will be considered

equivalent, we hve introduced a significantly more useful equivalence rela-
tion. To illustrate the nature of optimal control equivalence, we consider the
following example.

Example 2.
Problem (a)

Giv(YI: :al Xa2,

,a2--Ua, lUa] - 1,
x XaO at O.

Find: aa admissible forcing hmc-
tion u(t) such that
x0 0 in minimum time.

Problem b
Given: 2a x,

b2 2Xb2 Xbl

-{- 1/2 tan- x -+- u,
lull <_- ,-/2 < tan- x< /2,
x x0 at 0.

Find: an admissible forcing func-
tion u(t) such that
x0 0 in minimum time.

It is well-known [7] that the optimal forcing functions for Problem (a) are
"bang-bang" with at most one switching, and Lee and Markus [6] have
proved the same to be true for Problem (b). If one examines the sets of
optimal trajectories in the state plane for these two problems, one is im-
mediately led to the idea that the optimal solutions are "equivalent."
More formally, it is clear that if Xa* X* EX T, X* X*
E X IO},X* X% {0} X T+,whereT+ {t[O_-< < },andif

V., V {v Iv (t,t,-),- < t < ,- < t2 < ,
----Its[--4-[ tl},
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with uj(t; v), for j a, b, given by

lsgntl if 0 =< < Itll,
4 Uj( t;

[sgnt2 if ]tl -<-t<r,

then g,0(X.a) gb(X*) C V. Consequently, P o pb under the equiva-
lence maps Ca I and a (g0)-l.g0, where (g)-’ exists by virtue of
Lemma 2.
The same reasoning may be used to establish that a wide class of mini-

mum time problems with second order nonlinear plants are optimal control
equivalent to a "second order integrator" problem (Problem (a)). In par-
ticular, see Exmnple 4 below.

Synthesis of optimal control laws. An inherent property of the equiva-
lence relations exhibit so far is that the equivalence maps may be used to
find an optimal solution for any problem in the equivalence class, whenever
an optimal solution to one problem is known. This raises the possibility of
obtaining a computational method for determining optimal control laws
for a whole class of problems by solving the simplest problem in the class.
It is shown below that it is indeed possible to solve certain optimal control
problems in this manner. However, before demonstrating this, we first
introduce a relation between optimal control problems which is still weaker
than optimal control equivalence. This relation has the property that it
may be used to synthesize optimal control laws in exactly the same way
as the other relations.

DEFINITION 8. Let P and P2 be two optimal control problems and let
P1 c P, p.0 c p be nonempty subsets consisting of all their respective
optimal solutions. The problem P1 will be said to be wealc-optimal-control-
equivalent to the problem P, written P1 .o. p, if and only if there exist
nonempty subsets Pl p0, p p20, such that p0 p0.

Remarlc. The above relation between problems, which, for lack of a better
term, we shall call weak-optimal-control-equivalence, is actually not an
equivalence relation. It is symmetric and reflexive, but, in general, not
transitive.

Remartc. It is clear from the definitions that

The reason for introducing the concept of weak-optimal-control-equiva-
lence in the discussion of the synthesis of optimal control laws is that it
exhibits all the desirable properties of the other equivalence relations, while
possessing two additional advantages. The first advantage is that there are
two methods by means of which weak-optimal-control-equivalence is easily
established. The first of these methods applies to the class or problems for
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which the range of optimal control law is known, for example, due to the
Pontryagin maximum principle. The second method applies to the class of
optimal control problems for which it is relatively easy to construct isocost
sets in the phase space. Second, the authors have found that it is possible to
construct "prototype" problems whose optimal solutions can be determined
by inspection, and which are weak-optimal-control-equivalent to a certain
class of optimal control problems. Generally, these "prototype" problems
are not optimal-control-equivalent to the problems to which they are
weak-optimal-control-equivalent.
The application of equiwlence concepts to the synthesis of optimal con-

trol laws rests essentially on the following two theorems.
THEOREM 1. Let P P be two optimal control problems with identical finite

dimensional Euclidean phase spaces, i.e., X* X*. Let po p po p
be optimal solutions and let gO, gO be the optimal control laws associated with
p p respectively. Iffor 1, 2,
1) either the terminal phase sets X] x} consist of a single point only, or

(n2) the initial phase sets are contained in hyperplanes to, i.e.,

X {x* x* x, to), x X to fixed},
and the terninal phase sets consist of a hairline"

X] {x*[x* (x, t), x fixed, to < };
(bl) either X Xf X Xx , and there exists a map

"R(g) R( g:) one-to-one and onto, or

(b2) X* X and Xi X] , and there exists a map
’R(g) R(g), one-to-one and onto such that :(g(X X]))

x* x;)=g:(
then P p=

Proof. Due to the assumptions (al) and (2), it is clear that the con-
ditions of either Lemma 1 or Lemma 2 are satisfied, and hence that the
optimal control laws g,0 g=0 are both one-to-one. Let (g)-:R(g) +X
()-:R() X* be their respective inverses.

Also by assumption, X* X* nd (due to conditions (1) and (2)
which state that the terminal phase sets are both either point or a hairline)
Xf, Xy cn be brought into one-to-one correspondence. Hence there exists
an ffine map 4’X* X*, one-to-one and onto and such that
X) X.4, * ,

Since the map exists by assumption, it is only necessary to construct a
mp such that , : ure u pir of equivMence mps under which
P1 ’" P: Let "X* X* be defined as follows"

.e.g (x) for 11 x X,,
(5) (x*)

()-
[e(x for ll x* X.
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XI) X. and due to the assumptions inDue to the nature of k12, 12( * *

(bl) and (b2), 12(X/*) X* Clearly 2 is one-to-one and onto from
X* onto X * Furthermore, the image of g0 under the induced mp 1 is

12(gl0) 12" g0.2--

(6) .gl0. g0)--..g0
X*g2 on i2.

Hence the maps 12, 112 are a pair of equivalence maps under which
P1
We shall now give an example in which the above theorem is used to show

that the problems in a class of minimum time optimal control problems
with third order nonlinear plants are each weak-optimal-control-equivalent
to a minimum time optimal control problem with a third order linear plant
whose eigenvalues are real. Thus, many methods which have been proposed
for the solution of the linear time optimal control problem can be extended
to this class of nonlinear time optimal control problems.
Example 3. (Time optimal control of a class of third order nonlinear

systems). Consider the class (9 of problems whose systems can be represented
by the block diagram in Fig. 2, where N is a differentiable function with

(a) N(0) 0,
(7)

(b) N’(z) > 0 for every z,

One is required in each case, to bring the system from an arbitrary state to
the origin in minimum time, subject to the constraint u <- 1. The system
can also be represented by a block diagram as shown in Fig. 3, and the
state equations corresponding to this form are

,x + N(x + x),

:: ),2x + (X- ,,)u,

Applying Pontryagin’s maximum principle to this problem, it is easy to
show [8] that every optimal forcing function is bang-bang, with at most two
switchings. It is equally simple to show that, if the maximum principle is
also a sufficient condition for optimality, then every bang-bang control
with at most two switchings is optimal. (Equivalently, it is sufficient to
show that no two bang-bang controls with at most two switchings bring
the same initial state to the origin.) It is intuitively obvious, but very
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FIG. 2. Block diagram of system of Example

:FIG. 3. Modified block diagram of system of Example 3

difScult to prove, that there are problems in the class (e (with nonlinear
plants) for which the range of the optimal control law is the entire set of
bang-bang functions with at most two switchings. Therefore, we simply let
( be the subclass of ( consisting of problems for which the range of the
optimal control law is the entire class of bang-bang functions with at most
two switchings.
Now, let P1 and P. be any two problems in (. Clearly, we may take 12

to be the identity map in (b2) of Theorem 1. The rest of (b2) is satisfied
since X* Xs* Xi* 1 Xs* {0}, and the time optimal control is the
zero control in every case. Condition (a2) is obviously satisfied in this case,
and, consequently, P1 .o. p. by Theorem 1. Indeed, since the optimal con-
trol law is unique in every case, the problems in ( are all optimal control
equivalent, and, therefore, ( is an equivalence class. Note that ( contains
all the problems whose plants are described by linear third order differential
equations with real eigenvalues.

Let P be a problem in ( with a linear, real eigenvalue plant. By con-
struction, 12 (g=)-l" gl0, where (g.)-I is the inverse of the optimal control
law for P. in / and can be determined explicitly by solving the plant
equation of P. Thus, if the optimal control law for P1 can be determined
by some method, then 1. is known explicitly. In fact, 1 can be show
to be a homeomorphism for the class of problems considered. Conse-
quently, knowledge of the optimal control law for the problem with the
linear plant determines explicitly the equivalence maps, which relate this
problem to all the other problems in ) and, moreover, these maps have
nice properties.
We shall now examine optimal control problems for which isocost phase

sets are relatively easy to construct. Let P be an optimal control problem
and let p0 p be an optimal solution with the associated optimal control
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law gO and cost functional F. The subset of initial phases

X* {x* x* X*, F(x*, g(x*)) c, c R}

will be called the c-minicost set. Clearly, Xc* is the c-isocost set under the
optimal control law gO. The c-minicost sets of a given optimal control law
g are obviously independent of the particular optimal control law g
used for their definition. Furthermore, they can often be constructed with-
out the knowledge of an optimal law (see [1], [2], [3]). In such cases the
following theorem has been found of value.
THEOREM 2. Let P1, P2 be two optimal control problems with identical phase

control spaces, i.e., XI* X2*, V1 V and whose cost functionals have the
same form" for tc 1, 2,

Fkuk (x*, v) f(uk (s; w)) ds, x* X*, v . V, v (w, ),

where uk is the forcing function produced by the controller of the problem Pk
and f is a scalar valued cost function such that the integral is well-defined, and

satisfies the condition

f(u(s;w)) f(u.(s;w)), v

If there exists a map "X* X*, one-to-one and onto, such that

(u) (X*) X* (initial phase sets),

(b) (Xf*) XI (terminal phase sets),

(c) (X X c-minicost sets),

(d) for sone optimal solution po p with associated optimal control law
g . is a control law in Gg the image control law defined by gO o

then , I (the identity map) are a pair of equivalence maps such that
P1 p and the control law gO gO. is an optimal control law.

Proof. We only need to show thut the control lw g0 defined in (d) is
optimal, since it is then immediutely obvious that the postulated mps, [ re indeed satisfactory pair of equivalence mps. Let x* be a ar-

bitrary point iu X. Hence x* X for some c. It follows from condition
--I $ $ --I(c) that (x ) X. Let gx2 )) v. Then, by definition,

(x*)
and

F(x*, v) F ), v) c,

i.e., the cost for any initial phase x* X, resulting from the control law



EQUIVALENCE RELATIONS 415

92, is equal to the optimal cost. Hence 920 is an optimal control law, and
P2.

This theorem was used by one of the authors (see [1], [2], [3]) to con-
struct an optimal control law for minimum time and minimum fuel problems
with pulse-width modulation controllers from weak-optimal-control-equiva-
lent problems with pulse-amplitude modulation controllers. The minicost
sets were constructed by a method related to dynamic programming.
The second advantage mentioned previously can best be illustrated by an

example. It is well-known that for a large class of second order nonlinear
systems the problem of bringing the system from an arbitrary initial state
to the origin in minimum time, with bounded scalar control, has the follow-
ing unique solution"

Every optimal forcing function is bang-bang with at most one switch-
ing, and every bang-bang forcing function with at most one switching
is uniquely optimal for the state which it brings to the origin.

One such system was given in Example 2(b). A whole class of such problems
is given in the following example.
Example 4. The problems in the class (P considered here have plants

whose state equations take the form

(9) f(x), u,

where f is assumed to be a single-valued differentiable function with

(a) f(0) 0,
(0)

(b) f’(z) > 0 for every z.

One is required in each case to bring the system from an arbitrary initial
state to the origin in minimum time, subject to the constraint ui 1.
The reader can easily verify that all the problems in Example 4 have

unique optimal solutions of the type mentioned above. Now consider the
following problem.
Exmnple 5. Problem c

(11)

Given-

1 if xc2 > 0,

2cl sgn xc2 0 if Xc= O,

--1 if xc2 < 0,

2c uc u {1,0,--1},

x x0 at 0.

Find" an admissible forcing function -- Uc(t) such that x0 - 0
in minimum time.
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Xc2

Fro. 4. Optimal trajectories for Problem (c) of Example 5. The dotted paths are
alternative optimal trajectories for xco

The possible trajectories for Problem (c) are all piecewise linear. We can
,determine optimal trajectories by inspection, and for almost all initial
.states there are infinitely many optimal trajectories. Fig. 4 illustrates the
different types of optimal trajectories for a typical initial state. Among the
possible optimal forcing functions for any initial state there is always exactly
one which is bang-bang with at most-one switching. In fact, this forcing
function is given by

(sgntt if 0 < < Ih],
(2) u(t)

[sgnt if Ihl-<- < [h[-t-

where

if Xcl 21- Xc2 " O,-(l x + xo) x

(13a) h (1/2[ Xc2 l-- -x Xce if Xcl "JU Xc2 < 0,,

0 if x+ xe O,

(Xc[ + if Xc+X> 0,gXcl

(13b) tz -([xz[ x) if xt+xz < 0

-xe if x + x 0.

Furthermore, the set of forcing functions defined by the above expression
for arbitrary initial states is the set of all bang-bang forcing functions with
at most one switching.
We may now apply Theorem 1 to show that Problem (c) and any one of

the other problems mentioned above are weak-optimal-control-equivalent.
Clearly, these problems can not be optimal control equivalent since Prob-
lem (c) has infinitely many optimal solutions while the other problems have
unique optimal solutions. However, weak-optimal-control-equivalence to-
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gether with an explicit expression for the optimal control law of Problem
(c) allows us to determine the optimal control, law for any problem of the
type specified in Example 4.

Let P1 be any problem of the type specified in Example 4, and let P2
be Problem (c). Let gl be the optimal control law for P1, and let g. be the
optimal coItrol law for P2 given by (13). Then, by Theorem 1, P1 w.o.., p2
with :12 g2-1"g1 nd 2 I. Given any x* X*, we have gl(Xl*)

g2[2(xl*)]. Therefore, if we ca find x* l(x*), we can find
*)gi(Xl To do this we need to solve

-1 * -1(x) (x x,
,or x.. The functions g nd g- are known and, furthermore, for all the

problems in Example 4, g .g is a homeomorphism and piecewise
*C() Thus, it is possible to solve for x. iteratively. A complete calculation

is carried out in the example below.
Example 6. Consider the particle moving in one dimension according to

the equation

() - (m) u,

where y is the position of the particle, u is the applied force, and

100
(15) m //104 2

for i] <: 100.

We assume that the force is constrained by u --< 1, and the initialvelocity
satisfies < 100. We are required to bring the system to rest at the origin
from an arbitrary initial position and an arbitrary initial velocity in the
range I1 < 100 in minimum time.

If we make the substitution x y, x p m, then the system is

FIG. 5. State space and minimum time switching line for prototype problem of Example 5



418 C. Do CULLUM AND E. POLAK

TABLE 1. Computational results for Example 6

Desired initial state

Z0(1)

1.0
10.0
0.0

50.0
50.0
50.0
90.0
0.0

100.0
100.0
100.0
1000.0
1000.0
1000.0

Z0(2)

1.0
10.0
50.0
50.0
0.0

--50.0
90.0
95.0
95.0
0.0

--95.0
95.0
0.0

--95.0

Computed initial state

Z1(1)

1.0059
10.0743
O. 0009
50.1494
50.0215
49.5777
89.7729
O. 0060

99.6597
100.6797
100.9541

1005.3431
1004.7O53
1006.0459

Zl(2)

1.0000
10.0000
50.0000
50.0000
0.0000

--50.0000
90.OOOO
95.0000
95.0000
0.0000

--95.0000
95.0000
0.0000

--94.9912

Ul

-1
-1
-i
-1
--i
+1
-1
-1
-1
-1
+i
-I
-1
+1

Optimal control law

T1

2.2772
17.8314
97.8204
98.4890
7.0770

97.1493
337.9153
489.0511
489.6175
10.0466

488.4770
494.7471
32.0927

482.8140

T2

1.2272
7.7810

40.0854
40.7545
7.O77O

39.4143
131.4411
184.8076
185.3740
10.0466

184.2335
190.5036
32.0927
178.9100

Compu-
tation
time
(sec.)

0.036
0.036
0.036
0.018
0.036
0.036
0.084
0.234
0.318
0.018
0.198
0.048
0.048
0.036

described by

100 x
22--" U.(16)

Inspecting the form of (16), we see that this problem falls into the class of
problems considered in and following Example 4.

Instead of using this form, the authors chose as state variables the quan-
tities zl .y, z , yielding the equations

(17) il z2, i lO-e[104 z2’]l"u,
with the initial phase set z {z 1-100 < z < 100}. Optimal forcing
functions for this system are independent of the choice of state variables,
and hence we can still find the equivalence map 9- from the state space
of Problem (c) to the set z according to

-1
q12 gl "g2,

where g. is given by (13), and g1-1 is obtained by integrating (17) backward
in time from the origin.
In evaluating g, it is sufficient to restrict our attention to the shaded

regions of Fig. 5, since the map for the rest of the state space can be ob-
tained by symmetry arguments.

Let (y, y.) be an initial state for Problem (c) (P2). Then the map
(z, z.) (y, y) is given by"
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(a) For (yl, y.) in Region 1 (see Fig. 5),

1

1-4-[1 d- (Y110
(18)

(3y- yl)(y + yl)

I1 q-\ljj q- q-
2--(j ]_J _]

Z2

Y2

(b) For (yl, y) in Region 2 (see Fig. 5),

(19)

1

1+[
(Yl -1- Y2)

1 + (yl 200
+ y2)2]1/2

Y2
Z2 \2-11/2

Y[1-[- (I----) J
It is not difficult to verify that --1 is indeed a homeomorphism and C(1)

everywhere except on the lines y. 0 and yl + y. 0. The equations given
here were used in conjunction with an IBM 7094 digital computer to com-
pute gl(z) according to the formula gffz) g.(l.(z)). The inversion of
--1
1. was accomplished numerically using a modified Newton-Raphson
method. Table 1 gives results for various initial states together with the
computation time required.

Conclusion. This paper has attempted to answer the question of whether
optimal control problems can be classified in a manner which is both in-
tuitively appealing and computationally useful.
For this purpose, three relations, defined either on all the admissible solu-

tion sets, or only on subsets of the optimal solutions sets, were exhibited.
The first two of these selections, equivalence and optimal control equiva-
lence, are true equivMence relations. It was shown by means of a number
of examples, either worked in this paper or cited from the literature, that
the optimal control problems classifications in which they result are highly
nontrivial, and that the associated mathematical structure cn be quite
useful in the construction of algorithms for finding optimal solutions. The



420 c.D. CULLUM AND E. POLAK

third solution, weak-optimal-control-equivalence, is reflexive and sym-
metric, but not transitive, and hence it is not a true equivalence relation.
Although it is not as useful for classification as the other two relations
described, it is by far the most powerful one when applied to the construc-
tion of Mgorithms.
To facilitate the use of equivalence relations in the construction of al-

gorithms, the authors introduce the concept of a prototype problem. This
is usually an artificial problem, which can be solved in a very simple manner
and which is related to the problem one wishes to solve. It is shown by
means of an example how prototypes cn be used to obtain algorithms for
solving optimal coatrol problems.

Finally, this paper has exhibited what the authors hope will be a new

point of view to many who are working in the field of optimal control.
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OPTIMAL TERMINAL MANEUVER AND EVASION STRATEGY*
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Problem formulation. A typical situation in the terminal guidance of
homing missile or military satellites may be described as follows: The posi-
tion and velocity errors of the missile or satellite system obeys the linearized
dynamic model,

2 F(t)x -t- G(t)u -t- w,

where F(t) and G(t) are known continuous n >< n and n >< r time-varying
matrices and w(t) is a vector white gaussian random process with zero mean
and eovarianee Q(t). The system is also being tracked by enemy radar
through an observation equation

(2) z Hx + vt,

where H1 is a known continuous p X n time-varying matrix and v(t)
is a vector white gaussian random process with zero mean and covariance
matrix Rl(t). The system is also making measurements on its own state
through a second observation equation

(3) z2 H2x + v,

where v2(t) is another white gaussian process with zero mean and covariance
matrix R2(t) and H2 similarly defined. It is desired to have the system fly a
path based on measurements z2(t) and whatever a priori information such
that it not only minimizes the terminal error but also, in some sense,
maximizes the estimation error of the enemy radar. The radar, on the other
hand, will attempt its best to reduce the estimation error of the missile’s
position and velocity. This is a problem of stochastic differential games
about which very little is known. In this note, we shall pose and solve
the above class of problems associated with (1)-(3).

Additional assumptions. In order to solve these problems, it was found
necessary to make some additional assumptions. We shall not pretend that
these assumptions are completely realistic and that solutions derived from

* Received by the editors November 11, 1965, and in revised form April 25, 1966.
Division of Engineering and Applied Physics, Harvard University, Cambridge,

Massachusetts. This work was supported in part by the Joint Services Electronics
Program (United States Army, United States Navy, and the United States Air Force)
under Contract NONR-1866 (16) and in part by Aerospace Corporation, Los Angeles,
California.

In [1, Chap. 13] there are some speculations on the subject. Johanson [2] also
solved a specific stochastic differential game for simple second-order dynamic sys-
tems.
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them should be used in the actual design of terminal guidance systems.
However, in an unknown subject area such as this, the first task is to get
some insight into the problem. This will be furnished by our solut:ion which
is presented below. Such insight can then be used in guiding the actual
design of the guidance system where various realistic constraints can be
introduced.
We shall assume that the form of the guidance law will be

(4) u K(t)22(t),

where K(t), the time-varying gain to be determined, is constrained by

(5) K(t) <= 1,

and 22(t) is the conditional mean of the state x(t) given the measurements
(z2(r), to < r =< t) and all other a priori information. It is well-know [3]
that 2(t) can be computed from

(6)

(7)
where

(s)

F22 -- K2(z2 H22) -{- Gu with 22(t0) given,

K P2H.rR2-1,
[:’. FP. + P2Fr- K2R2K2r + Q with P(to) given,

P. =- E[(x- 2.)(x- 22) r] --- coy (22(t)).

(11)

where

Y=
F-+-GK

0 F-K2H2 I -K

i.e., a linear dynamic system driven by white noise.
It is appropriate at this point to assume that the radar will aggempt to

estimate the state of the missile through a filter

Combining (1) and (6) results in

(9) .:2 F K2H2 22 K2w. -t- w.

Combining (1), (4) and the definition of 22 results in

(10) 2 F -- GK x GK22 + w.

Thus, as far as the radar is concerned, the dynamical equations governing
the situation can be written as

fly + s,
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(12)

where K(t) is a time-varying gain matrix to be determined, and vhere

Finally, we shall assume this is a game of perfect information in the sense
that both sides know the dynamics, the constraints, the specified uncer-
tainties, and the assumed form of the controller and the filter.
While it could be argued that these assumptions are justified by considera-

tions of engineering reality, the real reason will become obvious presently.

The solution. A reasonable criterion of performance for this situation can
be represented as

(13) J E x(T) ]12 -- X ’1 ]12 d

The objectives of the missile and the radar are then the determination of
K(t) and Kl(t) such that J is saddle point, i.e., minimax. Let us define

(14) Coy (y(t)) & M(t)= [_MI M2]

(15) coy (y(t) )(t) coy ((t)) P(t) ’ FPll
kPl

Then it is directly verified that

(t6)

(17)

where

P (Y- K1H)P + P(Y K1H) r + K1R1K1T Jr- S’,
: M + MIT + ST,

[0H [Hi,, 0], S
R2

In terms of (16) and (17), the criterion J can be rewritten as

a 1
(18) J - tr(Mll(T)) -- tr(Pt(t)) dr.

2 is the estimate of x by the missile, is the estimate of x by the radar, 2: is
the estimate of the missile estimation error by the radar.

The minus sign in (13) accounts for the fact that radar really wishes to minimize
its estimation error.
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Now the problem can be stated as a completely deterministic problem of
determining K(t) and Kl(t) such that J is minimized with respect to K(t)
and maximized with respect to Kl(t) subject to the differential constrailts
16 and 17 ). Note that M(t) and P(t) now play the role of state variables,

K(t) and Kl(t), the control variables. We shall assume that a saddle point
exists for the problem. Applying standard variational procedures, we define
the Hamiltonian

(19) 3C(M,P, AM ,A K, KI t) --1/2tr(P11)-t-tr(AM]) +tr(Ap.P),
where

(21)

(22)

Then the necessary condition for minimax is

(23) 3C(M, P, AM, A,, t) min maxH(M, P, A, A, K, Kl,t).
IKI ___1 K

Since K and K1 appear separately in (16) and (17), it is clear that the order
of minimization and maximization in (23) is immaterial. Setting
OH/OK 0, we have

(24)

which implies

(25a)

HPAp -F RIKrA, O,

K (A,A)PHrR1-1,
which reduces to

(25b) K pHTR1-1

in the case where Ap-1 exists. Substituting (25b) into (16), one finds,

A is the generalized inverse of A.
Since

A(t) (t, T)

where is the transition matrix associated with (F KH), Al(t) will fai to exist

only when ((F KH), Il) fails to be a controllable pair.
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(26) P +FP + PF- PHrR-HP + 9S9.
In other words, the rdar should use KMman-Bucy filter--an expected
result iu view of the fact that z(t) is still gussiu.

Similarly, 3C can be minimized with respect to K. In this cse no simple
expression results, however.

Nevertheless (16), (17), (21), (22) and (23) now constitute a two-
point boundary vlue problem. The initial vlues of P(0) nd M(0) will,
of course, hve to be given or estimated. We shM1 not bother to discuss the
implication and the numerical methods of solution of this problem. Instead,
let us consider a very special case of the general problem and attempt to
get a "feel" for the nature of such problems.

A special case. Let us consider the scalar case:

(27) 2 u,

(28) z x + ,
(29) z x (perfect measurement),

i.e., F 0, H H G 1, and a 1. Then the problem simplifies to

f 2KX; X(O) Xo

ISA 2KP P; P(O) Po;

1(30) --2KAy, A(T)
2

2Pa 1f --2KAe + Ae +-,
K --sgn (h X + h Pa).

A(T) O;

Examination of (30) immediately reveals that X(t), P(t), and h,(t) ure
always positive and A(t) is always negative. Thus, the term A,X + AePa
cuI huve ut most one change of sign from negative to positive. Hence,
the controlled system behaves in two possible modes: (i) starts as an ex-
tremely unstable system (K + 1) nnd then switches to an extremely
stable system (K --1); (ii) operates always as an extremely stable sys-
tem. This is n intuitively reasonable solution. In case (i), the system
initiMly devotes entire effort to confound the enemy radar since smll
estimation error in nil unstable system grows exponentially with time.
However, s time goes on, the system must py increasing tteItion to the

It cn be directly verified that the singular case where AX + ApPA - 0 cannot
be sustained.
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Xo
\\. /

2.0/ X 0.6

7:0.2

t.0 7 =0

0
0.5 1.0 *

T

Fro. 1

objective of minimizing the expected terminal error and to forget the enemy
radar, i.e., to behave like a stable system in this case. The term AX 4- ApPA
makes precise the instant at which this switching takes place. In case (ii),
the initial errors are so large and the interval of control is so short as to make
any attempt to confuse the enemy unprofitable. The entire effort must be
devoted to minimizing the terminal error.
Because of the simplicity of the form of K(t) and the associated dif-

ferential equations of the two point boundary value problem, we can
actually express the solution of the problem in terms of the following
transcendental equation:

(31) X0 a -R1(-2- 1)(e2(r-’’) 1) at

e(r-’’) 1

where

Pa (t*) --F 2R1 Po
a P.(t*) ax Po 2R

t* is the switching time, R the variance of vl, and X0 x0.
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A parametric study of a, the weighting factor, vs. t*, the switching time,
with the parameter "r R1/Po and x0 normalized to one, is shown in Fig. 1.
The reasonableness of the result is obvious.

Discussion. From the above analysis, the general guideline for the con-
troller design is clear. For evasive maneuver, the missile should behave as
a random process (corresponding to a mixed strategy). The obiective of the
design is to force the system to behave as that particular random process
which maximizes the estimation error. On the other hand, this must be
balanced with the conflicting objective of minimizing the terminal miss
criterion which requires the reduction of uncertainty of the random process.
The choice of the form of the controller n (4) restricts the admissible class
of random process to gaussian. This considerably simplifies the solution.
However, if we had allowed a larger class of random processes for the be-
havior of the system, then the computational problem becomes vastly more
complicated even though conceptually it is not any more so.

It is to be noted that the number of differential equations that we have
to contend with even in this restricted class is 2n where n is the number of
original system equations. This is a considerable increase in computationM
burden. However, it is the price one has to pay for a problem of this nature.

Note the solution K(t) also furnishes the minimax filter that should be
employed by the enemy radar for optimal estimation.

Lastly, from the above discussion a modus operandi for a more general
class of problem can be contemplated:

(i) Given the physicM limitation of the estimator, say (2), and the class
of random processes admissible, determine the particular random process
which gives a minimax solution for the criterion of performance.

(ii) Given the physical limitation of the system, say (1) and (3), deter-
mine the control law which realizes or approximates the particular random
process in (i).

It is reasonably clear that such decomposition of the problem can lead
to considerable easing of the computational burden.

Conclusion. The problem of stochastic differentiM games is still in its
infancy. The bove analysis suggests the nature of the problem and the more
or less obvious extensions. A simple extension would be to consider in-
stead of (4):
(4’) u K(t)22 -t- o,

where o(t) is another gaussian random process with controllable parameters.
The problem can still be solved. We shall omit the details. It is hoped that
this work will stimulate further researches in this area.

The author is indebted to J. Daniels for the calculation connected with Fig. 1.
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FINITE-TURN PUSHDOWN AUTOMATA*

SEYMOUR GINSBURG AND EDWIN H. SPANIER$

Introduction. As is well-known, the context free languages are excellent
approximations to the syntactic components of currently used program-
ming languages (such as ALGOL). Pushdown automata (abbreviated pda)
are devices used in parsing programming languages, for the most part in
compiling. These two concepts are linked by the result that a set of words
is a context free language if and only if it is accepted, i.e., recognized, by
some pda.
To implement the construction (either by hardware or by software) and

the usage of pda, it is important to have general classes of pda with par-
ticular properties. For example, it is convenient to discuss deterministic
pda since they parse rapidly. In the same spirit, we investigate the class of
pda having the property that the length of the pushdown tape alterna--
tively increases and decreases at most a fixed bounded number of times
during any sweep of the automaton. Such pda reject words faster than an
arbitrary pda. (For a particular sweep can be halted as soon as it exceeds in
number of alternations the fixed bound.)
The present paper is a study of these "finite-turn" pda and the languages

they recognize. These languages are characterized both in terms of gram-
mars and in terms of generation from finite sets by three operations. The
languages turn out to coincide with the nonterminal bounded languages, a
class of languages studied in another context.

After a first section on preliminary definitions, these three concepts are
considered and their equivalence established in 2, 3, and 4. 5 is con-
cerned with decidability questions. In particular, a decision procedure is
given for determining whether an arbitrary pda is a finite-turn pda. It is
also proved that there is no decision procedure for determining whether an
arbitrary language is accepted by some finite-turn pda. 6 contains a dis-
cussion of one-turn pda and their relationship to the class of linear lan-
guages.

1. Preliminaries. We now consider the basic concepts to be used. In
particular, we define context free languages, pushdown automata, and
f-transducers.
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DEFINITION. For sets of words X and Y, XY {zy Ix in X, y inY},
where xy denotes the concatenation of x and y. XY is called the product of
X and Y. Let X [e}, where is the empty word, XTM XX, and
X* U%0 X. Thus, for an arbitrary set E of symbols, E* is the free semi-
group with identity generated by E.

DEFINITION. A context free grammar (abbreviated grammar) is a 4-tuple
G (V, 2:, P, z), where
(i) V is a finite nonempty set,
(ii) 2: is a nonempty subset of V,
(iii) P is a finite nonempty set of pairs ((, v), with ( in V 2: and v in V*,
(iv) z is an element of V 2:.
Each element of V 2: is called a variable.
Each element of 2: is called a (terminal) letter.
Each element (, v) in P is called a production (or rewriting rule) and is

written -- v.
Notation. Let G (V, 2:, P, z) be a grammar. For w and w in V* write

w w. if there exist u, u., , v such that w uu., w uvu, and
--> v is in P. For w and y in V* write w* y if either w y or there exist

tv0 w, Wl, w0 y such that w W+l for each i.
A sequence of words w0, w such that w w+ for each i is called a

derivation or generation of w (from w0) and is denoted by

W0 == W.

DEFINITION. L

___
2:* is context fl’ee language (abbreviated language) if

there exists a grammar G (V, 2:, P, ) such that L L(G), where
L(G) {w 2:*lr * w}. L(G) is said to be the language generated
by G.

It is well-known that the context free languages are excellent approxima-
tions to the syntactic classes of most currently used programming languages.
As such, the mathematics of context free languages is being extensively
studied [9].
We now define a type of device which is closely associated with languages,

both theoretically (in characterizing languages) and practically (in the com-
pilation procedure of data processing).

DEFINITION. A pushdown automaton (abbreviated pda) is a 6-tuple
M (K, 2:, F, , Z0, q0), where
(i) K is a nonempty finite set (of states),
(ii) 2: is a nonempty finite set (of inputs),
(iii) F is a finite nonempty set (of pushdown symbols),
(iv) t is a mapping from K N (2:[J{e}) X I’ to the finite subsets of
K X r*,
(v) Zo is n element of F,
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(vi) q0 is in K (the start state).
Notation. Given a pda M (K, 2, F, 5, Z0, qo), let [-* be the rela-

tion on K 2* X F*, defined as follows. For Z in .F and x in 2: [J/e} let
(p, xw, aZ) (q, w, a), called a move, if ti(p, x, Z) contains (q, /). Let
(p,w,a) -* (p,w,a) for allp, w,a. For a, in F* and x in
1 __< i _-< /,let (p, xl...xkw, a) *(q,w,) if thereexistpl p,...
pk+ q in K and a a, a+ in F* such that

(p, x xw, ai) (p+, X+l xw, i+1) for 1 _-< i -<

Notation. Given. a pda M (K, 2, I’, , Z0, q0), let

Null(M) {w 2:*l(q0,w, Z0) *(q,e,e) for some q in K}.
The fundamental connection between languages and pda is the follow-

ing result [6]" A set L 2;* is a language if and only if L Null(M) for
some pda M.

Remarlc. If (K, 2:, F, ti, Z0, q0) is a pda, then. (K, 2:, I’, ti, Z0, qo, F),
with F K, is called a pda with final states. A pda with final states ac-
cepts a word w if (q0, w, Z0) * (q, e, ,) for some q in F and some , in
r*. Pda with final states accept exactly the family of languages [9].
The practical significance of pda is that many algorithms used in the

computer literature for recognizing programs (part of the compiling pro-
cedure) are programming implementations of specific pda [13].
We shall have occasion to use the notion of a "sequential transducer with

final states". (This notion is discussed in [8] and called a binary non-
deterministic automaton. We change the name to emphasize that the device
is used to transform input words to output words. In fact, the relation of in.-
put words to output words is called a binary transduction in [8].)

DEFINITION. A sequential transducer with final states (abbreviated f-trans-
ducer) is a 6-tuple S (K, 2, zX, H, So, F), where
(i) K is a finite nonempty set (of states),
(ii) 2; is a finite nonempty set (of inputs),
(iii) A is a finite nonempty set (of outputs),
(iv) so is in K (the start state),
(v) F

_
K (the set of final states),

(vi) H is a finite subset of K X 2:* X A* X K.
Remarlc. It is no loss of generality to assume that the f-transducer has the

same set of inputs and outputs since we may regard both as being
We shall use this fact later.
An element (p, u, v, q) in H denotes the fact that applying an input word

u to thef-transducer at state p results in an output word v and a next state q.
DEFINITION. Let S (K, 22, A, H, So, F) be an f-transducer. Write

(p, ux, y) (q,x, yv) if (p,u,v,q) isinH. Write(p,u,y) * (p,u,y) for
all p, u, y. Write (p, ux, y) * (q, x, yv) if there exist p0 p, p, p q
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in K, Ul, uk in 22* vl, ., vk in A* such that u ul...uk,

v vl vk,and

(po, ux, y) / (p, u2 ux, yv,) (p,x, yv v.).

For each word u, let Ss(U) {v I(s0, u, e) -* (q, e, v) for some q in F}.
RDEFINITION. Let 22 be an abstract set. Let e e and for x xl x,

each x. in 22, let xR xk x.
I1 22 contains at least two elements, then there is no f-transducer

S (K, 2, A, H, So, F) such that Ss(w) w for each w in 2*.
DEFINITION. A 1-restricted f-transducer is an f-transducer S (K, 22, A,

H, So, F) such that H

_
K X (22 U {e}) X (A U {e}) X K.

LEMMA 1.1. For each f-transducer S K, , A, H, So, F) there exists a
1-restricted f-transducer S’ (K’, , A, H’, So, F) such that Ss(w) S/(w)
for each w.

Proof. Let H {hll =< i =< m}, where h (q, X’’’Xr(),

Ya’’" Y,.(’), q’), each x.is in 2; [J {e}, each y.is in A [J {e}, for 1 _-< i =< m.
For 1 =< j =< r(i) 1 and 1 =< i -< m, let p- be abstract symbols not in K
and let K’ K [J {p i, j}. Let

H O{(qi, Xil, Yil, Pil), (Pil ,xi2, Yi2, Pi2), (Pir(i)--I ,Xir(i), Yir(i), qit)}.

Clearly Ss’(w) Ss(w) for all w.
The following result on the composite of f-transducers was first proved in.

[8] by an involved sequence of propositions. A short (and different) proof
is presented here.

A" F’)LEMMA 1.2. If S K, Z, A, H, So, F) and S’ K A, H’, So,
are f-transducers, with A
A", H", So", F" such that Sff Ss’Ss

Proof. By Lemma 1.1, there exist 1-restricted f-transducers T (K, 22,
a" F’A, H, So, F) and T’ (K, A, H, So, such that Ss T and

S/ T/. Let H2 be the union of H1 and all quadruples (q, , e, q), q in.
K. Then U (K, , A, H, So, F) is a 1-restricted f-transducer and
U T S. Similarly let H( be the union of Hx’ and all quadruples

" F’) isa 1-restricted(q, ,, e, q), q in. K’. Then U’ (K(, A, A H., So,

f-transducer and
" F" F’ H’Now let K" K X K(, So (s0 So’) F X and be the set of

q’ p’all quadruples((q, ),x,y,(p, )),xin22 O {} andyinA" [J {e} such
that an element z in A [3 {e} can be found satisfying (q, x, z, p) in H and

S" K" A" H" " F"7, z, y, p in H2. Then Z, So is an f-transducer
such hat S/’ S/S.

DEFINITION. The inverse S- of an f-transducer S (K, 2, A, H, So, F)
is the f-transducer (K, A, 2, H-1, 80, F) where (q, w, w q is in if
and only if (q, w, w, q is in H.
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Clearly S(w) contains w’ if and only if Sffl(w’) contains w.
The inverse of a 1-restricted f-transducer is a 1-restricted f-transducer.
We now present a result on f-transducers which is similar to a result on

linear languages due to Chomsky and Schutzenberger [7]. We shall assume
that the reader is familiar with the basic notions of regular set, automaton,
and nondeterministic automaton as discussed, for example, in [14].
THEOREM 1.1. Let S K, , A, H, So, F) be an f-transducer. Then there

exist a finite set Z’, a regular set U ’*, and homomorphisms r, of
into *, and r, of Z into A with the following property" Sf(w) contains
w’ if and only if there exists w in U such that r(w") w and r’( w") w’.

Proof. Let H {hll N i N n}, with h (p, a,
consist of n abstract syInbols a, a. Let A be the nondeterministic
automaton (K, Z’, , s0, F), where (p, a) {(q)} for 1 N i N n. Let
U T(A), where, for each automaton or nondeterministic automaton A,
T(A denotes the set of words accepted by A. Let r and r’ be the homomor-
phisms from ’* to * and ’* to A*, respectively, defined by r(ai)
and r’(a) B, 1 N i N n. Clearly ’, U, r, and r’ have the desired prop-
erties.
The next result, a proof of which is in [8], asserts that the operations of

word reversal and transduction commute in a certain sense.
LEMMA 1.3. For each f-transducer S (K, , A, H, s0, F) there exists an

f-ransducer S’ (K, , , H, s0, such ha w is in S/(w) if and only
ff (w’) is in Sf(wa), i.e., [S/(w)]" Sf(w).
COROLLARY. Given f-transducers S (K, , A, H, So, F) and
(K’, Z, A, H’, So’ F’) there exists anf-transducer S" (K A, A, H So

such that

0 :()S:’(’’) 0 %,:[("" w’)
wZ*

Proof. Let S- be the inverse of S. Cler]y

0 :():’() 0 ’S:’([:-’(’)]").
’wZ*

By Lemm 1.3, there exists n f-transducer T such that T:((w’))
[S:-(w’)]. By Lemm I.I, there exists n f-transducer S" such that

S:" S:’T:. Then S" hs the desired property.

2. Fite-m pda.
I)EFNWON. If the pd (K, , F, , Zo, qo)is in the configuration

(q, w, x), with q in K, w in Z*, nd in F*, then is c]]ed the pusown
:ape.
DEFNTmN. A sweep of pd(K, Z, F, , Zo, qo) is sequence of moves

(qo, Zo ,, Zo) (q, x z,, ) (q,+., , ,+),ith
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As mentioned in the Introduction, we are concerned with those pda
having an integer m such that the length of the pushdown tape for each
sweep changes direction at most m times. Such a pda is of interest since a
sequence of moves involved in recognition can be halted whenever the num-
ber of alternations of the length of the pushdown tape exceeds m. In this
section we formally define such a pda M. We then give an explicit grammar
G such that Null(M) L(G).

DEFINITION. Given a pda M (K, 2:, F, 6, Z0, q0), amove (p, xw, aZ)
(q, w, a,) is said to be nondecreasing (nonincreasing, increasing, de-

if _-> 1(1 1 -< 1, > 1, 0).
DEFINITION. Let (q0, x0 xk, /o) - (ql, xl xk, ’1) -""(q+l e, ’+1) be a sweep. The length at (q0, x0 x, ’0) is said to

be increasing. By induction, if the length at (q, x x, ,) is increasing
and the move (q, xi x, ) (q+, X+l x, /+1) isnondecreasing
(decreasing), then the length at (q+, x+ x, +) is said to be
increasing (decreasing). If the length at (q, x x, /) is decreasing
and the move (q, x x, ) - (q+, x+ x, /+) is nonincreasing
(increasing), then the length at (q.+, x+l x, +) is said to be
decreasing (increasing).

DEFINITION. If the length at (q, x x, ) is increasing (decreasing)
at (q, x... x, ) and decreasing (increasing) at (q+ ,x+ ...xk, ,+),
then the length is said to have a turn at (q, x x, ).

DEFINITION. A sweep is said to be a (2l 1)-turn sweep if the length
has exactly 2/ 1 turns. A pdu is sid to be (2k 1)-turn pda if every
sweep has at most 2k 1 turns. A pda is said to be finite-turn if it is

(2]c 1)-turn for some /c => 1.
Notation. For each pda M und k >= 1, let Null_(M) be the set of those

input words accepted by some sweep with at most 2/c 1 turns.
Thus Null(M) Null:_(M) if M is a (2/ 1)-turn pda.
LEMMA 2.1. For each pda M and each t 1 there is a 2t 1)-turn

pda M’ such that Null(M’) Null_..l(M).
Proof. LetM (K, 2, F, ti, Z0,q0).LetM’ (K’ F 6’ Zo qo’)

where K’ K X 1, 2, 2/}, qo’ (qo, 1), and tt’ is defined s follows"

(a) ’((q, i),x,Z) contains ((p, i), )if and only if (p, /) isin (q, x,Z),
i is odd (even), nd ]’1 >= 1 (! 1 -< 1);
(b) ti’((q, 2i 1), x, Z) contains ((p, 2i), e) if and only if (p, e) is in
i(q, x, Z);
(c) ti’((q, 2i), x, Z) contains ((p, 2i - 1), ) if and only if (p, ) is in
6(q, x, Z) and Iv[ ->- 2.

For brevity, we frequently write "length" instead of "length of the pushdown
tape" if no confusion arises.
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Then K’ is the union of the disjoint subsets K {i}, 1 _6 i =< 2/c. Any
move from a state in K X {i} to a state in K X {i} is nondecreasing if i
is odd and nonincreasing if i is even. The only other moves in M’ are de-
creasing moves from a state of K )< [2i 1} to a state of K X [2i/, and
increasing moves from a state of K X [2i} to a state of K
Thus each turn in a sweep of M’ corresponds to a move from a state of
the form (q, i) to a state of the form (p, i + 1 ). Therefore M’ is a (2/c 1 )-
turn pda.
The construction, of M’ is such that any (2i 1)-turn sweep of M,

1 _-< i -< lc, corresponds to a sweep of M’, and conversely. Therefore
Null.k_l(M) Null(M’).
COROLLARY. Null2k_l(M) is a language for each pda M.
Remark. Let M be a pda with final states. For any m it can also be shown

that the set of tapes accepted by M by a sweep with at most m turns is
language. Furthermore, the family of languages obtained by allowing M
and m to vary is identical with the family of languages defined in the
corollary by allowing M and/c to vary.
Given a (2/c 1)-turn pda M (K, 2], F, , Z0, q0) we now construct

an explicit grammar G (V, 2;, P, ) such that L(G) Null(M). We
may assume that M has the form of the lemma. Thus K is partitioned into
disjoint subsets K1, ..., K2, with q0 in K. Also, every move from
state of K_ is either a nondecreasing move to a state of K_ or a decreas-
ing move to a state of K, and every move from a state of K is either
nonincreasing move to a state of K or aa increasing move to a state of

K.+. We may Mso assume that M has the special form that (q, x, Z)
contains only pairs of the form (q, ,), where I’1 =< 2. This is no loss of
generality, for it is easily seen that given any pda M we can adjoin
additional states to M to obtain a pda M’ of the special form such that
(i) Null(M) Null(M’), and (ii) if M is a (2/c 1)-turn pda then so is
M"For each state q in M let h(q) i, where q is in K. (Thus h(qo) 1
nd h(q) -< 2k for every q.) Let

V {o-} U U U (K X F X K. X (F U_
i<" _<_ 2k

The symbol [q, Z, q’, Y] is to denote a quadruple consisting of a state q in
K, a symbol Z in F, a state q’ in K. with j > i, and an element Y of
F O {e}. (Z and Y, with or without subscripts or superscripts, will denote an
element of P and P U /e}, respectively. Similarly x will denote an element
of Z U {e}.) The variable [q, Z, q’, Y] is to have the property that the
language generated from it as start variable, denoted by Li.z,,.,r, is the
set of all words w in 2?* such that (q, w, Z) * (q’, , Y). This interpreta-
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tion motivates the definition of the set P of productions. P consists of the
following productions.

(1) -- [qo, Zo, q, el.
(2) [q, Z, q, el - x if (q’ e) is in ti(q, x, Z).
(3) [q, Z, q, Y] - x[q Z q, Y] if (ql, Z1) is in 6(q, x, Z).

Z q" Z"(4) [q, Z, q Z’] [q, Z, q" Z"]x’if(q, )isin( ,x,
(5) [q,Z, q’,Z’] x[q ,Z q’, el if (q ,Z’Z) isin(q,x,Z).
(6) [q, Z, q’ e] [q, Z, q Z"]x’ if q e) is in ( q
(7) [q, Z, q, Y] [q, Z, q, Z][q, Z, q’, Y] for ll q such that

h(q) < h(q) < h(q’).
If G V, , P, ) is grmmr nd w (w in *) is in P, then w

is clled terminal production.
Intuitively, (1) starts to get M1 words in Null(M). Production (2) is

terminM production corresponding to decreasing move of the pd.
It pplies only when h(q) is odd nd h(q’) h(q) 1. Productions (3)
nd (4) correspond to length-preserving moves of the pd. Production (5)
corresponds to n increasing move of the pd. It cn only occur when
h(q) is odd nd h(q) < h(q’). Similarly (6) corresponds to decreasing
move of the pd. It cn only pply when h(q’) is even nd h(q) < h(q").
Production (7) corresponds to sequence of moves of the pd such that
there is state q, h(q) < h(q) < h(q’), t which the length of the push-
down tpe is exactly one. A production of type (7) cn only occur if k > 1.

(If the pd is one-turn pd, then only productions (1)-(6) re needed.)
We shll show that L(G) Null(M). Using production (1), this will

follow if we show that

(8) L[q.z,q,.y] [W in Z* (q, w, Z) * (q’, e, V)}.

t .rst ssume that (q, w, Z) * (q’, e, Y). Then there exist x, x,
in Z {e, q, q, q, q m. K, nd Z, a, a, Y in F* such that
W Xl Xm d

(q,x... x,Z) (q,x... x,,,a) ...
We shll show that w is in L,z,,.,, i.e., [q, Z, q’, el * w. Suppose that
m 1. Then (q, x, Z) (q’ e, Y) is decreasing move since h(q) < h(q’),
so that Y e. Then [q, Z, q’, el x is production of type (2). Continuing
by induction suppose that m 2. There re four cses to consider.
() a[ 1. Then h(q) h(q), so that h(q) < h(q’). By induction,

[q, a, q, x x. Also, [q, Z, q’, Y] x[q a., q, Y] is produc-
tion of type (3). Then [q, Z, q’, Y] * x x

(b) a > 1 md a_. 1. Then decresing move must hve oc-
curred before the lst nd so h(q) < h(q_). By induction, [q, Z, q



FINITE-TURN PUSI-IDOWN AUTOMATA 437

am-l]*x xm-. Also, [q, Z, q, Y] -- [q, Z, q-l a_]x, is a produc-
tion of type (4) if Y is in 1 and of type (6) if Y e. Thus [q, Z, q’, Y]

Xl Xm.
(c) [a[ > 1, a._ > 1, and lal 1for somei, 1 < i < m-1.

Then (q, x xi, Z) (ql, x2 xi, a) is an increasing move and,
since all 1, (q., x. xi, a.) [- (q.+, x.+ xi, a+l) is a decreasing
move for some j, 2 -< j -< i 1. Therefore h(q) < h(qi). By iaduction,
[q, Z, qi, a] * xl x. Similarly h(qi) < h(q’) and [q, ai, q’, Y]

* xi+ x.. Since

y][q, Z, q, Y] - [q, Z, q a][q, a q,

is a production of type (7), [q, Z, q’, Y] * x x,

(d) [al > 1 for all i, 1 <-_ i _<_ n- 1. Then Y Z’ and a, Z’Z"
Zf!for some Z, in P Also h(q,) < h(q’) and (ql, x= x,, Z") *(q, e, e). By induction, [ql, Z", q’, e] * x x,. Since [q, Z, q, Z’]-- x[q Z" q, e] is a production of type (5) [q, Z, q, Z’] * x x,,

To complete the proof of (8), we now prove that for h(q) < h(q’) and
w in Lq.z,q,.r, (q, w, Z) * (q, e, Y). Let

[q,Z,q, Y]w w
be a derivation of w w. Supposem 1. Then [q,Z,q, Y]-->wisa
terminal production and thus of type (2). Also, Y e, w is in 2 U {e},
and(q,e) is in 6(q, w, Z). Then (q, w Z) [-*(q,e e) (q’ , Y). Con-
tinuing by induction, suppose m >- 2. Then [q, Z, q’, Y] --> wl is a production
of type (3), (4), (5), (6), or (7). Assume it is of type (3). Then w

x[qi, Z, q’, Y] and w xw, where (q, Z1) is in 8(q, x, Z) and
[q, Z, q, Y] w’ by a sequence of m 1 productions. By induction,
(q w’,Z) * (q’ e, Y). Thus

, q’ Y).(,x,z) (,w,Z) ,,
An analogous argument establishes the result in case [q, Z, q!, Y] -- wis of type (4), (5), (6), or (7). Thus (q, w, Z) [-* (q’, e, Y) and the proof
of (8), thus Null(M) L(G), is complete.

If M is a one-turn pda, then l 1. Thus only productions of types
(1)-(6) occur. Therefore we have the next theorem (to be stated after
a defiition).

DEFINITION. A grammar G V, 2;, P, z) is called linear if each produc-
tion is of the form -- uv or - u, where u and v are in Y,* and ’ is in V 2;.

A language L is called linear if L L(G) for some linear grammar.
THEOREM 2.1. If M is a one-turn pda, then Null(M) is a linear language.
If M is a finite-turn pda, then the language Null(M) is a generalization

of linear language. This generalization is studied in the next section.



438 SEYMOURGINSBURG AND EDWIN H. SPANIER

3. Ultralinear languages. Motivated by the form of the grammar ex-
plicitly associated with a (2k 1)-turn pda given in 2, we introduce the
following concepts.

DEFINITION. A grammar G (V, 2, P, o-) is said to be ultralinear if
V 2: is a union of disjoint (possibly empty) sets A0, An of variables
with the following property" For each A and each variable in A, each
production with left side is either of the form -- uv with in A and
u, v in 2;*, or of the form ---> w, with w in (2: (.] A0 (J (3 A_I)*. {A0,.., An} is called an ultralinear decomposition. A language is said to be
ultralinear if it is generated by some ultralinear grammar.

If G (V, 2:, P, o-) is ultralinear, then so is the grammar (V, 2, P, )
for each variable in G.

Consider the grammar G V, 2;, P, o-) of 2 associated with a 2/c 1)-
turn pda. In the notation of 2, the variables in V {o-} are quadruples
[q, Z, q, Y] with 1 <= h(q) < h(q’) <- 21. For 1 =< i -< 2/ 1 let Abe the
set of those variables [q, Z, q’, Y] such that h(q’) h(q) i. Let A2k {o-}.
Then {A1, An} is an ultralinear decomposition of G. (Productions of
types (3), (4), (6) are of the form -- u,v, where , are in A and u, v are
in 2;*. Productions of types (1), (2), (7) are of the form -- w, with in
A and w in (2 (.] A1 (.] 13 A_) *. Productions of type (5) are sometimes
of the first form, i.e., -- u,v, and sometimes of the second, i.e., -- w.)
Thus we have"
LEMMA 3.1. If M is a finite-turn pda, then Null(M) is an ultralinear

language.
We shall show later that the converse is also true, thereby characterizing

the (2/ 1)-turn pda in terms of the ultralinear languages. First though,
we present another characterization of ultralinear languages.

Notation. Let S (K, , 2;, H, q0, F) be an f-transducer and g a function
from F to subsets of 2;*. Then S](g) denotes the union of all sets u
urg(q)v, V for which there exist r _>- 0, q qr in F, and qi, qr-1

in K such that each (q, u+l, v+, q+) is in H.
LEM 3.2. Let S K, , , H, qo F) be an f-transducer. If g( q) is a

language for each q in F, then S](g) is a language. If g(q) is ultralinear for
each q, then S](g) is ultralinear.

Proof. For each q in F let Gq Vq, , Pq o’q) be a grammar generating
g( q) We may assume that (V- ) (Vq- Z) forallp, qinF
and that K Uqey Vq) . Let G [Jq Vq) [J K, , P, qo), where P
contains [Jq Pq together with the productions (i) q ---> upv for each (q, u,
v, p) in H, and (ii) q -- o-q for each q in F. Since L(G) Sx(g), S](g) is a
language.

Suppose that each Gq is ultralinear. For each q let Aq.o, ..., Aq.nq}
be an ultralinear decomposition of Vq . Let n max nqlq in K},
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At [JqeK Aq. for 0 <= i <= n, and An+i K. Then {Ao An+l} is an
ultralinear decomposition of the variables of G. Hence G, thus Sf(g), is
ultralinear.

DEFINITION. A language L is said to be bounded if there exist words
Wl ’Wt such that .L C )I* $

COROLL,n (to Lemm 3.2). Every bounded langue is ultralinear.
Proof. For u, v in* ad B * let (u, ) ,B ou By. Now bounded

languages [11] are ge]erated from finite sets by finite union, finite product,
and the operation (u, v),B. To prove the corollary it thus suffices to show
that (u, v),B is an ultralinear language if B is au ultraliaear language and
u, v are arbitrary words ia *. Let S be the one-state f-transducer
({s0}, ,Z,H, s0, {s0}), whereH {(s0, u,v, s0)}. Letg(s0) B. By
Lemma 3.2, S(g) is ultralinear. Since S(g) (u, v).B, (u, v).B is
ultralinear.
THEOREM 3.1. The ultralinear languages constitute the smallest family D of

subsets of * containing the finite sets and closed with respect to S(g),
finite union, and finite product.

Proof. By Lemma 3.2, the family D contains the ultralinear languages.
To see the converse, let G (V, Z, P, ) be an ultralinear grammar with
{A0, ..., A,,} an ultralinear decomposition of its variables. We shall
prove that L(G) is in D.
For each word y in V*, let L {w i Z* y* w}. For eachj and each

in A let S be the f-transducer (A, , , H, , A), where H consists of
all quadruples (, u, v for which there exist , ’ in A such that u’v
is in P. For each let g() be the union of all L such that y, y in
( A0 U A.._)*, where i is the integer for which A contains .
We first show that for each variable , L S(g). To see this let w

be a word in L and let be in A. Let

be deriwtion of w. Let/ be the smallest ilteger m such that the production
involved i1 w =, w+l is ot of the form a --> uflv, a and in A-, u nd
in 2*. Since the production involved in Wr-- Wr is of the form a - z
(z in 2;*), ]c __> 0. Thus w z’z’ for some zl, z in 2 nd in A-.
Starting with ’ nd pplying the productions which occur in w
i >= k, in the sme order, we obtain deriwtion * w’. Clearly w zlwz
nd w’ is in g(’). Thus L

_
S(g). To see the reverse inclusion let w

be in S](g). Then there exist r >= 0, (, u., v, +l), 1 =< i =< r, in H.,
w in g(+l) such that nd w u UrW V Vl. By definition

f That is, S(g) is in D for ech f-transducer S (K, , , H, qo, F) nd function
gfromFtoD.
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of Hi, * ul Ur(r+IVr V Since w is in g(r+l), there exists a produc-
tion (r+ -- y such that y * w’. Then

Ul Ur r+lYr Vl * tl UrW Yr Vl W.

Thus w is in L and L S](g).
To prove L(G) is in D we shall show that L is in D for each variable .

Consider L Sf(g) for in A0. Now g(), in A0, is the union of all L
such that -/ y, y in 2;*. Thus each g() is a finite set. Then L is in D
since D contains the finite sets and is closed under S(g). Continuing by
induction, suppose that L is in D for all in A0 [J t3 A, i < j. Consider
L for in A. Now g(), in A, is the union of all L such that --> y,
y in (2; [J A0 [J [J A.__)*. Each such L is the finite product of words
and sets L, , in Ao [J tJ A-_. By induction, D contains the L.
Since D is closed under finite union, it contains the g(). Since D is closed
under Sf(g), D contains L.
THEOREM 3.2. A set L is an ullralinear language if and only "if there is a

finite-turn pda M such that L Null(M).
Proof. Let E be the family of Null(M), M a finite-tur pda. By Lemma

3.1, each element of E is ultrMinear. To prove the converse, in view of
Theorem 3.1 it suffices to show that E cotains the finite sets and is closed
under finite union, finite product, and S](g).

Obviously E contains the finite sets. To see that E is closed under finite
union and finite product, it suffices to show that Null(M) [J Null(M’)
,nnd Null(M) Null(M’) are in E for Null(M), Null(M’) in E. Let M

(K, Z, F, t, Z0, q0) be a (2/- 1)-turn pda and M’ (K’, 2, F’, ’, Z0’, q0’)
a (2/c’ 1)-turn pda, with K 1 K’ and F l F’ .

Let M (K, , F, t, Z0", q0") where qo" is a symbol not in K [J K’,
Zo is a symbol not in F (J P’, K K (J K’ [J {qo"}, F F 0 F’ tJ {Z0"},
and 8 is defined as follows"

(a) (q, ,) is in 8(p, x, Z) if (q, ) is in t(p, x, Z),
(b) (q, )isinS(p,x,Z’)if(q, )isin’(p,x,
(c) (q0" e, Z0") {(q0, Z0) (q0’, Z0’)}.
Then M is a (2k. 1)-turn pda, where/ max {k,/c’}, and Null(M)

Null(M) U Null(M’).
Let M (K, 2;, I’ U F, ta, Zo, qo), where ta is defined as follows-

(a’) (q, Zo’) is in/(q0, x, Z0) if (q, ) is in t(q0, x, Z0),
(b’) (q, ) is in (p, x, Z) if (q,-) is in t(p, x, Z),
(c’) (qo’, Zo’) is in t(p, e, Z0’) for each p in K,
(d’) (q, )isint(p,x,Z’) if(q, )isin/(p’,x,Z’).

Then Ma is a (2(/c -t- It’) 1)-turn pda and

Null(Ma) Null(M) Null(M’).
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To see that E is closed under S/(g), let S (K,
f-transducer, and for each q in F let Mq (Kq,
(2]cq 1)-turn pda. We may assume that {K, Kqlq in K} are pairwise
disjoint and {I’ q in K} are pairwise disjoint. We may also assume that
S is 1-restricted. We shall construct a pda M4 which satisfies the following"
When an input enters S, the next state structure of M4 copies the next state
structure of S, putting the output from S on the pushdown tape (in coded
form). At a state q of F the pda M4 moves (under e) to the start state of
Mq aad then duplicates the moves of Mq. If the moves of Mq constitute
sweep, then M moves to a special state p. and thereafter moves only when
the input symbol is the output which is represented by the rightmost
symbol on the pushdown tape.
To coustruct M, let p. be a symbol not in K U

symbol not in Uq Fq. For each q in F let Xq be an abstract symbol not in
(Uq Fq) U {Zo}. For each x in 2 U {e}, let Zx be an abstract symbol not in
(Uq Fq) U/Xq q in F} U IZo}. Let M be the pda (K4,2:, F4, ti4, go, qo),
where K K U (Uq Kq) [J/P,},

F4-- (UqFq) U{Zo} U{Zxlx in zU{e}} U{Xqlq in F},

and ti4 is defined as follows"

(a") (q, ZuZo) is in ti4(p, x, Z0) if (p, x, y, q) is in H,
(b’) (sq, XqYq) is in i(q, e, Z0) for each q in F,
(c’) for s in K, (s’, y) is in ti(s, x, Z) if (s’, .) is in tiq(s, x, Z),
(d’) for s in Kq (p. e) is in 6( s, e, Xq),
(e") (p,, e) is in 64(p,, x, Z) for all x in Z U e}.

Then M4 is a (2/ct 1)-turn pda, with /c4 max {kl q in F}; and
Null(M4) S/(g), where g(q) Null(M) for eaeh q in F.
Using Theorem 3.2, we are able to prove several other results.
THEOREM 3.3. If L is an ultralinear language and S an f-transducer, then

Sx(L) is an ultralinear language.
Proof. Without loss of generality we may assume that S (K, 2, 2:, H,

So, F) is 1-restricted and that H contains (p, e, e, p) for all p. Since L is
ultralinear, by Theorem 3.2 there is a finite-turn pda M (K, 2, F,
Z0, q0) such that L Null(M). We may also assume that for each q in
and Z in F, (q, Z) is in ti(q, e, Z). We alter M slightly to obtain a pda with
the same structure as M but with the ability to detect when the length of
the pushdown tape is exactly one. For each Z in F let Z be a new symbol
and let F’ I’ U 12 Z in F}. Let M’ be the pda (K, 2:, F, ti, 20, q0) where

(a) (q’, w) is in t’(q, x, Z) if (q’, w) is in ti(q, x, Z)
(b) (q, e) is in i’(q, x, 2) if (q’ ) is in ti’(q, x, Z),
(c) (q’, 2’w’) is in ti’(q, x, 2) if (q’, 2’w’) is in ti’(q, x, Z).
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Clearly M’ is also a finite-turn pda and Null(M’) L. Furthermore, M’
has the property that the leftmost, and only the leftmost, symbol on the
pushdown tape is marked, that is, is of the form 2 for some Z in F.

Let M’p

be the pda (K", 2;, F’, ", 0, q0"), where K" K K’,
q0 (s0, qo), and 6" is defined as follows:

(a’) ((p’, q’), w) is in ’((p, q), z, Z) if there is an element y such that
(p, y,x, p’) isinH and (q’, w) isin 5’(q, y,Z);
(b’) (p’, q’), e) is in 6" (p, q), x, 2) if p’ is in F, there is aI element y such
that (p, y, x, p’) is in H, and (q’, e) is in ’(q, y, 2).
Clearly Null(M" Ss(Null(M’) ). Furthermore, M" is a finite-turn pda.
(For if

((po, qo), yl"" ym, Z0)

then there exist xl, x, such that

(qo, x... x,, Zo) , (q, x... x,, ) , , (q, e, ,).

Thus if M’ is a (2]’ 1)-turn pda, then M’ is a 2k’ 1 )-turn pda, with

" __< ’.)
DEFINITION. tk generalized sequential machine (abbreviated gsm) is a

6-tuple S (K, Z, A, 6, X, So) where
(i) K, 2;, and A are finite nonempty sets (of states, inputs, and outputs

respectively),
(ii) is a mapping of K X 2; into K (the next state function),
(iii) is a mapping of K X 2 into A* (the output function), and
(iv) So is in K (the start state).
The functions and are extended inductively to K >( 2]* by defining
6(q, ) q, k(q, e) , (q, wx) [(q, w), x], and h(q, wz)

h(q, w)h[(q, w), x] for each q in K, w in 2;*, and x in 2. The mapping S of
Z* into A* defined by S(w) k(s0, w) is called a gsm mapping.

DEFINITION. For ech element a in 2; let a be a finite nonempty set and
r(a) a subset of 2;*. Let r(e) {e} and r(xl Xr) r(X) r(X) for
all x x, each x i 2;. Then the function r, of 2;* into the subsets of
(Ua 2;a)*, is called substitution. If ech r(a) is regular, then r is called
substitution by regular sets. If ech r(a) is finite, then r is called a finite
substitution.
THEOREM 3.4. Ultralinear languages are preserved by intersection with

regular sets, mapping by gsm, and substitution by regular sets.
Proof. Let L be a language and R a regular set. Let A (K, 2, , So, F)

be an utomaton such that R T(A). Let S be the f-transducer
(K, 2, 2, H, So, F), where H consists of all quadruples (q, x, x, q ), x in 2;,
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such that ti(q, x) q’. Obviously L l R S](L). If L is ultralinear, then
L [’l R is ultralinear by Theorem 3.3.

Let S (K, 2:, A, /t, X, So) be a gsm. Let S’ be the f-transducer
(K, 2: [J z, 2: [J A, H, So, K), where (p, x, y, q) is in H, x in 2;, if ti(p, x) q
and X(p, x) y. Since S(L) Sf’(L), ultralinear languages are preserved
by gsm mappings.

Suppose that r is a substitution mapping such that r(a) is regular for
each a in 2:. For each a in 2:, let Aa be an automaton (Ka, Y’a, a, 8a, Fa)
such that T(Aa) r(a). We may assume that K K for all a # b.
Let So be a symbol not in [JaeZK. Let S be the f-transducer
(K, 2:’, 2’, H, So, {So} ), where K {So} [J Ua6 Ka), t U Ua6, a),
and H consists of the following quadruples"

(a) (So, a, , Sa) for ech a in 2,
(b) (q, e, x, q’) for q, q’ in
(c) (q, e, e, So) for q in F (a in 2).

Clearly S(L) r(L) for each set L. Thus r(L) is ultralinear if L is ultra-
linear.

4. lonterminal bounded languages. In this section we present another
characterization of ultrlinear languages. This characterization will be used
later in proving that it is undecidable whether n given language is ultra-
linear.

DEFINITION. A grammar G (V, Z, P, z) is called nonterminal bounded
[1] (called bounded in [2], [3]) if there exists an integer lc with the following
property" If * w, w in V*, in V 2:, then w has at most/ occurrences
of variables. (Actually, the definition given in [1], [2], [3] requires the last
condition only when . There is no real loss in allowing to be any
variable.) A language is called a nonterminal bounded language if it is gener-
ated by some nonterminal bounded grammar.

DEFINITION. Let G (V, 2:, P, ) be a nonterminal bounded grammar.
The rank r(w), written r(w) when G is understood, of a word w in V* is
defined to be the largest integer r such that there is word u in V*, with r
occurrences of variables, such that w* u.
Note that r(w) 0 for w in 2:* and r(w) r(w) for each

w w w, all w in V.
If is a variable of rank r, then there is word w in V*, having r occur-

rences of variables, such that
least one and since r(w) _-< r(), it follows that each variable in w has
rank 1. In particular, each nonterminal bounded grammar contains variables
of rank 1.
THEOUEM 4.1. A grammar is ultralinear if and only if it is nonterminal

bounded.
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Proof. Suppose that G (V, 2, P, ) is an ultralinear grammar with
{Ao, ..., A} an ultralinear decomposition. Let m max {[ u l] - u is
in P}. Obviously w has at most n occurrences of variables for every w such
that * w, in V 2:.

Conversely, assume that G is a nonterminal bounded grammar. Let
A0 and for i _>_ 1 let A be the set of variables with rank i. If/ is the
maximum rank of any variable, then {A0, A1, A} is obviously an
ultralinear decomposition of the variables.

DEFINITION. A language is called metalinear if it is a finite union of prod-
uets of linear languages.

In view of the coincidence of an ultralinear grammar and a nonterminal
bounded grammar, we have the following results [1]-
Each metalinear, thus each linear, language is ultralinear.
Each finite union and finite product of ultralinear languages is ultra-

linear.
We now introduce the notion of "rank" of a nonterminal bounded gram-

mar and nonterminal bounded language. In the remainder of this section we
then present some facts which are not only of inherent interest but are
needed to prove an unsolvability result in 5 (Theorem 5.2).

DEFINITION. For each nonterminal bounded grammar G, the rank of G,
denoted by r(G), is defined as the largest integer which is the rank of one of
the variables. Let L be a nonterminal bounded language. The rank of L,
r(L), is defined as zero if L is regular. If L is nonregular, then the rank of L,
r(L), is defined as the smallest integer which is the rank of some grammar
generating it.
THEOREM 4.2. Each of the following operations preserves nonterminal

bounded languages and does not increase rantc"

(a) Intersection with a regular set.
(b) Finile substitution.
(c) Gsm mapping.

(Parts (a) and (c) generalize portions of Theorem 3.4.

Proof. Each of these operations is known to preserve .regular sets [9]. Thus
it suffices to show that if L is a nonterminal bounded language with
r(L) -< r, where r => 1, then its image L’ under any of the three operations
has the property that r(L’) -< r.
The standard proof [4] that the intersection of a language and a regular

set is a language also shows that the intersection of a nonterminal bounded
language of rank _-< r and a regular set is a nonterminal bounded language of
rank -<_ r. Thus (a) is established.
To prove (b), let L be a nonterminal bounded language. Let

G (V, 2:, P, a) be a nonterminal bounded grammar generating L, with
r(L) r(G). Let r be the substitution defined by letting r(a) be a finite
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set of words in (2’) * for eeh a in. 2. We shall show that r(r(L) <= r(L).
To this end let r be extended to a substitution over V* by deflating
r(() {} for each in V 2:. Let G’ (V’, 2:, P’, a),where
V’ (V 2:) U 2:’ and P’ [ -- u] -- w in P, u in r(w)}. Obviously
r(L(G)) L(G’). Since the productions of P’ differ from corresponding
productions in P in terminal symbols but not in variables, it follows that
each variable in G has the same rank in G as in G’. Therefore r(G’) <= r(G),
so that r(r(.L) =< r(L).
The proof of (c) follows i1 the standard way from (a) and (b) [10]. Thus

the theorem is completely demonstrated.
We now consider two lemmas meded for the mxt theorem.
Part (b) of Theorem 4.2 can be extended to substitution by regular sets.

We shall not present an. argument of this but shall content ourselves with a
special case in the next lemma. (The general case follows by a proof which is
similar but notationally more complicated.)
LEMMA 4.1. Let x x be symbols not in and let L Y_,* (J Z*x

U U Z*x be a nonterminal bounded language. For each i let Ri be a regular
subset of Y,* and let L’ be the result of substituting R for x in words of L. Then
L’ is a nonterminal bounded language and r( L’) <- r( L ).

Proof. Since substitution by regular sets preserves regular sets, it follows
that r(L’) 0 if r(L) 0. Hence it suffices to prove that if L is generated
by a grammar G, then L’ is generated by a grammar G’ with r(G’) =< r(G).

Clearly there is no loss in assumitg that L ; and that L does not con-
tit e. Let G V, 2?, P, a) be a nonterminal bounded grammar generating
L. By [4, Lemma 4.1], we may assume that

(1) tto production in P is of the form ( -- e.

By [4, Lemma 5.1], we may assume for each in V 2; that

(2) {w in 2;* ( * w} is tonempty, and
(3) there exist u and v such that * uv.
Suppose there exists a production in P of the fortn -- uxu for some i,

with u e. By 1 ), (2), and (3) this implies that L contains a word of the
form wx#v., w e, a contradiction. Thus each production in P is of the
form - w or -- wx, w containing no x., 1 -_< j N ]. Let P’ cotsist of all
productions - w in P with w containing no x. and let P" consist of all
productions in P of the form - wx for some i. Let , be the
distinct productions in P". For each j, let .. be the productio . -- wiXi,
withX. x(.) for somei(j), 1 <= i(j) <= k. For each j, 1 <-_ j <- s, let
G. (V-, 2;, P., .) be a left-linear grammr generating .R(.) Further-

"t" A grammar is called left-linear (right-linear) if each production in it is of the
form ( w or (’w (( w or w’), ’ variable and w containing no variable.
It is known [5] that a set is regular if and only if it is generated by some left-linear
(right-linear) grnmmr.
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more, we may assume that (V 21) (V., 21) f for j j’. Let
VUW, where

W {(r-, r) P" X (Y- ) 1 j s}.

Let (?, %, P, a), where P consists of the following productions 1
js)"

(4) wifwisiuP’;
(5) (, ),

T T(6) ( r) ( )wifr-rwisinP inV,- Z;
(7) (,r) wwifrwisiaP,wiuZ*.
By (4), P’ P. The effect of (5) followed by sequence of productions

of type (6) followed by a production of type (7) is to reulize derivation.* wu for ny u in R by using words with only one Triable until the
lst word. It is esily verified that L(G) L’ nd r() r(G).

DEFINITION. Let c be symbol not in Z. For ech grammar
G (V, Z, P, a) such that L(G) Z*cZ*, let

V V * uu:cu},

V { V- Z[*w,w in V*cV*},

V is called the set of left-variables, Vc the set of c-variables, and VR the set
of right-variables.
LEMMA 4.2. Let c be a symbol not in Z and let L 21"cZ* be a nonterminal

bounded language with r( L) <= r and r >- 1. Then there exists a nonterminal
bounded grammar G (V, 21, P, (r) generating L such that r(G) <= r and
V V, VR} is a decomposition of V Z.
Proof. Clearly we may assume that L Z;. Let G’ (V’, 21, P, a) be a

nonterminM bounded grammar generating L such. that r(G) -< r. Without
loss of generality [4], we may assume that for each in V’ 21, (a) there

===*exist u and v in V’* such that a u.(v, and () there is some word w in
2:* such that * .w. If is in V’ and -- w is in P’, then by (a) and (/),
w uXv where (i) X is in {c} U V’ and (ii) u, v contin no occurrences of
elements of {c} U V’. We shall double the number of variables not in Vc’ so
that each new variable occurs only to the left or only to the right of an oc-
currence of an element of {c} U V’ in each derivation of a word in L(G’).
For each variable not in Ic, let z, md , be new symbols. Let

That, is, V Y. VL U V O VR and elements of {VL V, V} are pairwise
disjoint.



FINITE-TURN PUSHDOWN AUTOMATA 447

V 2:UVU/(I., (l in V’ (2UVc’)}. For each word w in V’*
which contains no occurrence of an element of V’, let w and w be the
words in V* obtained by replacing in w each variable not in V’ by L and
(,, respectively. Let G (V, 2:, P, a) be the grammar defined by the fol-
lowing set P of productions"

(1) - uXvr if - uXv is in P’, where X is in {c} U V’;
(2) ( - w and (. --+ w if ( - w is in P’ and is in V’ (Y, U V’).

It is easily verified that L(G) L(G’) and r(G) r(G’) r. Further-
more, V V’, V { allS}, and V. { all(.l;and {V, V, V,}
is a decomposition of V
The next result shows that the rank of LlcL2, the symbol c being foreign

to L1 and L2, is the sum of the ranks of L and L. This fact yields, as a
corollary, a key result in a chain leading to the unsolvability of determining
for an arbitrary pda M whether Null(M) is ultralinear.
THEOREM 4.3. Let L L. be nonterminal bounded languages in Z* with ranks

r and r respectively. Let c be a symbol not in . Then LcL is a nonterminal
bounded language of ranlc rl r

Proof. The proof is a generalization of an argument by Greibach [12] to
show that LcL is linear if and only if L is regular. It is obvious that LcL2 is
a nonterminal bounded language such that r(LcL.) <- r + r. Since L and
L. are images of LlCL under generalized sequential machine mappings, it
follows from Theorem 4.2 that rl <- r(LcL.) and r <= r(LcL.). Therefore,
if r 0 (or r 0), then r(LlcL) r - r. Hence we may assume that
rl 1 and r. _>- 1.

Suppose that r(L,cL.) -<- rl -t- r 1. (We shall establish the theorem
by showing that this assumption leads to a contradiction.) By Lemma 4.2,
there exists a nonterminal bounded grammar G (V, 2:, P, ) generating
LtcL= such that r(G) -< rt q- r 1 and V,., V, VI is a deeompositioI
of V 2:. Weshall construct another grammar G’ (V’, Y,, P’, (0, r, 0))
generating L,cL=, with r(G’) -< rl -l- /’2 1, and having the property
that the variables in V’ are doubly indexed to keep count of the rank
of all words u, v, in V’* such that (0, , 0) * uf;v.

Let Wc’ be the set of all triples (n, (, m), where n and m are nonnegative
integers such that n + m =< rl nt- r. 2 and is in Vc. Let G’ (V’, 21, P’,
(0, , 0) ), where V’ W’ [J Vr, U V U z and P’ consists of the following
productions"
(1) -wifisinVUVaand(-wisinP;
(2) (n, , m) --> u(n - ro(u), ’, m + to(v))v if - u’v is in P, where ’is a c-variable of G;
(3) (n, , m) - ucv if --> ucv is in P.
Then G’ is a nonterminal bounded language such that r(G’) r(G) =< rt
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+ r2 1, re,() r() for all in VL O V, and L(G’) L(G) LlcL2.
Let PI’ be the subset of P consisting of all productions of type (1) with

in V. or r() =< r 1, and all productions of type (2) or (3) with
n + re(u) N r 1. Similarly let P’ be the subset of P consisting of all
productions of type (1) with in Vc or r(() N r 1, and all productions
of type(2) or(3) within + to(v) N r- 1. Sincer(G) N rt + r- 1,
every production in P belongs to PI’ or to P2’. Clearly every derivation in
G’ of a word wia L(G’) consists of productioIts all of which are in PI’ or all
of which are in P’.

Let G’ (V’, 2, Fl’, (0, , 0)) and G2’ (V’, Z, P’, (0, , 0)). Let
L’ L(GI’) and L’ L(G2’). Clearly L’ O L:’ LcL2. Since each
derivation of a word in L(G’) .LcL is obtained solely from productions

’ L’in P’ or solely from productions in 1 2, LtcL Lt’ O .
Let g and be the mappings of N*cZ* onto Z* defined by g(xcy) x and

,(xcy) y. Then g(LcL) L1 nd ,(LcL) L. We shall give explicit
grammars which generate (L(G’) and (L(G’) to show that they are
nonterminal bounded languages of rank Nr 1 and N r2 1, respectively.

Let Y" 2UVcU{(n, )(n, (, m) in V for some m}. Let
G" V", 2, PI", (0, z) ), where P" consists of the following productions"
(4) wifisinVcand(wisinPl’;
(5) (n, ) u(n + to(u), ’) if there exists a production (n, , m)

u(n + ro(u), ’, m + r(v))v in P’;
(6) (n, () - u if there exists a production (n, , m) ucv in P’.

Clearly L(G") (L(Gt’)) (L(). Also, if ( * w in GI", then w
contains at most r 1 occurrences of V., at most one occurrence of
V" (2 U V), and thus at most rl occurrences of variables. Hence G" is
ttonterminal bounded and r(Gl") N r. In case r 1, each production is
of the form (0, () - y or (0, ) y(0, ’), y in *. Since this grammar is
right-liear, it getmrates a regular set. Thus r((Ll’) 0 r 1 in this
CS.

Suppose that r > 1. The only productions in GI" of the form
(r 1, ) w nre of the form (r 1, ) u(r 1, ’) or (r 1, ) - u,
with u in Z*. Thus the set

A() {w %* [(r 1, ) * w}
z P1 V1is regulnr. Let G" (, z (0, a)) where V"

Zl" Z {(r. 1, )](r l, ) in V"}, and P" consists of all pro-
ductions in P" excluding those of the form (r 1, ) w. Then G" is a
nouterminl bounded grmmr with r(G") r 1. Clearly L(G")

Z* Z*(r 1, )), and L(G’) is obtained from L(G") by substi-
tuting for ech (r. 1, ) the regular set A() for (r 1, ). By Lemm
4.1, r(L(G") r 1. Hence r(,(Ll’) r 1.
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In a similar manner, we see that r(,(L’2)) _-<r2-- 1. Sincer(L1) rland
t(L’)

_
L, there is a word w in L t(Ll’). Similarly there is a word

w in L. ,(L.’). Then wcw, is neither in L’ nor in L2’. This contradicts
the fact that wcw2 is in LcL= L [J L.
We now derive an important corollary.
COROLLARY 1. Let L

_
Z* be a nonterminal bounded language and c a

symbol not in . Then (Lc) is a nonterminal bounded language with
r[(Lc) n] nr(L).

Proof. Let c, c be distinct symbols not in 2;. Obviously there exist
generalized sequential machines which map (Lc) onto Lc... Lc and
Lcl Lc, onto (Lc). Hence r[(Lc)] r(Lo Lc,) by Theorem 4.2.
Using induction and Theorem 4.3, it follows that r(Lc Lc) nr(L).
Hence the corollary.
COROLLARY 2. For every n >--_ O, there exist nonterminal bounded languages

with r( L n.

5. Recognition. In [1], [2], [3], the following two results arc essentially
shown" it is recursively solvable to determine of an arbitrary grammar
whether it is a nonterminal bounded grammar; the rank of an arbitrary
nonterminl bounded grammar is effectively clculable. In this section, we
consider the problems of determining (a) whether an rbitrary pda is

finite-turn, nd (b) whether, for an arbitrary pd M, Null(M) is an ultra-
linear language. (Problem (b) is equivalent to determining whether an
arbitrary gl’ammr generates a nonterminal bounded language.)
THEOREM 5.1. It is recursively solvable to determine if an arbitrary pda is

finite-turn. If a pda M is finite-turn, it is solvable to find the smallest integer
]Co such that each sweep of M has 2t 1 turns for some lc <= ]Co.

Proof. Let M (K, 2, F, ti, Z0, q0) be aa arbitrary pda. Let q. be
symbol not in K. Let N be the pda (K, {a, b, c}, F, ti, q.), where K
K {q,} and ti is defined as follows" (q0, Z0) is in i(q., a, Z0). If

(q’, w) is in ti(q, x, Z), let

Ii(q, b, Z) if w e,

(q’, w) be in. tti(q, c, Z) if lw 1,

a, z) >

Then to each sweep of 2/ 1 turns in M,

qo Xl Xr Zo) -M ql X2 Xr "1) -M -M qr , ’[r) qr

there corresponds in. a one-to-one manner a sweep with 2 1 turns in N,
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q. ayl yr) r qo, yl Yr Zo)

r (ql Y2 Yr, "11) r r (qr, e, ")’r) (qr e,

and conversely. A turn occurs in applying ayl y to N each time b
occurs in a subword of the form acib (i => 0) and each time a occurs in
subword of the form bcia (i >= 0), and no other time.
We now construct a gsm S which, on receiving a word of Null(N) as

input, deletes all occurrences of c, all occurrences of a immediately preceded
by a, and all occurrences of b immediately preceded by b. Let S be the
gsm ({p0, Pa, Pb}, {a, b, c}, {a, b}, /is, hs, p0), where s(po, a) Pa,
ks(po a) a, s(pb a) Pa )ts(pb a) a,/iS(pa, b) Pb )tS(pa b) =b,
/is(p, x) p and ks(p, x) otherwise. Clearly S has the asserted prop-
erties. Then N, thus M, is finite-turn, if and only if S(Null(N) is a finite
set. If S(Null(N)) is finite and 2/c0 is the length of the longest word in
S(Null(N)), then/Co is the smallest integer such that each sweep of N,
thus M, has 21 1 turns for some/c __< k0. Now Null(N) is a language,
and the image of a language under a gsm is a language which is effectively
calculable [10]. Moreover, it is solvable to determine whether a language is
finite, and if finite, the length of its longest word [9]. This completes the
proof.
We now prove that it is rccursively unsolvable to determine of an

bitrary pda ill whether Null(M) is an ultraliaear language.
LEhIMA 5.1..L C__ Z* be a language and c a symbol not in Z. Then Lc)*
{e} is ultralinear if and only if L is regular.
Proof. Suppose L is regular. Then (Lc)* e} is regular and thus ultra-

linear.
Suppose L is not regular but (Lc)* {e} is ultralinear. Then (Lc)*
{e} is a nonterminal bounded language and has a rank n. Since L is the

image under a gsm of (Lc)* le}, r(L) <= n by Theorem 4.2. Since L is
not regular, r(L) _>- 1. By Corollary 1 of Theorem 4.3,

n <: n + 1 =< (n + 1)r(L) r[(Lc)"+].
Since

(Lc)+ ((Lc)* {1 (*c)+1,

r[(Lc)+1] =< n by Theorem 4.2. This is a contradiction. Thus L is regular
if (Lc)* {e} is ultralinear.
THEOREM 5.2. It is recursively unsolvable to determine of an arbitrary pda M

whether Null(M) is an ultralinear language.
Proof. This is an immediate consequence of Lemma 5.1 and the fact

that it is reeursively unsolvable to determine whether a language is regular
[4].
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6. One-turn pda. We now consider the relation between a one-turn pda
and f-transducers. The main result, Theorem 6.1, asserts the equivalence
of the concepts of linear language, Null(M) for some one-turn pda, and
[Jw wSs(wR) for some f-transducer S.
LnMA 6.1. Let S K, 22, Z, H, So, F) be an f-transducer and let

L= 0 w(w’).

Then there is a one-turn pda M such that Null(M) L and each move after
the turn is unique (also, there is M such that Null(M) L and each increasing
move is unique, that is, if ( q, x, Z) contains q, "n) and (q, .), with

" 1 and 1/2 >-- 1, then q q and ,), ,.).
Proof. In view of Lemm 1.1, we may assume that S is a l-restricted

f-transducer. We first show that there is a one-turn pda M such that
L Null(M) and each move fter the turn is unique. By Lemm 1.3,
there is a l-restricted f-transducer S’ (K’, 22, /x, H’, So, F’) such that
Si(wR) [S/(w)] for each w in 2;*. For each symbol x in 2; [J {e} let Z
be an abstract symbol. Let Zo be a symbol not in/Z x in 22 [J {e}} and let
I {Zo} [J {Z Ix in 2; [J {el}. Let q0 be symbol not in K’ and K_

K’ [J {q0}. Let M be the pda (K, 22, F, ti, Zo, So’), where i is defined
ns follows"

(a) ti(So’, x, go) contains (q, Z) (So’, x, y, q) in H’},
q H(b) t(q, x, Z) contains q ZZ q, x, y, in

(c) (q, e, Z) contains (qo, Z) if q is in F’,
(d) ti(qo, y, Z,) contains (qo, e).

Then M is one-turn and Null(M) [J. w[S/(w)]" [J wS](w). Further-
more, each move after the turn is unique (for the length does not start to
decrease until qo is reached, after which each move is uniquely determined).
We now construct a one-turn pd M’ such that L Null(M’) and each

increasing move is unique. Let F be as above and let K, K [J {qo}.
Let M’ be the pda (K.,, 22, F, ’, Z0, q0), where ti’ is defined as follows"

(n’) ’(qo, x, Z) contains (q0, ZZ),
(b’) 5’(qo, y, Z) contains {(q’, e) (q’, x, y, q) in H, q in F},
(c) (q,y, Zz) {(q,,) I(q x y,q) in
(d’) ti’(So, e, Zo) contains (So, e).

It is readily verified that M’ has the desired properties.
THEOREM 6.1. For L 22* the following stalements are equivalent"

(1) L Null(M) for some one-turn pda M;
(2) L is a linear language;
(3) there is an f-transducer S such that L [Joz. wSi(w’).
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Proof. Theorem 2.1 gives the implication (1) --> (2) and Lemma 6.1.
gives the implication (3) -+ (1). Therefore we need only show that
() -, (3).
Let L be a linear language. As is easily seen, L L(G) for some lineur

grammar G (V, 2:, P, ) in which every production is either of the
form - u’v, with u and v in 2:*, or - e. Let S’ be the f-transducer
V Z, Z, Z, H, r, F), vhere F { -- is in P} nd H , u, v

R--> uyv in P}. Then L U, w[S. (w)] (For, z is in L(G) if and only if

O" UllVl ===} Ul Urr)r Vl Ul UrVr )1 Z.

This occurs if and only if
R R R)(,u...u,) (,u-..u,v) ... (r,,V "’’Vr

that is, if and only if z u, u,.[M,’(u, Ur)].) By Lemma 1.3, there
exists an f-transducer S such that Sx(w) [S/(w)]e for each w. Thus
L U wS(w’), so that (2) (3).
Combining Lemma 6.1 trod Theorem 6.1, we obtain the following

corollary.
COOLLA.. For each one-turn pda M, there exists a one-turn pda M-’

such that Null(M) Null(M’) and each move after the turn is unique (each
increasing move is unique).
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AN INFORMATION-THEORETIC DERIVATION OF CERTAIN LIMIT
RELATIONS FOR A STATIONARY MARKOV CHAIN*

S. KULLBACK

A limit relation for the transition probabilities of a stationary Markov
chain with a countable number of states is derived by the use of concepts
and properties of information measures. Rnyi [7] used information-
theoretic concepts to derive the limit relation for the case of a finite number
of states and Kendall [5] used a different but somewhat related approach
for the case of a countable number of states. The approach in this paper is
based on properties of the discrimination information as defined and de-
veloped in Kullback [6]. We shall follow the notation for Markov chains in
Feller [2, Chap. XV].

Frichet [3, p. 31], using properties of stochastic matrices of finite order,
gave a necessary and sufficient condition that in a Markov chain with a
finite number of states the m-step transition probabilities p() tend to a
limit pk, independent of the first index h, as m increases indefinitely.
Chung [1, pp. 26-30], using probabilistic considerations, gave a complete
determination of the limit or limits of the mth step transition probabilities
p([) as m increases indefinitely for every h and/ for stationary Markov
chains with a countable number of states. Feller [2, p. 357] has shown that
in a Markov chain with a countable number of states a stationary dis-
tribution can exist only in the ergodic case. The main result of this paper
is the converse of Feller’s theorem, a result that we now state.
THEOREM. For a stationary Marlcov chain with a countable number of states,

limm p(’)
Consider a stationary Markov chain with transition probabilities

(i) 1)

pll p12

p2 p2

pal pn2

where

(2) p 1, i 1,2,..., p. > 0,
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and with the stationary distribution

(3) tz E tP, j 1, 2,... E tz" 1.

There also exist the following known relations among the m-step transition
probabilities"

(re+l) (m) (m)_ 2() ,, ...,p p j, 1,
h h

() .)=, j=1,2,....

We now consider the discrimination information between the systems
of probabilities,

(6) p(m) (m) (m)
/Pl P Pa "’/,

(m-t-l) (m-t-l) (m-t-l)(7) P(+) {p p pa ...},

given by (natural logarithms are used)

(p (,) () pii(S) .- U) p log

(9) I(P(’+); U) p[7+) log P[7+)

We shall need the convexity property (see [6]) that

(v)(10) alog > a log

where a > 0, b. > 0, with equality if and only if

al a2 an
b b: b,

Using the convexity property and (2), (3), and (4), we may write

A_, Pih h

(11) p]

(m) (m)

Thus

(12) I(P(); u) I(P,(+); U),
with equality if and only if p)/ const, for h 1, 2, ..-. Since
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h p) 1 h, the constant is equal to one, and the condition
for equality in (12) is p) #. The convexity also implies that

(13) I(P(m) ;u)>_o

for all m, with equality if and only if p) g. Thus

(4)
I(P(); U) >= I(P(); U) >= >= I(P(); U)

=> I(Pi(re+x)’, U) => => O.

Le us assume that i(p+(1); U) < . If there is equality some place in
the sequence in (14), then

(15) p) #, p+x) (’)-
pik pkh kpkh h,

k k

and thus p) , I(P(); U) 0, N m.
On the other hand, if the sequence in (14) is strictly monotonic, and

there is no equality, we shall show that

(16) lim pn) P’,
m->

and hence lim- I(P() U) 0. Indeed,
I(pi(m); U) I(P(+); U)

(17)

Note that

p p log
h /Zh

(,) p+)pi pjlog

E E

(is)

(19)

(m)

h h h

It is seen from (14) that the sequence I(P(); U) tends to a finite limit
as m -- , so that from (17),

m) Phl
(20) piph log 0asm .

h (re+l)
p p



LIMIT RELATIONS FOR MARKOV CHAINS 457

We shall show later that (20) implies

(21)

or

(22) _, _,
ta Phj

P’ 0 as m --+ i 1, 2,

Since we huve ssumed thut p > 0, we conclude from (3) that > 0.
Since

h Phi
h

it follows from (22) that

(23) t’ ---->0 as m ----> , i,j 1,2,

It may be shown in similar fashion that

(24) p) p+n)
0 aS

#h #"

since
(n) (m)

(2) z(P(’); u) (p(-’-); u) 2)p() P plog --+ 0
h (n) ]dh (re+n)

pj p

as m--> . For h j in (24) the Cauchy mutual convergence criterion
implies that there is a C:- such that

(m)

(26) lira p"

Thus letting m -+ in (23) we get

(27) C;, C. for all i, j, h.

But (26) implies that x Cy. 1, hence by (27) that Ch 1 for
all i and h; that is,

(28) lim u,, i,h 1,2,....

(I am indebted to Minoru Sakaguchi for very helpful comments und dis-
cussion about the foregoing.)
We shall now justify the statement that (20) implies (21). Consider
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ai(29) ai log , ai > 0, bi > O,

which may be written as
1/2 1/2

ttj
(E ail12

1/2
1/2 (i

tti log

(3O)
"log

12

(. al1/2)
ai

1/2

1 1/2 1/2
i Oi2 log . a-1/.01/

--2 log i
using the convexity property. But log x -< x I for all x > 0, so that

(31) 2 log 1/,_ 1/2 1/ , 1/.
[ai i

Using the Cuchy-Schwrz inequMity,

(32)
IE(

where

(33)
h 1/2 1/2. 1/2(a,1/ + ,,i (ai 2ff b + za o

so that

(34)

<__ 1 A- i -t-2( a) ’/2 ( bi) 1/2

Hence there follows the chain of inequalities (cf. [4])

(35)
a log ai_ => 2 log ai-1/2o1/2

from which it is seen that

>_ (a1/ bU) :> 1(la-bl),
aiE, a, log 0 implies Ela,, b, 1 O.
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SOME LIAPUNOV THEOREMS*

T. A. BURTON

1. Introduction. We consider a system of differential equations

X’ F(X, t) X’ dX
dt

where F(X, t) is continuous for ->_ to and X contained in some open set.
Let F(0, t) 0 and assume that to 0.
The problem is to iind conditions on a Liapunov functioa V(X, t) such

that we conclude that all solutions of (1) starting ia a certain region tend
to some set. This problem was initiated by A. M. Liapunov [1] who proved
the following theorem for F(X, t) independent of t.
For terminology we refer the reader to [2].
THEOREM 1. (Liapuno-v) Ij" V(X) is positive definite and if dV/dt
(grad V). F(X) is negative definite, then th,e null solution X 0 is asymp-

totically stable.
The requirements that V be positive definite and dV/dt negative deiinite

were unnecessarily stringent and were improved by J. P. Ia Salle [3],
[4]. Again it is assumed that F(X, t) is independent of t.
THEOREM 2. (La Salle) Assume that there exists for the system (1) a

scalar function V(X) which has continuous first partials and that dV/dt <= 0
for all X. Let E be the set de]ned by dV/dt 0 and let M denote the largest
invariant set in E. Then every solution bounded for 0 approaches M as

These results were exended by Krasovskii ald Barbasin [5, p. 67] and
also by Yoshizawa [6] to include systems where F(X, t) is time dependent.
Our purpose is to extend these results still farther. We conclude the paper

with an example which extends the results of Levin and Nohel [7].
For our results it is not necessary to require uniqueness of solutions of

(1) and hence we assume only cotinuity of F(X, t), Also, when we con-
sider Liapunov functions V(X, t), we assuage only the existence of upper
right-hand total derivatives as in [8, p. 143].

2. Exteasion of periodic results. Krsovskii and Barbasin [5, p. 67] con-
sider the systen (1) and obtain the following result.
THEOaEM 3. Let F(X, t) be peiodic in with period T and Lipschitzian

or[IXll < Hand- < < (H const, orH ).Suppose"

* Received by the editors March 16, 1966.
Department of Mathematics, University of Alberta, Edmonton, Alberta.
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(a) there exists a function V(X, t) which is periodic with period T or does
not depend explicitly on time;
(b) V(X, t) is positive definite;
(c) V(X, t) admits an infinitely small upper bound for 11X H and

(d) sup{V x --< Ho, 0 _-< < T} < inf{Vlll x H1}, where Ho
< H1 < H;
(e) dV/dt <-_ O for X < H and -- < < ;
(f) the set M of points at which dV/dt (grad V).F(X, t) + OV/Ot is
zero contains no nontrivial half-trajectory of (1).

Under these conditions, the null solution X 0 is asymptotically stable
and the region Z <- Ho lies in the region of attraction of the point Z O.
To generalize this theorem it is convenient to introduce some new

terminology.
DEFINITION. i wedge is a continuous function W(X) >= 0 defined for
X < H, H cow,st. or H , such that

(i) for each real/, if W(X) l has real solution, then it is homeo-
Inorphic to an n-sphere;
(ii) if W(X) 11 and W(X) k2 hve rel solutions and if kl < l.,
then the set of points defined by W(X) kl lies entirely inside the set of
points defined by W(X) l.. Also, let W(0) 0.
A nonempty set defined by W(X) k will be called n n-sphere.
THEOREM 4. Suppose that there exists a function V(X, t), defined and

continuous for Z < H (H const, or H o and 0 <- < , together
with wedges WI(X) and W(X) such that Ws(X) >= V(X, t) >__ WI(X) and
Y(O, O) O. Suppose also that dY/dt -<- O for Z < H and > O. Let
M R X [0, contain all the points where dV/dt O, where R is closed
and contained in an open set J1 which in turn is contained in an open set J,
satisfying the following properties. There exists an o > 0 such that for
0 < < o, ,1- S(O, e) contains no positive trajectories of (1). Also, let
the distance between 21 S(O, e) and [J + S(O, e)] be positive for X

H. Assume that F(X, t) is bounded for X on compact sets contained in
X Hand 0 <= . If, in addition, there exists a wedge W(X)

such that dV/dt .<_- -W(X) in J1 X [0, and X <= H, then the null
solution of (1) is asymptotically stable.

Proof. By well-know Liapunov theorems X 0 is Liapunov stable.
Let /Co > 0 be sufficiently small that W(X) /o is an n-sphere inside
X < H. Since V(O, O) 0 and V(X, t) is continuous, there is a ti > 0

such that if Xo < ti, then V(Xo, O) ko W(X). Since dV/dt <= O,
the solution f(Xo., t) through Xo stisfies V(f(Xo, t), t) V(t) < /o for
any x0 < ti. For ech X0 < ti, f(x0, t) --> 0 as -- if and only if
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V(t) -- 0 as t- o since Wa(X) >= V(X, t) >= W(X). Suppose that for
some X0 < ti, f(X0, t) -+ 0 as . Now V(f(Xo, t), t) is nonincreas-
iag, so V(t) has a positive limit B as - . Since V(X, t) Wa(X)
and V(t) B, Wa(f(Xo, t) V(f(Xo, t), t) B. Therefore, f(Xo, t)
lies outside the n-sphere W(X) B for all 0. Hence f(X0, t) is con-
tained in the region S between the two n-spheres Wa(X) B and
W(X) k0 for all 0. Consider (S J1) X [0, ) in which dV/dt

-W(X). By hypothesis there exists T > 0 such that f(Xo, t) is not
contained in J: for all T;f(X0, t) is not contained in J for all T
since we could then conclude that f(X0, t) - 0 as using standard
Liapunov arguments. Thus there exist three sequences {t}, {t’}, and
{t"}, each tending monotonically to + and satisfying the relation
t,’ > t’ > t, such that f(X0, t) leaves J t t, enters J at
d is ia S J for t < < t’ and such that f(X0, t’) is in J. Now
F(X, t) is bounded in S [0, ), and ia S the distance between J and
,] is positive, so the differences {(t’ t) have a positive infimum.
Hence= (t’ t,,,) . Let L =1 It,,, t.’]. Then on [J S] L
we hve dV/dt -a for some a > 0 since dV/dt -W(X). Therefore

n dW
n=l n=l

But V(X, t) 0 so V(t) 0 as t--> .
COROLLARY 1. The n-sphere W(X) l(;o bounds a region which is con-

tained in the region of attraction.
COROLLARY 2. U H and if for every Xo, V(Xo, O) W(X) has

a real solution, then the asymptotic stability is global. (Note. This does not
necessarily imply that W(X) as X .)

3. extension of Yoshizawa’s results. T. Yoshizawu [6] considers a
system

(2) x’ F(X, t) + G(X, t),

where F(X, t) and G(X, t) are continuous for X contained in an open set
Q and 0 < . In addition F d G stisfy the following conditions.
() F(X, t) tends to function H(X) for X ia a "certai" set P con-

tined in Q, and on ny compact subset of P this convergence is uniform.
(b) For each e > 0 and each Y in P, there exist positive numbers (Y)

and T(Y) such that, if Z Y < (Y) and T(Y), then F(X, t)
F(Y, t)} < e.

(c) If X(t) is continuous nd bounded on [0, and if X(t) is contained

i any compact subset of Q, then J, G(X(t), t) dt <
The "certain" set P in (a) is explained in a subsequent theorem. One



should notice that boundedness of solutions is assumed in these theorems
rather than requiring that the Liapunov functions guarantee the bounded-
ness.
THEOREM 5. (Yoshizawa) Suppose that a solution f Xo t) of (2) is

bounded and approaches a closed set P (that of cordition a contained in Q
and that F(X, t) and G(X, t) satisfy conditions (a), (b), and (c). Then
the positive limiting set of f( Xo, t) is a semiinvariant set contained in P of
X’ H(X), X P.
The following definition is needed in the next theorem.
DEFINITION. (Yoshizawa) A scalar function f(X) of X in Q is positive

definite with respect to a set A if f(X) 0 for X in A and for each e :> 0
and each compact set Q* in Q, there exists a number t(Q*, e) > 0 such that
f(X) >= 3(Q*, ) for X in Q* ffl [U (A, e)]c. If -f(X) is positive definite
with respect to A, f(X) is negative definite with respect to A.
THEOREM 6. (Yoshizawa) Suppose that F(X, t) is bounded for all when

X belongs to an arbitrary compact set in Q and that all solutions of (1) are
bounded. Let G(X, t) satisfy condition (c). Moreover, we assume that there
exists a nonnegative function V(X, t) such that dV/dt <= -W(X), where
W(X) is positive definite with respect to a closed set P (not necessarily that

of condition a) in the set Q. Then every solution of (2) approaches P.
These last two theorems imply the following main result.
THEOREM 7. (Yoshizawa) Suppose that all solutions of (1) are bounded,

that is, every solution is contained in a compact set in Q, and that there exists a
nonnegative function V(X, t) such that dV/dt <= -W(X), where W(X) is
positive definite with respect to a closed set P (that of condition a) in the
set Q. Moreover, we assume that F( X, t) is bounded for all when X belongs
to an arbitrary compact set in Q, and that F(X, t) satisfies conditions (a) and
(b), while G(X, t) satisfies condition (c). Then all solutions of (1) approach
the largest semiinvariant set contained in P of X’ H(X) for X in P.
We have been overly cautious to emphasize the set P and conditions

(a) and (b) since it is only with very careful reading of Yoshizawa’s
paper that one can tell what is meant. In this connection, one may see that
this last theorem has already been misinterpreted in [9, p. 5]; this results in
a much weaker theorem.
Our purpose here is to alter conditions (a), (b), and (c) and still retain

stability results. Although the last theorem is very attractive due to its
precise statement of the limiting set, it may be very difficult to determine
whether or not a nonempty limiting set exists. Also, the condition that
F(X, t) be asymptotically autonomous on certain sets is one which seems
very stringent.
TEORE 8. Assume that every solution of (1) which starts in Q remains in

some compact subset of Q, and that there exists a nonnegative function V(X, t)
defined for X in Q and 0 <= < o such that dV/dt <= -W(X), where W(X)
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is positive definite with respect to some closed set P contained in Q. Let F( X, t)
be bounded when X belongs to any compact subset of Q for all >= O. Iffor every
> 0 there exists an open set J() containing P S(O, ) such that any

solution of (1) which enters J() eventually leaves J(), then every solution of
(1) approaches the set of all X in P satisfied by

min [sup V(X, 0), lim sup V(O, t)] -> V(X, t) >-_ lim inf V(O, t).
X Q t-.co

Proof. Notice that 0 belongs to P since F(0, t) 0. Theorem 6 shows that
every solution f(X0, to, t) tends to P as tends to infinity. This means theft
for every 5 > 0 there exists T(5) such that d(P, f(Xo, to, t)) < 5 for
> T(5). Since f(X0, to, t) tends to P and dV/dt 0 for X in P, it follows

that dV/dt tends to 0 as tends to infinity. Hence, V(X, t) tends to a con-
stant as tends to infinity. We must show that the only possible constants
are those stated in the theorem. Thus we must show that for each (Xo, to)
there exists a sequence It,i/ tending to infinity with n such that f(Xo, to, t)
tends to zero as n tends to infinity. This will be done if we can show that
for each 0 there exists t’ such thatf(X0, to, ) is in S(0, ). Assume that
for some X0 in Q and some to, f(X0, to, t) does not tend to zero as tends
to infinity. Let 0 be given, and let J be the open set containing P

S(0, ) which f(Xo, to, t) eventually leaves if f(Xo, to, t) is in J for
some ) to, Since J is open, there exists 5 satisfying 0 < 5 ( such
that U S(P S(O, ), 5) is contained in J. Take T sufficiently large that
d(P, f(X0, to, t)) < if > T. Now f(Xo, to, t) leaves J so it must enter
S(0, e), because 5 < e and f(Xo, to, t) is contained in J U S(0, e).
We shall now consider Yoshizawa’s example [6, p. 386] which in turn

extended work of Levin and Nohel [7].

4. An example. Consider the system

x =y,

y -h(x, y, t)y f(x) + e(t),

where
(i) xf(x) > 0 if x 0, f continuous;

(ii) F(x) f(s) ds --> as lx I---->
(iii) e(t) is continuous for >_- 0 and E(t) e(s) ds < c

(iv) h(x, y, t) is continuous and nonnegative for all x, all y, and all >_- 0,
and is bounded if x -t- y is bounded;
(v) there exists an open set S with four open connected components
S*, $4" which are unbounded and each of which contains (0, 0) on the
boundary. Also, S* is in quadrant i; and the positive x-axis is on the
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boundary of S* and $4’, while the negative x-axis is on the boundary of
S.* and S*. (For example, let S* consist of all points in the strip 0 < x <
and0 < y < aforsomea > 0;S*’- < x < 0and0 < y < a;Sa*"- < x < 0and-a < y < 0;St*’0 < x < and-a < y < 0.)
For (x, y) in S we have y 0 and h(z, y, t) k(x, y) > 0, where k is
some continuous function.
Under these conditions every solution tends to the origin as .
To prove this, we follow Yoshizawa and let

V(x, y, t) e-(t) F(x) + + 1

so dV/dt -e-(*)h(x, y, t)y. Yoshizawa shows that all solutions are
bounded. By Theorem 8 every solution approaches S. Now, x y so for
y > 0 every solution moves from left to right, and for y < 0 every solution
moves from right to left. Henee, if a solution remains outside S(0, e), for
e as small as we please, it must tend to the x-axis. But for y 0 we have
y -f(x) + e(t), which is not zero identically if x 0. Hence the solu-
tions do not remain on the x-axis for x 0. Thus by Theorem 8 all solu-
tions tend to the origin.

Acowledgments. The author is indebted to Professor D. Bushaw for a
eounterexample to a previous form of Theorem 8 and to Professor J. P.
LaSalle for a great deal of assistance.
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ON THE OPTIMAL CONTROL OF DISTRIBUTIVE SYSTEMS*

WILLIAM A. PORTER,

1. Introduction. In [1] the following basic optimization problem is con-
sidered. Let T be a bounded linear transformation between Banach spaces
B and D respectively. With T onto D and D arbitrary, find (if one
exists) a preimage of with minimum norm. Of obvious interest are the
questions of existence and uniqueness and the properties of the mapping
from D to a minimum norm preimage. In [2] several generalizations
of this problem are treated. These results, in an expanded and extended
form, provide the basis for [3, Chap. IV], which also contains several appli-
cations to lumped parameter systems.

In this earlier development many different assumptions are made about
T, its domain and range;however, the a,ssumption that T is onto is always
present. In the applications to lumped parameter systems this restriction
is seldom a difficulty. Distributive systems, however, have mathematical
models which typically involve transformation1 with dense (or dense in a
proper subspace) but not closed range. The present article deals with the
additional difficulties that arise in the minimum norm problem as one re-
moves the assumption that T is onto.
The following example considers a distributive control system whose

mthematical model has the properties considered iz the later analysis.
Example 1. The partial differential equation

xt(t, a) kx.(t, a) -+- f(t, (t, a) 5,

defined on the fixed domain A (to,q) (0, b), frequently arises in
the study of diffusion systems (see [4] or [3, Appendix IX]). It is considered
here in conjunction with the auxiliary conditions

x(t, o) x(t, b) O,

x (to, ) x (),

[to, t];

[0, b];

and the assumption that the force f is spatially concentrated. That is, f
consists of a finite number of controls [g, g} located at fixed spatial
positions 0 < a < < a <: b. Accordingly f may be expressed, using
Dirac delta functions, in the form

f (t, ) _, ( ,)o(t),

* Received by the editors Jnuary 19, 1966.
Systems Engineering Laboratory, The Deprtment of Electrical Engineering,

University of Michigan, Ann Arbor, Michigan. This workws supported by the United
States Army Research Office, Durham, under Contract DA 31-124-ARD-D-391.
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Using the separation of variables technique, it is not difficult to show
(see [3]) that this distributive system can be identified with the ordinary
differential system (of infinite order)

(1) +/-(t) Ax(t) -t- Bg(t), x(to) x, [to, tl],

where g (gl, g) is the control tuplet and x (Xl, Xn
has components determined by

x,(t) x(t; a) sin da, n 1, 2,

The matrix A is diagonal and of infinite rank

A -/c diag [@/b) 2, (2/b) ’, ..., (nr/b), ...],

while the matrix B has m columns and infinitely many rows. The jth column
of B is the tuplet

b" col (sin (rra/b), sin (2raffb), ..., sin (mrc/b),...),

j 1, 2, ..., m.

The solution of (1) can also be written in the familiar form

x(t) (I,(t, to)x q- (P(t, s)Bg(s) ds,

where the transition matrix is diagonal tnd has h.finite rank:

,(t, s) diag [cxp l-]c(r/b)’2(t s)},
(2)

exp {-k(nr/b)(t s)}, ...].

Consider now the transfer (/0, x (a)) -- (h, x (a)). This transfer may
evidently be identified with the mapping Tg, where (= x

(h, to)x and T is computed by the equation

(3) Tg 5p(h, s)Bg(s) ds.

If B,..., B, are Banach spaces from which the individual coatrols
must be chosen, and if B B1 X Be X X B, is equipped with any
reasonable norm (i.e., one which maintains the product topology), then
B is also a Banaeh space and the problem of finding the preimage of
i[ (1, (., may be properly posed.
For the present objectives it suffices to consider the single input ease

(i.e., m 1) and for convenience we choose al b/2. The matrix B
then becomes the column vector B1 (1, 0, 1, 0, 1, ). The transforma--
tion T now has (for example) the domain B L(to, tl), 1 -_< p < ,
and has values in an infinite-dimensional space. It is easy to see that T is
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not oilto. Indeed since (I, is diagonal and in view of the form of bl, any
with a nonzero entry in some even position (i.e., 0 # 2, or 0 # 4, or
is not in the range of T. To cure this deficiency T may be considered as a
mapping into the subspace X COllSisting of vectors with zero entries in
all even positions. In the Appendix it is shown that the range of is dense
in X but that is not onto. Thus T hs a range which is dense but not
closed.

2. The existence of minimum norm controls. Throughout this paper B
and D will denote Banach spaces and T a bounded linear transformation
from B inl:o D. The unit ball and the unit sphere of B will be denoted by
U and OU respectively, while C T(U) denotes the image of U in D
under T. The boundary of C will be denoted by OC. It is easily verified that
C is bounded, convex and circled. It follows from the open mapping theorem
(see [5]), however, that C is a neighborhood of 0 . D and hence that the
closure of C is convex body (a closed convex set with nonvacuous interior)
if and only if T is onto.

In the earlier studies [1], [2], [3], the fact that C [J OC was a convex
body implied, by means of the Hahn-Banach theorem (see [5]), the prop-
erty that C (J 0C has a hyperplane of support at every boundary point.
This latter property played a key role in the earlier development and it is
natural in the present setting to focus attention on the set S which consists
of the support points of C. Without loss of generality attention may be
restricted to real spaces, in which case

S { C[(,) sup(,,), some D*}.

It is apparent that S c OC. It is convenient also to single out the set

/]// { OC T-1 () has a minimum (norm) element},

where T- (() denotes the set of all preimages of ( for further study.
LEMMA 1. In general, C S M.
Proof. Suppose S and ) > 1. Then the chain

<x, > x<, > > <, >,
where supports C at }, shows that },} ( C. Thus if } Tu, then u @ U,
which implies u _>- 1/},; and since }, > 1 is arbitrary, u ]I --> 1. How-
ever, if C, then at least one u U exists such that Tu. Hence
every C l S has a preimage in OU and each such element is minimal
for the set T-1() thus C [ S 5I.
A natural question is whether or not this containment is proper. To

investigate this situation pick an. arbitrary M with the minimum
preimage u. Assume that u => 1, since this would be implied by
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S. Now, since T- () up + N (T), it follows easily that

up vii >= up ll, v N T).

Hence, if A denotes the annihilator of A (see [5, 4.6]), the Hahn-Banach
theorem guar,ntees a N(T) B* with 1, such that

If also R(T*), then a e D* exists such that T*e. On one hand
the relationship

holds, while on the other we have

Hence

(,> => (,e) for all v C;

this implies that supports C at or that S. Thus if M’ c M is the
subset whose elements ( satisfy the two additional assumptions-
(i) the minimum elements of T- () have norm >= 1, and
(ii) a Hahn-Ban_ach produced exists in R(T*),
then M’ c S.
For any linear manifold N c B* the set (N0) can be identified a,s the

weak * closure of N; consequently N (N0) if and only if N is weak *
closed ih s happens, for instance, when N is finite-dimensional or if N is
norm closed and B is reflexive. In genera,1 it is true t.hat R(T*) c N (T);
this containment may be strengthene,d to equality whenever R(T*) is
weak * closed. Thus (ii) will always be satisfied when.ever T* has a weak
closed ra.nge.
Condition (i) is equivalent to the statement that ( is not the image of

an interior point of U. This, however, cannot be proved in.general; for if C
has a vacuous interior, then many points of C will be images of interior
pobts of U. (Note that T(int U) must be nonvacuous if T 0.) This
happens for instance when T is compact.
LEMMA 2. f C i8 closed, M’ c S c M. If also R(T*) N (T), then
M’=MS.
So far it has been assumed that the sets M, M, and S are nonvacuous.

In many cases this is true. For instance, when B is reflexive, it follows that
T- (() has a minimum element for every ( ff R(T). C is also closed (see
[1]) in this case, a,nd hence M 0C C. As for the set S, Bishop and
Phelps [6] have shown that if C is a,ny closed convex subset of a Banach
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space then the support points of C are dense in its boundary. Thus with B
reflexive, both S and M’ S [’l M are dense in C.
We have mentioned explicitly the condition that B is reflexive which

guarantees a closed set C. Less restrictive but much more cumbersome
conditions can be imposed on the problem. The reader is referred to [3,
4.3] for a discussion of these conditions.

3. The form of minimum elements. Attention now turns to the problem
of determining a representation for the minimum norm preimages of a
point. In doing so the following notation will be helpful. The Minkowski
functional of the set C (see [5] or [3]) will be denoted by p. The element
] B will be called an extremal (see [1] or [3]) of f B* if ] 1 and
(], f} f both hold. The set of all extremals for f B* is denoted by

THEOREM 1. Let Q denote the set of all D* such that {’T-} B is
nonempty. Then C [ S- { T() Q}. Furthermore, if

T(), Q, then supports C at .
Proof. Suppose Q and u /T-}. Clearly , Tu, is in C. How-

ever, since every C has the form Tu, u U, the chain

is valid, which implies that supports C at $. This shows that

IT()I,. Q} cCClS.

Now, if C CI S, a , . D* exists such that

(, ) sup (7, ) T* 1[.

Also by Lemma 1, T-1 () has a minimum element u OU, and hence

<, > <ue, T*> T*q

holds. This shows tha {}; thus C f S c {T() I+ Q}.
In ths theorem two types of nonuniqueness can occur. Each point
S may be supported by more than one hyperplane. Secondly, the set

{} for each + Q may contain more than one point. IC was noted h [1]
(where T is assumed onto) that the second situation does uot occur when
B s rotund, and the first stuation does not, occur whenever B is rotund
and smooth. If T has dense range, these results still hold with the same
proofs. As before these sufcient conditions become necessary conditions if
uniqueness s required for all linear transformations. However, examples
do exist (see [3, 4.3, Exercise .4]), where + and are unique although B
is neither rotund nor smooth.
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COROLLARY. Assume that B is rotund and smooth. Then T-1 () has a
minimum element u if [p ($)]-1 C S. For each such , u is uniquely
given by

u p ()W-j

where defines the unique hyperplane of support at [p ()]-. The functional
is uniquely determined by 1 and either of the conditions

() (v, [p()]-(,, v C,

(t)) T* [p()]-%

evorsl related problems which are uggested by the apNiostions are
discussed in [2] or [3]. In most cases the assption that T is onto can be
removed. Since the proofs given in these references can be modified, using
th present discussion i sn obvious lilller, we shall not deal vith these
matters here.. Colsions. It is shown that the minimum norm control problem can
be meaningfully treated where the system transformation has dense but
not closed range. The recent result that the support point,s of every closed
convex set in s Bsnsoh space are dense in its boundary preserves much of
the usefulnes of the Hshn-Bsnsoh theorem in nslyzing this problem.

S. lnowleIment. The several dioussion with Dr. James P. Williams
over the past few months have materially contributed to the growth of this
paper.

Appendix. Let T be s defined in the example. Then T may be represented
in tim dyadic form

where e,} consists of the odd members of the usual coordinate basis for the
vector space l and f is the functional

(, f) ( 1)’+ exp k[ (2i 1 /bl ( ) () d,

i 1,2, ....
For Ne purposes of ghe example ig suees go greag B g(o, h), in which
ease it is easily verified ghag

llf, II /(2i-1), i= 1,2, ....
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where y is a constant. From the inequality chain

[k 11/2 [k( 1 )211/2i=l i==l

where the orhonormality of the set {e} is used, it follows that R (T) l.
To see that R(T) is dense X (the subspace spanned by {e} equipped

with the l norm), we note that for arbitrary X and any e > 0, an N
exists such that , here nd hve the sme components ,
for i N and hs zero entries otherwise. Since the funcion.Is {f} are lin-
earily independent it follows easily that ech has a preimage under T.
Thus ch.ooshg e I/n we conclude that every @ X is g limit point of
the rnge of T.
To ho that T ot oto X w obr th i T- (), th

]f - (),

whe p is th ikowki ,tio o C (V). Ao f-s i ; this implies that C is not neighborhood of 0 @ X and hence
T is not onto.
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IERTURBATIONS OF OPTIMAL CONTROL PROBLEMS*

JANE CULLUM
1. Introduction. Let P be au optimal control problem describable by a

system of ordinary differential equations and with an integral cost func-
tional. Perturb the system of differential equations associated with P, the
boundary conditions, and/or the control sets in such a way that the altera-
tions are describable by a single parameter e. Denote the corresponding
problem generated from P by P(e). If optimal solutiols exist for each P(e),
what is the relationship between these optimal solutions and optimal solu-
tions of the original problem P P(0)? That is, if the parameter of per-
turbatior e is reduced to zero in some continuous manner, do the optimal
solutions of P(e), if they exist, converge in some sense to an optimal solu-
tion of P. This is the question that is to be investigated.

2. History. Kirillova[5] considered this question for a particular linear,
time optimal control problem P, namely, the transfer of a given point a0 to
the origin in minimum time along a trajectory of the system A(t)x
+ B(t)u such that each of the components of the control u is less than one
in magnitude. Kirillova perturbed only the differential system associated
with P, and she assumed each system was linear, A (, t)x + B(e, t)u.
Under the assumption of continuity of the matrices A (e, t) and B(e, t) in
e and in and the assumption that each system is normal, Kirillova proved
that, given dn ----" 0, the optimal times for the corresponding problems P(e)
converge to the optimal time for P P(0), and the corresponding sequence
of optimal controls converges in measure to the optimal control for P.
The object of this paper is to extend these results to other problems.

However, in general, the families of perturbed problems do not possess the
following three properties which, the family considered by Kirillova does
possess:
() The associated differential systems are linear.
(b) The optimal control for each P() is unique.
(c) The optimal control and trajectory for each P(e) can be expressed
explicitly in terms of known functions.
Extensive use was made by Kirillova of each of these three properties.
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3. Statement of the problems. E denotes n-dimensional Euclidean
space. Le T be a fixed interval in EI. For each e, move from G0(e) along
an absolutely continuous curve (2, i), where i [to, tl] is an interval
contained in T, for which there exists a measurable function u, such that,
u(t)
2(t)

C(2) f fo(2(t), u(t), t) dt,

is minimized.
This problem will be designated by P(e) P(f(e), Go(e), G(e, t),

U(t, ), T, A). It can be reformulated as a problem in En* with x
(x, 2) E*, where 2 f0. This formulation will also be denoted

by P(e). An admissible puir for P(e), that is, a traiectory and its control
that stisfy the differential system and the control and space variable
constraints for P(e), will be denoted by (x(e), u(e), I, a, b) where I is
the domain of x(e) and of u(e), and a and b are, respectively, the initial
and terminal values of x(e).
The global assumptions are"

(1) f0 is continuous;
(2) for each e, f(e, , u, t) is continuous in (}, u) for each and measursble
in for each (}, u), where (, u, t) A X 11 X T;
(3) G0(e), 0 =< e <__ 1, is a family of compact subsets of E that is upper
semicontinuous with respect to inclusion in e st 0;
(4) GI(e, t) is a family of compact subsets of E that is upper semicon-
tinuous in (e, t) at each point (0, t) 10} X T;
(5) U(t, ) is a family of compact subsets of E that is upper semicon-
tinuous with respect to inclusion in for each e, and in e at e 0 for each
and such that U(t, e) . U(t) for eachtas 0;

(6) A is s closed subset of E.
Finally, the following notation will be used throughout the paper"

U(t, O) U(t) GI(O, t) G(t); G0(0) Go ;f(0, x, u, t) fo(x, u, t);
f(e, x, u, t) (f0(2, u, t), f(e, 2, u, t)); I denotes an open interval in E
I denotes a closed interval; 1I denotes the union over (t, e) T X [0, 1] of
the sets U(t, e); and given a set F and a positive number , the symbol
U(F, ) denotes the union of all closed spheres with centers in F and ra-
dius

4. Approximation types. Following Russell’s terminology [9] two defini-
tions will be made.
DEFINITION 4.1. A sequence of functions (x, , a, b) is ssid to be

an approximation of type 1 to the function (x0, I0, a, b) if I -- I0, (a,,, b)-- (a, b) and x,(t) converges to xo(t) for each I0.
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DEFINITION 4.2. A sequence of pairs of functions (x,,, Un, , a,,, b) is
said to be an approxination of type 2 to the pair (x0, u0, i0, a, b)
if (x,,, In, an, bn) is an approximation of type 1 to (x0, I0, a, b), and if
there exist measurable extensions of u to I0 such that converges to
u0 in the weak topology of L(Io).
A third definition could also be made of an approximation of type 3 by

changing the word weak in Definition 4.2 to the word strong. It is a trivial
matter to prove that in Kirillova’s case, convergence of the optimal con-
trols in measure to an optimal control for the original problem implies
pointwise convergence of the corresponding optimal traiectories to the
optimal trajectory for the original problem. Hence, Kirillova proved that
any sequence of optimal pairs for the problems P(e), where e -+ 0 as
n -- , is an approximation of type 3 to the optimal pair for P.

5. Theorem 1. The following result involves approximations of type 1.
THEOREM 1. Let P(e), 0 <= <-_ 1, be a family oJ problems satisfying the

assumptions in 3 and such that"
(a) For each(x,t,/) (E"+1 X T X R+) there exists (x,t,/) > 0
such that for all u t, Ix- all + el < implies that f(e,x,u,t)

fo(x, u, t)l <
(b) There exist functions and g mapping E into E such that t L,
g(s) O(s) as s-- , g is bounded on bounded sets and for all (, x, u, t)

[0, 1] X A X l X T, I](, 2, u, t)l <- t(t)g(I 2 I).
(c) For each (, t) A X T, the set fo(2, U(t), t) is convex.
(d) fo is continuous on A 1I T.
Then, if ,, -- 0 and (x(n), I,, a,, bn) is any sequence of admissible trajec-
tories for the corresponding problems P(e,),
(1) there exists a pair (Xo, u0, o, a, b) such that xo is an admissible trajec-
tory for P with control uo,
(2) there exists a subsequence of x(n) that is an approximation of type 1 to Xo
Before proceeding with the proof of Theorem 1, the lemmas and theorems

needed in the proof will be listed.
LEMMA l. Let {U(t, ) [(t, ) [0, 1] X T} be a family of compact sub-

sets ofE such that for each t, U(t, e) U(t) as O and for each , U(t, )
is upper semicontinuous in t. Then this family is uniformly bounded.

Proof. Clearly, all that needs to be proved is that the family U(t, 1)
T} is bounded. But the upper semicontinuity implies that for each
T there exists a (t) > 0 such that <: (t) implies that U(, 1)
U(U(t, 1), 1). Therefore, by the tteine-Borel theorem there exist

Nh,’", t such that T implies tlmt U(t, 1) (.J= (U(t, 1), 1).
Lemmas 2, 3, nd 4 re well-known lemmus and no proofs will be given

for them. Actually Lemma 3 is well-known for the case Y E", but the
extension to the general case where Y is any dense subset of E is trivial.
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IEMMA 2. Hypothesis (b) in Theorem 1 implies that the admissible tra:ec-
tories for the problems P e are uniformly bounded over .
LEMM_ 3. If C is a convex compact subset of E and Y is a dense subset of

E", then Xo C if and only if for all y Y,
rain (y, x) _<_ (y, Xo) <= max (y, x).
xE’ xEC’

LEMMA 4. Let , [a, b] -+ Em, n 1, 2, be a sequence of L1 func-
tions such that , <= for some L1 and , converges in the weal topol-
ogy of LI to o L1. Then for each y E’,

lim sup (y, ) >_- (y, o) >= lim inf (y, ,) a.e.

LEMMA 5. Let U,, n 1, 2,... be a sequence of compact subsets of E
such that
Ca) U $ Uo;
(b) for every > 0 there exists N 5 such that n > N implies

u c U( Uo ).

Let g(e, x, u) be a map from E X E X E into E such that
c) g is continuous in u for each fixed , x)

(d) given (e, x, /) E [0, 1] X E )< R+ there exists S(e, x, ) > 0
such that whenx- x + el < , [g(e,x,u) g(0, x,u) < .

Ten 0 and x xo

g max g( e, x u) --)maxg(0, xo,u) go.
UEUn uEUo

Proof. Set g,* maxe g(0, Xo, u) nnd h(u) g(O, xo, u) go(xo,
u). Clearly, h is uniformly continuous on U. Given , > 0 there exists
ti > 0 such that u, u E U1, and [u u < ti imply [h(u) h(Ul)
< ,/2. Furthermore, there exist u, u*, Uo such that g. g(n, X,, Un),
* * and go h(uo)g h(u ),
Clearly, for all n, g* >= go. By hypothesis (b) there exists N such that

for any n > N such that g* > go there exists u Uo such that

Un Un*
and hence h(un) gn*l < 5’/2. Therefore, for n > N,

g, > go > h(u) > g, -.y/2.

That is, ]g* go < -y/2.
Since x, --+ xo and --+ 0, by hypothesis (d) there exists N such that

for all n > N1 and u U, g(s.,, x, u) h(u) < //2. In particular,
*)g,* g(e.,., x,, u, < /2 and h(u,) g, < /2. Combining
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these statements one obtuins for n > N1,

g, >--_ g(e,,, x,,, Un > gn --//2 > h(u,) -//2 > g, --/.

That is, [g g*l < //2.
Therefore, for all n > max (N, N1), gn go[ < .
COROLAnY 5.1. Given the hypotheses of Lemma 5,

/on rain g(en, xn, u) --+ rain g(0, x0, u) k0.
uEUn uEUo

Proof. Set gn max6v (--g(e, x, u)) and go max,6v0 (-g(0,
x0, u)). Then hn -g and h0 -go. Apply Lemma 5.

Finully, Filippov’s lemma and theorem from Dunford and Schwartz
are needed.
LEMMA 6 (Filippov). Let f be a continuous map of E X E into E’-.

Let the sets U(t) be compact subsets of E that are upper semicontinuous in t.
Le y(t) be a measurable function such that y(t) -(! f(t, U(t)) a.e. Then
there exists a measurable function u(t) U() a.e. such that y(t)
u(t) a.e.

Proof. See [3].
THEOREM: A. A subset K of L I) is we/cly sequentially compact if and only

if it is bounded in the L-norm and the countable additivity of the integrals

fs f s ds is with to all K.uniform respect /

Proof. See [1].

6. Proof of Theorem 1. The methods used in the following proof are
generalizations of methods used by Roxin [8]. The proof consists of con-
structing n absolutely continuous curve x0 on an interval 0 with initial
value a0 Go, and then proving that x0 is admissible for P. It is assumed
without loss of generality that en 0.

Let i 0. By hypothesis there exists N(ti,,) such tha for all

n > N(),

an U(G0, )= Q. But by the Bolzano-Weierstrass theorem there
exists a subsequence of the an, without loss of generality denoted by a,
that converges to a0 Q for M1 m. Hence a0 Go VI Q.
For this subsequence, by hypothesis each in [tn, tn1] T. Hence,

there exist subsequence and an intervM Io [to, t] T such that
I -- I0. It should always be kept in mind that the original sequences do
not necessarily converge in any sense. To simplify the notation throughout
the paper ny sequence considered will be denoted by the original sequence;
but in general, the sequence being considered is a proper subsequence of
the original sequence.
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Extend each of the derivatives of the x(n) to functions defined on all of
I0. That is, define

(e, x(n, t), u(n, t), t) if
t,,),u(n,t,),t) if

[f( en x(n, t. ), u(n, tn ), t) if

t I,,,
[t,1, tl],
[to, t,].

If t __-< and/or t >__ 1, then obvious adjustments should be made in
the preceding definitions.
By hypothesis (b) there exist R, M > 0 such that 12(e) < R for

any trajectory of P(e), and such that on S {121--< R} XI X T,
]](, "2, u, t) <= Mu(t). By the continuity of fo and Lemma 2 there exists
an Me bounding fo on S. Therefore, there exists tq L1 such that for all n,

(6.2) 14)(n, t) <- u(t).

But (6.2) implies that the O(n) satisfy the hypotheses of Theorem A.
Therefore, there exists a subsequcnce of O(n) that converges in the weak
topology of L toO0 L.

Define for

xo(t) ao + 0,

and prove that
(i) x(n, t) -/ xo(t) for each ( I0,
(ii) b, - xo(5) be,
(iii) b0 G(tl), and
(iv) 20(t) G A for all

(i) Let / > 0 be given and [0. Then there exists N(t) such that,
for alln > N(t), In. Hence,

Ix(n, t) xo(t) f(n, x(n), u(n), s) + a, ao i 0

Therefore, using (6.1), (6.2), and hypothesis (b), one obtains

[x(, t) Xo(t) -<- +ia-aol+

Now using the weak convergence of O(n) to 0, the absolute continuity
of the integral of an L function, and the fact that am --+ a0, one obtains
that there exists an N*(t) > N(t) such that for all n > N* (t),

(6.4) Ix(n, t) xo(t) < 3’.

But - is arbitrary, so (i) is proved. The proof of (ii) is similar to the proof
of (i). The only difference is that an extr term must be added on the right-
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tnl
hand side of (6.3), namely, 1 The terms involving 1 are valid

because (6.2) can be generalized to f(e,
u,t) [o, 1] x {1 1 <_- R} X T.

(iii) By the upper semicontinuity of the sets Gl(e, t) at (0, tl) and the
facts that e 0 and t -+ tl, given tim $ 0 there exists N(m) such that
for n > N(tim),

(6.5) b,, E Gl(en, In) (Z. U(GI(I), 6m) Or.
But Qm is closed and b,-- b0, so bo Ga(t) I"l= Q. The proof of
(iv) is trivial. Statement (i) and the facts that (n, t)
nd that A is closed immediately imply (iv).

Finally, it must be proved that there is a measurable function uo(t)
U(t) a.e. such that (t) fo(xo(t), no(t), t) a.e. Since 0(t) 0(t)

a.e, it will first be proved that 0(t) fo(xo(t), U(t), t) a.e. Then hypothe-
sis (d) and Lemma 6 finish the proof.
By Lemma 4 and the definition of the functions (n), for each y En+l,

lira sup (y, f(e, x(n), u(n), t) >= (y, 4)0)

>__ lira inf (y, f( e, x(n), u(n), t) a.e.

But this implies that for each y

lira sup max (y, f( e, x(n), u, t) )) >- (y, 4o)
(6.6) uEu(t,e)

>= lira inf min (y, f(e,, x (n), u, t) a.e.
uEU(t,)

For each t, the functions f(e, x, u, t) and the sets U(t, ,) satisfy the
hypotheses of Lemma 5. Therefore, since e--0 and x(n, t)---> xo(t),
(6.6), Lemma 5, and Corollary 5.1 imply that for each y,

max (y, fo(xo(t), u, t) >= (y, 0(t))
(6.7)

>= rain (y, fo(xo(t), u, t) a.e.
uU(t)

Let Y be the set of all vectors in En+l with rational coordinates. Clearly,
Y is dense and countable. Let T’ Io Qo, where Q0 is the union of the
sets of measure zero, Q(y), on which the inequality statement in (6.7) is

Tfalse. Clearly, T’ has full measure on T, and on the inequalities in (6.7)
are valid for all y Y. By hypothesis (d) and the compactness of each
U(t), Lemma 3 is applicable to each of the sets f0(x, U(t), t). herefore,
bo(t) fo(xo(t), U(t), t) a.e. Finally, Lemma 6 implies that there exists
a measurable uo(t) U(t) a.e. such that 0(t) fo(xo(t), u0(t), t) a.e.



Ax80 JANE CULLUM

Remarlc 1. As stated earlier, the methods used in proving Theorem 1 are
generalizations of methods used by Roxin [8]. However, there is a subtle
mistake in Roxin’s proof. He assumed the existence of a set T’ of full
measure on which the inequality statement in (6.7) holds for all y
However, the proof that he gave verified only that for each y
such a set exists. Roxin’s proof can be corrected by the insertion of the
steps after (6.7) in the proof of Theorem 1.
COIOLAY 1.1. In Theorem 1 replace hypotheses (a) and (b) by:

(a’) f(e) converges uniformly to fo on compact subsets of A X t X T;
.(b’) the trajectories of the problems P(e) are uniformly bounded over
Then the conclusions of Theorem 1 follow.

Proof. The uniform boundedness of the trajectories implies that the
discussion can be confined to a compact set. In this compact set, hypotheses
(a’) and (b’), Lemma 1, and the continuity of f0 imply that hypothesis
(b) of.Theorem 1 holds. Furthermore, hypothesis (a’) and the continuity
of f0 imply that hypothesis (a) holds.
COOLSAIY 1.2. In Theorem 1 omit hypothesis (d) and assume that the

control sets do not vary with t. Then the conclusions of Theorem 1 hold.
Proof. The proof is the same as the proof of Theorem 1 up to the con-

struction of the control for x0. Since the control set is not a function of t,
the construction used by Roxin is applicable.

7. Theorem 2. In Theorem 1, the perturbed equations considered are
not required to have the same form as the original equations. Now con-
sider the case where the original equations are linear in the control, u and
where it is required that the pertm’bed eqmtions also be linear in u.
TIEOEM 2. Let P(e), 0 <- =< 1, be a family of problems satisfying the

assunptions in 3 and such that"
(a) f(e) g(e, , t) -- H(e, , t)u.
b A each point (0, , g e, 2, t) and H e, , t) are continuous in e,
(c) l’here exist functions and k i 1, 2, mapping E into E such that
t L1, k(s) O(s) as s ---> , tci is bounded on bounded sets and for all
(e, , t) in [0, 1] )< A X T, ]g(e, , t) <- (t)tc(I 2 I) and lH( e, , t)]
_-< .(t)(l 1).
(d) go and He are continuous on A ?( T.
Assume each set U(t, e) is convex, and for each e there exists a measurable
function u(e) defined on T such that u(l, e) U(t, e) a.e. Then if e, -- 0
and x n u n i, a, b, is any sequence qf admissible pairs for the
corresponding problems P(e),
(1) there exists a pair (Xo, Uo, io, a, b) such that Xo is an admissible trajec-
tory for P wilh control uo
(2) there exists a subsequence of (x(n), u(n) that is an approximation of
type 2 to Xo Uo
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Before proceeding with the proof of Theorem 2, the lemmas and theo-
rems needed in the proof will be listed.
THEOREM B. A convex subset of L2(I) is closed in the norm topology on L2(I)

if and only if it is closed in the weals topology on L2(I).
Proof. See [1].
LEMMA 7. Let S(e), 0 <= e <= 1, be the set o] all measurable functions u de-

fined on I such that u(t) U(t, e) a.e., where the sets U(t, e) are convex and
satisfy the conditions in 3. Then for each e, the set S(e) is closed in the weat
topology on L2(I); and if , O, u e,, S e, for all n, and u e. con-
verges in the weal topology to a function uo, then Uo So S(O).

Proof. Lemma 1 and the convexity of each set U(t, ) imply that each
set S(e) is a convex subset of L.(I). Fix e, let u S(e), n 1, 2,
such that u converges to u* in the strong topology. But strong conver-
gence implies that there exists a subsequence, without loss of generality
denoted by n, that converges pointwise to u* a.e. [7]. Therefore, there
exists a set T’ of full measure such that for all T’, u(t) U(t, e) and
u,(t) converges to u*(t). But U(t, e) is closed. Hence, for all t T’,,
u (t) U(t, e). Therefore, S(e) is strongly closed and, hence, by Theo-
rem B is weakly closed.

Let e J 0, U(en) S(e), and u(e) converge weakly to u0. Since
U(t, e,.) $ U(t) and So f:= S(e), S(e) So. This follows easily
from the fact that a monotone decreasing sequence of sets converges to
its common intersection. Let u S(en) for all n. Then there exists a set

Tof full measure on which u(t) U(t, ,) for all n. Hence, u[t) U(t)
a.e.; so, u So. Therefore, for each N, u(e.) S(e) for all n > N.
But, S(e) is weakly closed, so u0 S(e). Hence, u0 S0.
THEOREM (. A subset K of L([) is wealcly sequentially compact if and only

if it is bounded in the L-norm.
Proof. See [1].

8. Proof of Theorem 2. It is easy to verify that the hypotheses of The-
orem 1 ure satisfied by functions sutisfying the hypotheses of Theorem 2.
Therefore, by Theorem 1 there exists un admissible pair for P, (x0, u0,

0, a, b), nd subsequence of x(n) that is un pproximation of type 1
to x0. For this subsequence (denoted by n) consider the corresponding
controls u(n). Extend each of these controls to measurable functions
(n) defined on I0 by setting

u(,n, t) if(8.1) a(n,t) u (e,t) if I0--I,

and considering "a(n) on I0. Then g(n) S(e,) with I I0. By Lcmma
1 and Theorem C, there exists a subsequence of (n) (denoted by n) and a
function u0* L(Io) such that t(n) converges weakly to u0*. By Lemma
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7, Uo* So. Hence, u0 is an admissible control for P. Here, it has been
assumed, without loss of generality, that e $ 0.
The control uo* generates Xo. Define for I0,

(8.2) Xo*(t) (go(xo(s), s) -t- Ho(xo(s), S)Uo*) ds + a.

Prove that for each Io, x(n, t)--+ Xo*(t); then Xo*(t) xo(t) since
the limit function is unique. Extend g(e, x(n, t), t) and H(e, x(n, t), t)
to Io asf(e,) was extended in (6.1).
For each Io, by hypotheses (b) and (c) and the fac that x(n, t)- xo(t),

(8.3)
((en x(n, t), t) ---) go(xo(t), t) and

I(e,, x(n, t), t) ---+ Ho(xo(t), t),

where the convergence is pointwise and dominated. The bars denote the
extensions of functions g(e, x(n, t), t) and H(e,,, x(n, t), t) to I0. Let- > 0 be given; then by the Lebesgue dominated convergence theorem,
there exists N(t) such that for all n > N(t),

f’ {0( x(u) s) -eo(Xo )}[ <

By hypothesis (c), there exist R, M > 1 such that l(e) < R and
k(I a(e)!) < 11I, i 1, 2, for all trajectories of P(e), 0 -<- -<_ 1, mid
there exists t,0 L1 such that If(e, , u, t) =< go(t) for all (e, , u, t)

[0,1] X [11< R] X T. Let Q max (1, sup.elul). Since
the u, i 0, 2, are absolutely continuous, there exists i > 0 such that
fori 0,2, ifmeas(E) < ,

t* < 16MQ"

By Egoroff’s theorem [7], there exists a set Eo c Io such that the measure
of its complement Eo’ is less than ti, and/7(e, x(n, t), t) converges uni-
formly to Ho(xo(t), t) on Eo. Hence, there exists N1 such that for all
n > N1 and all Eo,

[I(e,, x(n, t), t) Ho(xo(t), t) < 8Q meas (E0)"

So forn > Nx,

ftt [/(e, x(n), s) Ho(xo, s) [a(n)
(8.5)

4Q meas (Eo) o’
2t,2 QM < 3y/8.
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Since Ho(xo(t), t) is continuous and %(n) converges weakly to u0*, there
exists N2(t) such that for all n > N(t),

(8.6) Ho(xo, s) ((t(n) no*) < Z
4"

Moreover, there exists Na(t) such that for all n > N3(t), I and there
exists N4 such that for all n > N4, It0 tnl <: and an a < 3,/16.
]?or n > N(t),

l(n, t) x0*(t)

a, a + [ {g(e,x(n), s) + H(e,, x(n), s)u(n)}(8.7)

{g0(x0, s) + Ho(xo, s)u0*}

Therefore, from (8.4), (8.5), (8.6), (8.7) and the fact that if mes (E)

< (, then [ o < 3,/16MQ; for n > max {N(t), N, N:(t), N.(t), N4},

.(, ) xo*(t) <-- (0(. x(), ) .qo (xo,

+ (.Ho(xo, s) ((n) Uo*))

- #0 -ian- a] < 3,.

But 3, is arbitrary, so Xo*(t) Xo(t) on [to, t]. Furthermore, from the con-
tinuity, xo* t xo( t ). Therefore, no* generates x0.

COROLLARY 2.1. In Theorem 2 replace hypotheses (b) and (c) by:
(b’) g(e) and H(e) converge uniformly to go and Ho on compact subsets of
AT.
(c’) The trajectories of the problems P(e) are uniformly bounded over .
Then the conclusions of Theorem 2 follow.

Proof. Clearly, (b’) and hypothesis (d) of Theorem 2 imply hypothesis
(b), and (b’) with (c’) and hypothesis (d) implies hypothesis (c).

9. Optimality and Theorems 1 and 2. The following theorem demon-
strates a relationship between optimal solutions of P(e) and P under cer-
tain conditions.
THEOREM 3. Let P(e), 0 -<_ -<_ 1, be a family of problems satisfying the

hypotheses of Theorem 1 (Theorem 2). Let C* be the optimal cost for P. Let
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0 and let (x(n), u(n) be a sequence of admissible pairs for the corre-
sponding problems P(.) such that C(x (n) - C*. Then
(1) there exists a subsequence of these pairs that is an approximation of type
1 (type 2) to an optimal pair for P;
(2) if optimal pairs exist for each P(,), then any sequence of optimal pairs
(x,(n), u,(n) such that x, (n) is an optimal trajectory for P e, contains a
subsequence that is an approximation of type 1 (type 2) to an optimal pair
for P.

Proof. (1) By Theorem 1 (Theorem 2), there exist an admissible pair
for P, (z0, u0), and a subsequenee of (z(n), u(n)) (denoted by n) that
is an approximation of type 1 (type 2) to (z0, u0). Clearly, x0 is optimal
since C(x(n)) x(n, t,) - x,(h) C*.

(2) Given a sequence of optimal pairs (x,(n), u,(n)) for P(e), then
by Theorem 1 (Theorem 2) there exist, an admissible pair for P, (x,,
u,), and a subsequenee that is an approximation of type 1 (type 2) to
(x,, u,). But, x, is optimal because

C(x,) x,(h) lira z(n, t*) lim C(x,tn)) lim C(x(n)) C*.

Remark, 1. It is clear that Theorem 3 includes the existence theorems of
Roxin [8], Filippov [3], and Lee and Markus [6]. It is also clear that in.
Theorem 3, the hypotheses of Theorem 1. (Theorem 2) could be replaced
by the hypotheses of Corollary 1.1 or 1.2 (Corollary 2.1).

10. Penalty functions. The penalty function method is an attempt to
express a problem in which the phase space constraint set is closed as the
li:mit in some sense of a sequence of problems in which the phase space
constraint set is open. In general, problems in which the phase space con-
straint set is open are easier to solve than those in which this set is closed.

Let P P(f0, Go, G.(t), U(t), T, A) be a problem in which A is a
closed set, and let p, /c 1, 2, be a sequence of penalty functions
of the first kind [9] defined on an open set B D A. Consider the sequence
of problems P(k, B) obtained from P(A) by replacing A by B and the cost
equation 2 j0 by 2 f0 + p. It is usually assumed that if x(lc) is
any sequence of optimal trajectories for the problems P(/c, B) then these
trajectories converge to an optimal trajectory for P(A) as k- . This
assumption is invalid in general. Russell. [9] has prored that under certain
conditions if f0 satisfies the hypotheses of Lee and Markus [6], and it is
easy to extend this result to the case where f0 satisfies the hypotheses of
Roxin [8] if the function t L, there exists a subsequenee of any such
sequence of optimal trajectories that converges to an optimal trajectory
for P(A). Now perturb each of the problems P(/c, B) and consider the
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family of problems P(e, lc, B), 0 -< e -< 1, lc 1, 2,..., obtained. For
such problems, the following theorem holds. In this theorem, the set B
is any open set containing A on which the functions f(e) satisfy the hy-
potheses of Theorem 1 or 2, and the pk are penalty functions of the first
kind.
THEOREM 4. Let P(e, A) be a family of problems satisfying the hypotheses

of Theorem 1 (Theorem 2). Let C* be the optimal cost for P(A ). Let lc, ---->

and e 0 as n-- . If (x(n), u(n) is a sequence of admissible pairs
for the corresponding problems P( e, tc, B) such that Ck, x(n C*, then
(1) there exists a subsequence oJ (x(n), u(n)) that is an approximation of
type 1 (type 2) lo an optimal pair for P(A)
(2) if optimal pairs exist for P(e,, tc,, B), then any such sequence of op-
timal pairs contains a subsequence that is an approximation of type 1 (type
2) to an optimal pair for P(A). (Ctn(x(n)) denotes the cost of x(n) con-
sidered as a trajectory for P(e,, tc, B).)
The following lemma is needed in the proof of Theorem 4.
LEMMA 8. Let P(e) be a family of problems that satisfies the hypotheses of

Theorem 1 (Theorem 2). Then the convergence in (6.4) is locally uniform;
that is, given Io, there exists an interval Io such that and the
convergence of x(n to Xo is uniform on i.

Proof. This proof should be studied in coniunction with the proof of

Theorem 1. For t I0, set h(n, t) ((n) --0). Let I0 be

fixed. Then there exists ] c I0 such that I. Each h(n) is continuous
on ], so there exists t,

_
such that M(n) [h(n, t) maxte7 h(n,

t) 1. By h.ypothesis (b) in Theorem 1, there exists Q such that M(n) < Q
for all n. Therefore, by the Bolzano-Weierstrass theorem there exist a sub-
sequence of the M(n) (denoted by n), an M0, and t*

_
such that

M(n) -- Mo and t -- t*. If M0 > 0, then there exists N such that for all
n > N, M(n) > Mo/2; and since the h(n) are equicontinuous at t*,
there exists > 0 such that It t*] < implies that for all n, [h(n, t)
-bin, t*)l< M0/10. But, there exists N such that for all n > N,
t t*[ < 7. Furthermore, from the weak convergence there exists N.

such that for all n > N, [h(n, t*)l < M0/10. Therefore, for all
n > max {N, N, N.}, one obtains the following contradiction-

Me/2 < M(n) h(n, t.)l h(n, t*)l+ M0/10 < Mo/5.
Hence, the sequence M(n) has one limit point, namely, 0. So M(n) --> O.

Therefore, given > 0, the absolute continuity of J v and the facts

that M(n)--> 0, that t-- to, and that eventually I imply tha
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there exists No such that for all n > No and all I,

Ix(n, t) x(t) f(n) 0 " an a

11. Proof of Theorem 4. Since P(e, t, B) differs from P(e, B) only in the
differential equation for the cost, and the cost function is not involved in
f( e, x, u, t), there exists R > 0 such that all trajectories 2.(e) for P(e, k, B)
are contained in the sphere {! 21 < R}. Let B1 / l {I 21 <- R} and
A1 A l{ll _<_ R}.

(1) For each n, the trajectory (n) is admissible for P(e,, B1). Since
B1 is a closed set, Theorem 1 (Theorem 2) is applicable and implies that
there exists a subsequence (denoted by n) that is an approximation of
type 1 (type 2) to an admissible pair (o, u0) for P(0, B). Two things
must be proved: o(t) A for all ]0, and C0(0) C*.

Clearly, 20(to) A and o(ti) A. Suppose there exists [ Io such
that 2o() ([ A. Then by the continuity of 2o and the definition of B, there
exist compact sets D and D with nonempty interiors (in E") such that
D int D B A, and there exists a closed interval I Io such
that [ I and 2o(t) D for all . By Lemma 8, 2(n) converges uni-
formly to 20 on I. Therefore, there exists N such that for all n > N and
all , 2(n, t) D. By Lemmas 1 and 2 and the continuity of fo,
there exists Q such that ]fo(2(n, t), u(n, t), t) <= Q for all n. Combining
the above remarks and the definitions of penalty functions of the first
kind, one obtains

(11.1) C(n) Ck(2(n) >-_ f pkn(2(n) ) Q,

(11.2) lim (min p1: (2)) z7 .
k-o D

Hence, one obtains the contradiction

(11.3) C* lim C(n) >- m(I)[lim min p(2(n))] + .
n-o0 n--> D

Therefore, 20 A and is admissible for P(0, A). So, C0(20) >- C*. But,

Co(20) lira Co(2(n)) <= lim C(n) C*.

(2) Let (x.(n), u,(n)) be a sequence of optimal pairs corresponding
to the problems P(e, kn, B). Then as in (1), there exists a subsequencc
that is an approximation of type 1 (type 2) to an admissible pair (x0,
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U0) for P(0, B1). But,

C0(0) lim Co(.(n) ) <= lim sup Ck,(.(n) <= lim C(n) C*.

Therefore, lim supn C.(.(n)) <- C*. But with this result, it is clear that
the remainder of the proof of (2) is identical to the proof of (1).

12. Remarks. With controllability hypotheses on each of the P(e), it can
be proved that the optimal costs for the P(e) converge to the optimal cost
for P as e -- 0. In fact, if the function t in hypothesis (b) of Theorem 1 is
an L function, then the optimal costs for the P(e,/c, B) converge to the
optimal cost for P(A) as e -- 0 and/ -- for any open set B containing
A and any sequence of penalty functions of the first kind. These results are
derived in [10].
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A MAXIMUM tRINCIILE FOR OPTIMAL CONTROL PROBLEMS IN
WHICH THE PHASE SPACE CONSTRAINT SET IS

CLOSED*

JANE CULLUM
1. Introduction. Let E denote n-dimensional Euclidean space, and T be

a fixed interval in E1. Consider the following problem P. Move from Go along
an absolutely continuous curve (2, I) such that2(t) A on I and
(tl) 6 G1 nd for which there exists a bounded and measurable function
u on I such that u(t) U a.e. and (t) ](2(t), u(t), t) a.e. nd such
that the integral, the cost of 2,

C(2) f f(2(t), u(t), t) dt

is minimized. I [to, 6] is an interval contained in T.
If the phase space constraint set A is open, if the control set U is closed,

and if the function f (]0, ]) is continuous in (2, u, t) and continuously
differentiable in 2 and in t, then an optimal pair, an optimal trajectory with
its control, if such a pair exists for P, must satisfy Pontryagin’s mximum
principle [8]. However, if the phase space constraint set is closed, this prin-
ciple is not applicable.

Several people (Gamkrelidze [8], Berkovitz [2], and Warga [12]) have
obtained extensions of this principle to problems in which A is closed.
Berkovitz obtained essentially the same result s Gamkrelidze. Gmkre-
lidze required the controls to be piecewise continuous, nd the control set
to be "regular" nd considered a "regular" optimal trajectory lying on the
boundary of A. This result of Gamkrelidze, Pontryagin’s maximum prin-
ciple, and the iump conditions derived by Gamkrelidze yield n overall
principle that applies to any optimal traiectory that can be split into sec-
tions on the boundary of A and sections in the interior of A. Warga [10],
[11], [12] derived a principle that applies to all of an optimal trajectory
without splitting the trajectory into sections on the boundary of A and
sections in the interior of A. The main problem with Warg’s result is that
it requires the sets f(x, U, t) to be convex for each (x, t).
The object of this pper is to extend Gamkrelidze’s result concerning

* Received by the editors February 4, 1966, nd in revised form Mrch 25, 1966.
Deprtment of Mathematics, University of Cliforniu, Berkeley, Cliforniu.
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University of Cliforni, Berkeley.
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sections of an optimal trajectory on the boundary of A. It will be proved
that if in a neighborhood of such a traieetory the boundary of A is the C2-
diffeomorphie image of an open set in En-l, then the corresponding optimal
pair satisfies a modified version of Pontryagin’s maximum principle. The
restrictions made by Gamkrelidze that the optimal trajectory considered
be "regular" and that the controls be piecewise continuous are removed,
and the condition that the control sets be "regular" is relaxed. It is proved
than any "regular" problem considered by Gamkrelidze with optimal
trajectory on the boundary of A, and for which the required C2-diffeo
morphic map exists, is included in the problems considered in this paper.
An extension of the iump conditions obtained by Gamkrelidze for "regu-
lar" problems to the general problem considered in this paper is not ob-
ta.ined in this paper. Consequently, in general, the results obtained are not
constructive.

2. Statement of problem. The problem to be considered was stated in the
Introduction, and will be denoted by P P(f, Go, G, U, T, A). Clearly,
P can be reformulated as a problem in En+l with x (x, 2) and 2 f0.
The augmented problem will also be denoted by P. A pair for P, namely, an
absolutely continuous curve and its control that satisfy the differential
system and control requirements associated with P but not necessarily the
boundary conditions, will be denoted by (x, u, I, a, b), where I is the in-
terval of definition of x and u; and a and b are, respectively, the initial and
terminal values of x.
The global assumptions on P are:

(2.1) The function f (f0, f) is continuously differentiable in 2, u, and t.
(2.2) The phase space constraint set A is a closed subset of E with non-
empty interior.
(2.3) The initial and terminal sets G0 and G1 are closed and contained in A.
(2.4) The control set U is a closed subset of Er.
(2.5) Let OA denote the boundary of A. There exists an optimal solution
(x0, u0, I0) for P such that for all Io, 2o(t) OA, and there exists
C function g such that in neighborhood of this trajectory OA

{lg() 0} and gradg() O.

3. Theorem 1. This theorem states essentially theft if the boundary of
the constraint surface can be parameterized in a particular way in a

neighborhood of the optimal trajectory given in (2.5), the corresponding
optimal ptir must satisfy a local maximum principle, local in the sense that
the maximization is made over a subset of the control set.
THEOREM 1. Let P P(f, o, , U, T, A) be a problem for which the

assumptions in 2 are satisfied and for which f is not a function of t. Let
(Xo, Uo, Io) be the optimal pair given in (2.5). Let N* E be an open
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neighborhood of (20, Io) contained in the neighborhood given in (2.5),
c E’-1 an open set, and ffI a C-diffeomorphism mapping onto fif
N* f OA. Let J be the inverse of . Furthermore, let W E be a com-

pact set and B be a map from X W into U such that
a) B is continuous on X W, and continuously differentiable in on )< W,
(b) for each 2 fi, {u U [(](, u), gradg()) 0} B(J(2), W),
(c) uo(t) B(J(2o(t)), W) a.e. on Io.
Then there exists a nontrivial, absolutely continuous (n 1)-dimensional

vector function o on Io such that

(1) = IOf(x Of OB 1’-z- + K oOu Os

a. e., where

and the matrices are evaluated along the optimal pair (Xo, uo),

(2) 0(t) const.-< 0,

(3)
(Po(t), f(2o( t), uo[t) ))

max (o(t), f(2o(t), B(J(2o(t)), w))) 0 a.e.
wEW

Before proceeding with the proof of Theorem 1, several lemmas will be
proved.
LEMMA 1. Let OA {x g(x) 0} where g is a C function and grad g(x)

# 0 for x OA. An absolutely continuous curve (x, I) belongs to OA if and
only if x(to) OA and (2, grad g(x) 0 a.e. on I [to, tl].

Proof. Let x(t) OA on I, then h(t) g(x(t)) =- O. Therefore, by the
absolute continuity of x and the chain rule, h (2, grad g(x)) 0 a.e.
Conversely, let x(to) OA, and (2, grad g(x)) 0 a.e. The function
h(t) g(x(t)) is absolutely continuous [7]. Therefore, by the chain rule,
h (2, grad g(x)) 0 a.e. Hence, h(t) O, since an absolutely con-
tinuous function with zero derivative me. is a constant function.
LEMMA 2 (Filippov). Let f be a continuous map from E >( E into E’+.

Let the sets U(t) be compact for each and upper semicontinuous with respect
to inclusion in (see [3]) on I. Let y be a measurable function such that
y(t) f(t, U(t) a.e. on I. Then there exists a measurable function u such
that u(t) U( t) a.e. and y( t) f(t, u(t) a.e. on I.

Proof. See [3].
LEMM. 3. If H is a C-diffeomorphism mapping an open set S E onto
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a set X En+l, then

(H_I),(H(s)) OH
=_ In,

OS

where In is the n X n identity matrix and H- H s is the first derivative
of H-1 evaluated at H s).

Proof. For all s S, s H-(H(s)). Therefore, by the generalized chain
lale [9], In (H-1)’(H(s))’H’(s). But, since H C1, H’(s) OH/Os.

4. Proof of Theorem 1. It is clear that/ can be extended to a C-dif-
feomorphism H mapping the cylinder S (s-axis) X onto the cylinder
N (x-axis) X by mapping s onto x. Let K(s) (H-)’(H(s)),
0 J(20), J(2x), and h(s, w) K(s)f((), B(, w)). Consider
the following problem P(s). Move from (0, 0) to the line through (0, x)
parallel to the s-axis along an absolutely continuous curve (s, I) for which
there exists a measurable function w on I such that w(t) W a.e. and

(4.1) (t) h(s(t), w(t)) a.e. on/ and s(t) S on/,

and such that the zeroth component of s at the terminal time is minimized.
I [to, h] is an interval contained in T.

For each pair (s, w, I) for P(s) satisfying (4.1), there exists a corre-
sponding pair (x, u, I) for P; x satisfies the boundary conditions for P if
and only if s satisfies the boundary conditions for P(s). Let (sx, wx, Ix) be
any such pair for P(s). Set xx(t) H(s(t)) and u(t) B(x(t), wx(t)).
Then 2(t) OA, and for a.e. Ix, 2x(t) exists and

(4.2) 2(t) OII (s(t) )K(s(t) )f(2(t) u(t) f(2,x(t) u(t) ).
OS

Statement (4.2) is valid because, by construction, for a.e. I there
exists c(t) E such that

and by Lemma 3,

OH (s(t) )c(t)f(21(t), u(t) -K(s) OH (s)

for all s S.
Set so(t) H-(xo(t)); then so is an optimal traiectory for P(s). Itis

clear that s0(t) S and satisfies the boundary conditions. Moreover, since
o(t) B(o(t), W) a.e., by Lemma 2 there exists a measurable function
w0 such that wo(t) W a.e. and uo(t) B(0(t), wo(t) a.e. Therefore,
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there exists a set I’ of full measure in I0 such that for each I’, 0(t)
exists and d0(t) h(so(t), we(t)), so So is admissible for P(s). Suppose
there exists an admissible trajectory (sl, I1) for P(s) such that C(st)
< C(s0). But, then there exists (x, I) admissible for P such that C(xl)

C(sl) < C(so) C(xo). Hence, So is optimal for P(s).
Clearly, h is continuous on S X W and continuously differentiable in

s on S W. Since S is open, the constructions used and the results ob-
rained by Pontryagin are applicable to P(s). Familiarity with these con-
structions is assumed. The variational equations for P(s) are

Oh
(so(t), wo(t) )s.

Let A(t, ) denote the fundamental solution of this system on the in-
terval [r, t]. If r is a regular point of w0, convex cone C(so(r)) can be
generated at s0(r), consisting of the vectors As emanating fl’om s0(r) such
that

As h(so(r), Wo(r) )t
(4.3)

+ A(r, )[h(so(r), w) h(so(r), Wo(r)) }t,
i=l

where the w are rbitrry elements of W and r is regular point of We nd

For each perturbed trajectory s* for P(s), there exists a corresponding
perturbed trajectory x* H(s*) for P and Ax* (OH/Os)As*. Hence, a

corresponding cone C(xo(r)) is generated at x0(r) H(s0(r) consisting
of the vectors Ax emanating from x0(r),

Ax f(xo(r), Uo(T) )t

(4.4) ’ ou (so())A(, ,:)[h(so() #) h(so() o())]t.+.=
The variational equations for P are

of x + of u.

But, each perturbed trnjectory for P is the image under H of u perturbed
pair (s*, w0) obtained from (s0, w0) by u change in the initial condition
but not in the control. Therefore, the control for x* is u*(t)

B(*(t), we(t)). Hence,

OB
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and the variational equations for these special trajectories are

IOf Of OB KI x,(.5) + 0-; 0-7
where the matrices involved are evaluated along the optimal pair.

Furthermore, since x (OH/Os)s and 2 (OH/Os),

OH (so(t) )A(t, to)K(so(to) )Xo D(t, to)Xox(t)

The (n q- 1) ;x: (n + 1) matlix D(t, to) is not a fundamental solution of
system (4.5). This is clear since the rank of D can be at most n. However,
it is a proper transition matrix for the transfer of vectors in the tangent
plane to OA along the optimal traiectory, because any such vector has the
form (0H/0s)c for some c E, and the c can be thought of as a is0. Hence,
(4.4) can be rewritten as

zx, f(xo(,-), uo(,-) )t
(4.6)

+ D(r, ri){/(20(ri), u) --/(20(r), u0(r))}t,

where u B(&(r), wi).
Following Pontryagin [8, p. 106], the limiting cone C8" at So(h) can be

defined. Corresponding to C8" is the cone

C* OH (So(h)
Os

with vertex at x0(h). Pontryagin proved that there exists an n-dimensional
vector 8 0 such that and C8" are separated. That is, there exists
a E such that for all y C8", (a, y) =< 0 and (a, 8) >_- 0. Define 0 to
be the solution of the system

Of OB 1"(4.7) = -}7-q-K ,
Ou Os

such that (h)= Kr(so(h)),. The matrices in (4.7) are evaluated
along (x0, u0). The projection y of the vector (h) on the tangent plane
to E X A at Xo(h) is not zero. For, suppose y 0; then

and so

b(tl) # grad g (x0 (tl) ),

(So(h)) grad g(xo(t,) ),

where grad g(x) denotes the (n + 1)-dimensional vector (0, grad g(2)).
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Hence, for all a E,
OH (so(tl))a) O.(4.8) (G, a) grad g(xo(6)),

But, (4.8) implies G 0; hence, y 0.
Clearly, 0(t) b(t) const. -< 0, (0(6), zXx) =< 0, and

(bo(6), f(o(6), Uo(6) (P.(6), h(so(6), Wo(6) O.

Consequently, the remainder of this proof is identical to the remainder of
the proof given by Pontryagin except that, since the set W is compact,
there is no need to introduce an intermediary function. That is, define

M(t) max (Po(t), f(o(t), B(o(t), w))),
wW

prove that M is absolutely continuous and 2t 0 a.e. Finally, prove that
M(t) (0(t), f(2o(t), uo(t))) a.t regular points of w0.

5. Transversality conditions. Consider a problem P P(f, Go, G, U, T,
A). For the case where A is an open set, Pontryagin has proved that not
only does there exist a nonzero function but that in fact this function can
be chosen such that (ti) is orthogonal to Gi at 20(t), i 0, 1. The follow-
ing theorem is an extension of this result to the case considered in 4.
THEOREM 2. Let P P(f, Go, GI, U, T, A) be a problem that satisfies

the hypotheses of Theorem 1. Let M, i O, 1, be CCmaps, mapping sets
Ci E’ onto the sets 29 f G. Then the function whose existence was
established in Theorem 1 can be chosen such that (t) is orthogonal to Gi
at 2 20(t), i 0, 1.

Proof. The proof consists in checking the constructions of Pontrygin
[8, pp. 108-114] to ascertain that applicability in the s-space implies appli-
cability in the x-spce.

Consider the problem P(s) with 0 nd & replaced by the smooth mani-
folds J(M(Ci)), i 0, 1. Pontryagin’s results are applicable to
P(s). Therefore, there exists a vector . 0 such that the corresponding
G(t) is orthogonal to at , 0(t), i 0, 1. By the proof of Theorem 1,
0(6) may be chosen to be Kr(so(6))/8. Set 0(6) J’(2)
The tangent plane I’ to S at is equal to

{ J’ (x,)M’(a)c q- c

where a is chosen such that Mi(ai) 2, i 0, 1; and the tangent plane
T to 91 G at 2 is equal to

{1 M ()c + ,, c E}.

Therefore, for every vector y ff T1,
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(5.1) (o(tl), y) (o(tl), M’ (al)c) (,(h), J’ (x)M’ (a)c) O.

Hence, o is orthogonl to G J st 21.
Furthermore, define To= {sis (0, S), To}

x (0, 2), 2 To} and consider the convex cones,
and To /xl

(5.2)
C8"* convex hull of (A (tl, to) To [J C8"),
C** convex hull of (D (to, t) To [J C*).

Clearly,

C** OH (so(t1)) **
Os

By Pontryagin’s construction, the is chosen such that for all s 6 C8"*,
(s, ) -<_ 0. In particular, the plane A (t, to)To must be contained in a
plane purallel to the separating plane. Therefore, for all z A (tl, to)To*,
(z, ,) 0. Therefore, for all y To*,

(D(tl, to) --OH (so(to))y, bo(tl)) 0.

But, this inner product is constant since the functions involved are solu-
tions of coniugate equations. Therefore, at to,

0(_ (so(to) )y, ,o(to)) =0.

But, for each y To there exists c Em such that

y (0, J’(2o)Mo’(ao)C).
Therefore, for ull c E",

(OH (so)y, o(to))0=

(5.3)

\08
(2o)Mo’(ao)C, Co(to) (Mo’(ao)C, Co(to)).

Hence, Co(to) is orthogonal to Go [’1 at 20.
COROLlArY 2.1. Consider a fixed time problem P P(f, o, A, U, T, A)

that satisfies the hypotheses of Theorem 1 with the exception that f may not be
autonomous. Then the conclusions of Theorem 2 hold with the exception that M
need not be the zero function; and in fact, bo(t) may be chosen to be the vector
(-, 0, 0).

Proof. Pontryagin [8, p. 66] demonstrated that P may be transformed
into a problem P* of the type considered in Theorem 2 by enlarging the
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differential system to f and n.1 1 with x"+(to) to and replacing
G1 and A by G1 X {t} and A X {t}, respectively. By Theorem 2, there
exists an (n + 2)-dimensional vector * (0, , /1) 0 such that
(1) (*, Ax*) <= 0 for all Ax* C**,
(2) (, b+1) is orthogonal to A X {t} at the point (:#0(tt), tt), and
(3) the projection of if* on the tangent plane to E X A E at (x0(tl),
t) is not zero. Condition (2) implies that (, ff+l) ( grad g(0(tx) ), a).
Condition (3) implies that (0, 0, a) 0. Consequently, fro and a cannot
both vanish. If po 0, then a 0. But, then

(*, f*(:#0(t.), uo(t) (b, :o) + a 0

implies that a 0; this is a contradiction. Therefore, in any case, b
does not vanish and can be taken to be -1. Furthermore, by Theorem 1,

0 M* mx (*(t), *f (xo(t), B(o(t), w)))
(5.)

(h*(t), f*(:#o(t), uo(t))) a.e.

Clearly, (5.4) implies that for (, ),

i max ((t), f(:#o(t), B(&(t), w)))
(5.)

((t), f(:#o(t), no(t))) a.e.

Hence, 0(tl) can be chosen to be any vector of the form
(-1, t grad g(:#0(tl))), where t is arbitrary. In particular, the vector

1, 0, 0) can be chosen.

6. Extensions of Theorems 1 and 2. In this section it will be proved
that the requirements of continuity and continuous differentiability of B
can be relaxed slightly.
THEOREM 3. In Theorems 1 and 2 replace the assumptions on B by the

following assumptions. Let so(t) H-(xo(t) ). Let and i 1,
M, be open sets in E- such that
(a) ifj i + 1, i- 1,
(b) i ,
(c) there exist t, t such that t: t+ t t+ and

l o(t),t [t, t]} .
Let W E be a compact set and let B, i 1,..., M, be maps from

X W into U such that
(d) B is continuous on fit X W and continuously differentiable in on

t X W,
(e) for each:# (), {u UI (f(, u), grsdg(:#)) O} B(J(!), W),
(f) uo(t) B(J(2o(t)), W)a.e. on [ti1, ti2].
Then the conclusions of Theorems 1 and 2 follow.
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Proo]. Let
M

& U.

The proof proceeds initially as the proof of Theorem 1 with and re-
placed by 0 and/(0). That is, define S0 E X 0, N E X /(0),
and extend/ to H mapping So onto N. Let

hi(s, w) K(s)f((), Bi(, w) ),

and define P(s) as follows. Move from (0, 0) to the line through (0, 1)
parallel to the s-axis along an absolutely continuous curve (s, I) such that
s(t) So for all I and for which there exists a measurable function w
such that w(t) W a.e. and
(1) 3(t) hi(s(t), w(t) for a.e. I for which there exists an i such that

M

s(t) ( (S,- U S);

(2) for each i, there exists a unique interval Ii [ai, ai+] such that for
all Ii, s(t) Si S,+, and for all Ii, s(t) $ Si f’l S+1 and
on this interval, (t) hi(s(t), w(t)) a.e., where j is fixed and j i or
i - 1 for all such t; and such that the value of the zeroth component of s
at the terminal time is minimized.

Let (s, w, [3, [4]) be a trajectory for P(s), except that s may not satisfy
the boundary conditions of P(s). Then there exist intervals I [t-i, t],
k 1, j, with to [3 and ti 4 such that a.e. on Ik, (t) hk(s(t),
w(t)). Define x(t) H(s(t)), then x is absolutely continuous; and if
.(t) exists and equals h(s(t), w(t)) with u(t) B((t), w(t)),

2(t) OH (s(t))K(s(t))f(2(t) u(t)) f(2(t) u(t))

The reasoning here is the same as in the proof of (4.2). Hence, x is trajec-
tory for P. Consequently, so(t) H-l(xo(t)) is optimal for P(s).
Choose [i such that s0(i) Si [’1 Si+, i 1, M 1. Lemma 2,

with y(t) u0(t), U(t) W, and f(t, U(t)) B(o(t), W) for Ji
[i-1, i], i 1, M, where 0 to and t, implies that there

exists a measurable function w0 W a.e. such that a.e. in Jiuo(t)
.Bi(o(t), w0(t)); and hence, a.e. in Ji, o(t) hi(so(t), wo(t)).

Construct perturbed trajectories, not necessarily admissible, for P(s)
as follows. Let Q be the set of absolutely continuous curves (s, [to, t-I) for
which there exists a measurable function w W a.e. such that for a.e.

g, i 1, M 1, and J [tM--1, ], 3(t) hi(s(t), w(t))
and for all Ji, s(t) Si. By construction, (So, [to, hi) is an element
of Q.
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Consider the curves (s*, I) Q obtained from (So, Io) by changing the
initial condition of So to (So diSo) and not changing Wo. By writing s*

So -t- dis + o(), on J,

Oh (so(t), wo(t) )s.(6.1)

The right-hand side of (6.1) is well-defined and mesumble on I0. There-
fore, there exists n absolutely continuous mtrix function A (t) that is
fundamental solution of (6.1) on I0. Also, consider the curves (s,, I) Q
obtained from (so, I0) by altering the optimal control w0 on a set of smll
measure. The perturbations in the control considered are identical to those
made by Pontryagin [8, p. 87] with the udditional requirement that if

J is regular point of wo at which such a perturbation is made, then
all the intervals involved with must be in J. It is not difficult to verify
that the formula given by Pontryagin for /x is valid for As in this case.
That is,

As h(so(r), wo(’))t - A(-, r){h(s(r), w)
(6.2)

h(s(r), w(r) )} tt.

Therefore, cones cn be constructed, as in Theorem 1,
with a regular point of w0, nd a limiting cone t x0(h). Finally, it must
be verified thut the lemms Pontrygin used in the proof of the mximum
principle apply to the preceding cones. This verification consists in studying
the individual proofs of these lemmus und observing thut each step is still
vlid. Lemm 3 [8, p. 94] needs to be considered only for an optimal trajec-
tory and control. Hence, the technique used in the proof of Theorem 1
cn be extended to this case.

Similarly, the lemms and constructions used in the derivation of the
transverslity conditions are vlid for the enlarged cones; und hence,
Theorem 2 lso extends to this cuse.

7. Regularity. The purpose of this section is to establish a reltionship
between Theorem 1 nd the results obtained by Gamkrelidze [8, p. 267].
In order to do this, it is necessary to recall the following definitions made
by Gamkrelidze. Consider problem P P(f, 20, , U, T, A) satisfy-
ing the assumptions in 2, with f autonomous.

DEFINITION 7.1. The set U is arranged in a regular manner if Ul O U
implies that there exist Cl-scMar-valued functions q, i 1, s(s >= 1),
such that
(u) there exists neighborhood of ui in which the set U is defined by the
inequalities q(u) <= O, i 1, s;
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(b) q(ul) 0, i 1,.-. s; and
(e) the vectors (Oqi/Ou)(ul), i 1, s, are linearly independent.
DEFINITION 7.2. A point 2 E is regular with respect to a point u U

if
(a) p(2, u) (f(2, u), grad g(2)) 0,

Op(b) (2, Ul) 0, and

(c) if u 0 U, the vectors

O (, Ul) Oql. (Ul) Oqs (Ul)
0 0 0

where the q are the functions defined in Definition 7.1, are linearly inde-
pendent.

DEFINITION 7.3. A pair (x, u, [t0, t]) for P, such that 2(t) OA for
M1 and u is piecewise continuous, is said to be regular if, at each point of
continuity of u, 2(t) is regular with respect to u(t); and at each point of
discontinuity of u, 2(t) is regular with respect to u(t 0) and u(t + 0),
the left-hand and right-hand limits of u at t.
Gamkrelidze assumed that the control set for P was regular in the sense

of Definition 7.1. He restricted the admissible controls to be piecewise con-
tinuous and assumed that the optimal pair given in (2.5) was regular in
the sense of Definition 7.3. Under these assumptions, he proved that there
exists an (n + 1)-dimensional absolutely continuous vector functon 60
on I0 such that"

(a) 6o [Of Opr

+A oa.e.,

where h is an (n + 1)-dimensionM vector function obtained in the proof;

(b) 60(t) const. 0;

(e) (0(t),f(0(t), uo(t))) sup (0(t),J(0(t), u))) o,
u6(xo(t)

where (xo(t)) {u U 20(t) is regular with respect to u}.
THEOREM 4. Let P P(f, o, 21, U, T, A) be a problem that satisfies

the assumptions in 2 and for which f is not a function of t. Furthermore,
assume U is regular and the optimal solution given in (2.5) is regular. Then,
ff there exist sets and and a function satisfying the conditions in Theo-
rem 1, the conclusions of Theorem 1 follow.

Proof. This theorem will be proved by constructing sets ,, and W,
and maps B satisfying the hypotheses of Theorem 3. Consider the optimal
pair (x0, u0, I0) given in (2.5). At each point of continuity of u0 con-
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sider the system of equations"

o,
(7.1)

qi(v) qi(u(t)) O,

where the qi are the functions corresponding to u0(). If u0() int U,
then s 0 and (7.1) reduces to a single equation. As before, p(2, v)

(f(2, v), grad g(2)). At each point of discontinuity of uo consider the
two separate systems obtained by using the q corresponding to u(- 0)
in (7.1) and the q corresponding to u([ - 0) in (7.1). By the regularity
assumptions which include differentiability assumptions, the implicit
function theorem is applicable and implies that there exist a neighborhood
V c En+’+2 of (x0(), , u0()), an open set R En-b2-r-(s-l) containing
(x0(), , 0()), functions , i 1, s -t- 1, that are C on R, such
that

(7.2) {(x, t, u) V equations (7.1) are satisfied}

{(x, t, u) V I(x, t, ) R nd u (2, t, ),

i-- 1,...,s+ 1}.

Similar results are obtained at points of discontinuity of u0. The vector
may be composed of any r (s + 1) components of u, depending upon

which submatfices of the matrix

lop (9ql O_qs.l(7.3) ’ a--’ au j
have rank s -t- 1. However, to simplify the notation, will always be de-
noted by the last r (s + 1) components of u. Clearly, the value of s
may change with u. Several things are clear. Since, x does not appear in
(7.1), the neighborhoods V and R can be assumed to be cylindrical in the
x-direction. Furthermore, since for each u U there exists a neighborhood
in E in which the set U is determined by the inequalities q(u) __< 0, where
the q are the functions corresponding to u, the neighborhood V can be
chosen such that if (x, t, u) V and satisfies system (7.1) then u U.
Finally, it is clear, since (xo(t), t, uo(t)) is a solution of (7.1) for each t,
that if (xo(t), t, uo(t) V then there exists (xo(t), t, ) R such that
uo(t) ((20(t), t, ), ).

Therefore, determine an R and a V satisfying the above conditions for
each point in E, where

E (xo(t), t, uo(t) is a point of continuity of u0}

(7.4) U {(xo(t), t, uo(t 0)), (xo(t), t, uo(t + 0))[
is a point of discontinuity of u0}.
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Since R is open, there exists a closed cube C contained in R with (xo(t),
t, uo(t)) [(xo(t), t, uo(t 0)) or (xo(t), t, uo(t q- 0)) at points of discon-
tinuity of u0] as its center point. That is, there exists R > 0 such that

C7.5) C {y (x, t, z)l max ly y0i(t) =<tR} c R.
<_ <_ nq-2q-r--(s-t-l)

The image of C under , that is, the set

G I(x, t, u)[(x, t, t) C and
(7.6)

u o’(, t, ), i , ..., s + },

is a neighborhood in the relative topology of the surface in En+r+2 composed
of the points that are solutions to (7.1). Therefore, there exists a cylin-
drical neighborhood Y c V in En+r+2 of (xo(t), t, uo(t)) such that G
--l(x, t, u) Y equations (7.1 are satisfied}. Clearly, there exists an
open set 0 Y containing (x0(t), t, 0(t)).

Therefore, for each point in E consider the sets C, Y, and 0. The set E
is compact since it is the union of finitely many compact sets. Therefore,
by the Heine-Borel theorem since the sets 0 form an open covering of E,
there exists a finite subcovering 01, 0M. Let C1, CM correspond
to 01, 0M. Consider the proiection Qi of 0i on the set B E X OA
E1. Each Qi is open in the relative topology of B, and for each (x, t)
Q,

U(x, t) {u [u ((a, t, i), zi) such that
(7.7) max lug- Uo(ti) <= } U.

siq-2K_k<r

By construction each such u and x satisfy the first equation in (7.1).
Let ]c be the maximum dimension of . for all i 1, M; and let W

be the closed unit cube in E. Set

(7.8) i -6,, -b(ti).

0 0000 O1

That is, / Piw + t(ti), where Pi is an (r (si + 1)) X / dimen-
sional matrix that picks out the last r (si q- 1) components of w and
multiplies these components by a scalar factor. It should be noted that
one or more of the t could be a point of discontinuity of u0. In this case,
one would be considering u(ti- 0) or u(t if-0); but, to simplify the
notation it is assumed that all points considered are points of continuity
of u0. Hence, for (x, t) ff Q..,

U(x, t) u u ((, t, Pig’ q- ti(ti) ), Pw q- (t)
(7.9)

D(a, t, w), w W}.
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Define x* (x, xn-F1), 8.’ (8, 8 H* s* H s s where s
x"+1 t, and set S* H*-1 (Qi) fl (S X El). Clearly, S* is a cylin-

der with elements parallel to the s-axis. Set S0* U=, Si* and so*(t)
(so(t), t) on I0. Also set B*(s*, w) D(H(s), t, w) on S*, i 1,
M. Clearly, the S* and the B* satisfy the hypotheses of Theorem 3,

and it is clear that the B.** are actually defined on larger sets A* c S.*.
Therefore, define P(s*). Transfer the point So*= (0, o, to) to the 2-
dimensional plane passing through the point (0, al, 0) with elements
parallel to the s-axis and to the 8n-axis, long an absolutely continuous
curve (s*, I) that satisfies conditions (1) and (2) listed in the proof of
Theorem 3, where f* (f, 1), and such that s*(t) So* for all I.
The extension of Theorem 2 is applicable to P(s*). Therefore, there

exists a nonzero (n + 1)-dimensional vector function , satisfying the
conclusions of Theorem 1 such that s.(tl) is perpendicular to the line
through (s, 0) parallel to the sn-axis. Hence, the (n - 1)-component
bg(t) of s.(t) equals 0, and

^0 (t) -(t)) 0.,(t) (, ,..
But, As* (As, At); hence,

(7.10) (s,(t), As) __< 0.

Observe that the equations for x are still

(7.11) 2= [Of Of OB 1--K x
Ou Os

on J _1, .], where the are determined in the construction of the
cones considered (see the proof of Theorem 3). This follows because on

J,St 0, so

OB OB s -- 0_ t 3B(7.12) Ou Os*
Os ot

s.

Consequently, since f is autonomous,

oI(7.13) t}2* x* - 0 0

Hence, the equation for the function * for P(x*) is

Consequently, ’+* 0. Define 0*(t) on I0 to be the solution of (7.14)
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such that 0"(tl) /*r(s*(tl))8.(tl).
of 60" is identically zero on I0. Therefore,

Then the (n - 2)-component

(7.15)
0-- M*(t) max (bo*(t), *f (xo(t), B(so*(t), w)))

ww

(k0*(t), f*(2o(t), uo(t))) a.e.,

where B Bi on Ji implies that

0 M(t) max (0(t), f(2o(t), D(2o(t), t, w)))
(7.16)

(0(t), f(2o(t), uo(t))) a.e.,

where D Di on J. Consequently, the results of Theorem 3 hold for
such problems.

8. Remarks. Gamkrelidze used his assumption that the controls were
piecewise continuous to prove that the inner product (0(t), f(2o(t),
u0(t) )) 0. As demonstrated, in general this result can be obtained
It should also be noted that the sets B(so*(t), W) over which the maxi-
mization is made in Theorem 4 may be proper subsets of the sets o(x0(t))
considered by Gamkrelidze. Moreover, it is clear that the variational
equations obtained by Gamkrelidze can be chosen such that for the par-
ticular trajectories considered in the proof of Theorem 4, they reduce to
the vriational equations (7.11) obtained in the proof of Theorem 4.

It is interesting to observe that the proofs given demonstrate that
local maximum principle for the problem being considered is directly ob-
tainable from Pontryagin’s results [8, pp. 75-114]. One comment should be
made about the statement of Pontryagin’s maximum principle [8, p. 75].
Although the statement of this principle says that the control set U can
be an arbitrary set, the proof given assumes otherwise. In the proof, the
comparison made between the function M(t) supueu ((t), f(20(t), u))
and the function re(t) max.ee ((t), f(o(t), u)) is valid only if the
set P is contained in U. Hence, this comparison is valid for problems in
which the controls are arbitrary bounded and measurable functions, if
the control set U is closed; and in problems in which the control set U is
an arbitrary set, if the controls are restricted to piecewise continuous
functions whose right-hand and left-hand limits at points of discontinuity
are also in U. However, this comparisott is obviously not vMid in general.

Finally, since the work on this paper was completed, two more papers,
[13] and [4], dealing with the problem considered in this paper have been
published.
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AN ABSTRACT VARIATIONAL THEORY WITH APPLICATIONS TO
A BROAD CLASS OF OPTIMIZATION PROBLEMS. I.

GENERAL THEORY*

LUCIEN W. NEUSTADTf

1. Introduction. This article is devoted to the formulation of a very
general variational problem and to the derivation of necessary conditions
which solutions of this problem must satisfy.
The variational problem is formulated in 2 in the setting of a locally

convex linear topological space. The basic concepts in this formulation are
those of an internal cone, a first-order convex approximation, and a particu-
lar type of differential. This threesome, roughly spewking, represents a
"linearization" of the constraints imposed by the problem. Of the three,
the most unorthodox is the first-order, convex approximation, which turns
out to be a quite natural extension of the cone of attainability introduced
by Pontryagin, Boltyanskii and Gamkrelidze (see [2, Chap. II]), and of the
convex set of linear variations introduced by Gamkrelidze in his work on
quasiconvexity (see the set K in [3, p. 115]). The idea of such sets is originally
due to McShane [4]. It appears to the author that the first-order, convex
approximation, which is a convex set in the underlying linear space, is the
most suitable device for handling variational problems which include con-
straints in the form of ordinary differential equations. This will be demon-
strated in Part II of this article wherein we construct such approximations
for a number of optimal control problems.
The necessary conditions satisfied by solutions of the general variational

problem are in the form of a separation theorem for two convex sets, one of
which is the set discussed above, and the second of which is related to the
other two "linearizations" of the constraints. Thus our result is very much
in the spirit of [2]-[4]. These conditions are spelled out in Theorems 2.1 and
2.2 and Corollary 3.1, whose proof is set forth in 3. In 4 we formulate
canonical optimization problem whose solutions satisfy, under suitable
regularity conditions, the hypotheses of Theorems 2.1 and 2.2. The neces-
sary conditions of these theorems are then specialized for this particular
problem (see Theorems 4.1-4.6).

It will be shown in Part II that the canonical optimization problem
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includes, as special cases, virtually all of the optimal control problems
based on ordinary differential equations or difference equations which have
come to the fore in recent years, including the conventional optimal control
problem (both with and withou restricted phase coordinates, and with fixed
or variable endpoints and initial and terminal times), discrete optimal
control problems, and minimax control problems. The necessary conditions
for solutions of these problems, obtained on the basis of Theorems 4.1-4.6,
then include as special eases all of the first-order necessary conditions in
the classical calculus of variations, as well as the Pontryagin maximum
principle and its various extensions and generMizations recently obtained
(sometimes under hypotheses much stronger than those required here).
In addition, it is now possible to obtain necessary conditions for problems
which heretofore have been outside of the realm of applicability of any of
the existing va.ritional theory.

In }4 we also indicate how a particular case of the canonical optimization
problem can be looked upon as a mathematical programming problem in a
locally convex linear topological space. Applying Theorems 2.1 and 2.2, we.
obtain necessary conditions which are generalizations of the well-known
Kuhn-Tueker conditions.

2. Basic definitions. Let 3 be a locally convex linear topological space
over the real numbers such that the topology on 3 induces the ordinary
Euclidean topology on every finite-dimensional subspace of . We shall
denote by 3" the conjugate space of 5, i.e., the linear vector.space whose
elements are the linear continuous functionals defined on 5. Le B and Q be
subsets of 3, and let F be a continuous function defined on a neighborhood

of 0 in 5, taking on values in R’* (Euclidean m-space). Let

(2.1) Y {xlx < 2, F(x) 0}.

DE.FINIT1ON 2.1. We shall say that 0 :5 is a (Q, B, F)-extremal if there
is a neighborhood N* of 0 h :5 such that Y Q f’l B f’l N* {0}.
DEFINITION 2.2. We shall say that 0 :5 is (Q, B)-extremal if there is,

, neighborhood N* of 0 in :5 such that Q B f’l N* {0}.
Thus, if 0 is a (Q, B, F)-extremtd, then 0 Y f’l Q l B; if 0 is a (Q, B)-

extremal, then 0 Q fl B.
I order to obtain meaningful necessary conditions for extremality, it.

will be necessary to make some additional assumptions on the sets B and Q
and the function F.

First, we shall assume that there exists a continuous linear transforma-
tion ), (x) from :5 onto R such that

(2.2) F(ey)
--+ X(x) for every x :5.
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Let ) (x) (/l(x), /(x)), where li 3* for each i. Since is onto
Rm, 11, ..., 1, are linearly independent. It also follows from (2.2) th.t
F(O) 0.

Second, we shall assume that there exists a convex cone Z in 3 with vertex
at 0 (and containing points other than 0) such that, if p is any ray in Z,
there exists a cone Zo with vertex at 0 and a neighborhood No of 0 it 5
(both possibly depending on p) ;uch that (t) Zo c Z, (b) Zo has a non-
empty interior and o is an interior ray of Z,, (c) Z, fl N c B. If Z and B
satisfy these conditions, we shall say that Z is an internal cone for B at 0.

Note 2.1. If B is a convex set with interior points and 0 ff B, then
Z {vx 0, x (interior of B)} is an internal cone for B at 0. Indeed
it is clear that Z is a convex cone in with vertex at 0. Further, let p be a
ray in Z and let y0 ff p, y0 0, so that y0 v0x0, where x0 (interior of B)
and 0 > 0. Also, let No be a convex neighborhood of 0 in 5 such th-t
x0 + N c B and x0 No No. Then if we set Z, {vxv 0,
x x0 + No}, it is easily seen that Zo is a cone with vertex at .0, that Zo c Z,
that p is an interior ray of Zo, and that Z, No c B.

If , is any positive integer, we shtll throughout this paper denote by P"
the following subset of R’:

P’ {B (, ,,) 1. 0 for i 1, , B 1}.
i=1

Finally, we shll ss.ume that there is convex set K c with the fol-
lowig properties: () 0 K,. d K contains points other thtm 0; (b) if
x., x,} is ny finite subject of K, nd N is n rbitrry neighborhood
of 0 in 5, the there exists number e0 > 0 (which my depend oz the x
md o. N) such that, for every e, 0 < e <: e0, there exists contimous
ma.p from I) to 5 satisfying the following relation:

(2.3) , () e (1, ) (: {( iXi @ N)} Q for all I’.

In this case, we shall say that K is a first-order, convex approximation to Q.
Note 2.2. If 0 Q and Q is convex, then Q is a first-order, convex approxi-

mation to itself.
Note 2.3. If 3 3 32 and Q Q X Q, where 3 and 3 are locally

convex linear topological spaces and Q c 3, i 1 and 2, and if K1 and
K are first-order, con.vex approximations to Q and Q respectively, the
K K is a first-order convex approximation to Q.
The conclusions h Notes 2.2 md 2.3 follow at once from the definition

of a first-order, convex approximation.
Let the sets H and Z’ in be defined as follows:

(2.4) n={x[x, X(x)=0l,



508 L.W. NEUSTADT

(2.5) z’ z f n.

Clearly, II is a closed linear manifold in 5, and Z’ is a convex cone in II
with vertex at 0.
We can now state our fundamental necessary condition for extremality.
THEOREM 2.1. Let Q and B be subsets of a locally convex linear topological

space 5, and let F be a continuous function from a neighborhood 2 of 0 in 5
into R". Let 0 5 be a (Q, B, F-)extremal, and suppose that (2.2) holds for
some linear, continuous transformation X from 5 onto Rm. Further, let K be a
first-order, convex approximation to Q, and let Z be an internal cone for B at
O, with Z 5. Then either Z’ /0} (where Z’ is defined by (2.4) and (2.5)),
or there is a nonzero functional l* 5* separating K and Z’; i.e.,

(2.6) /*(x) -< 0 =< /*(y) for all x K, y Z’.
THEOREM 2.2. Let Q and B be subsets of a locally convex linear topological

space 5, let K be a first-order convex approximation to Q, and let Z be an in-
ternal cone for B at O, with Z 5. Then if 0 5 is a (Q, B )-extremal, there
is a nonzero functional l* 5* separating K and Z; i.e.,

l*(x) =< 0 =< l*(y) for all x K, y Z.

The next section is devoted to the proof of Theorems 2.1 and 2.2.

3. The proof of the necessary conditions. We first prove a lemma.
LEMMA 3.1. Let F be a continuous function de.fined on a neighborhood

of 0 in a linear topological space 5 and talcing on values in Rm, and let be a
continuous mapping from 5 into R such that (2.2) is satisfied. Then if S
is any compact set in 3 and v > 0 is arbitrary, there is a neighborhood N, of
0 in 5 and a number > 0 (both and N, may depend on v as well as on S)
such that

F(ey) x(x) <
whenever x S, 0 < 1 < ,3, and y x -+- N,.

Proof. Let us fix n > 0. By hypothesis, for each x 5 there is a neigh-
borhood 2 of 0 in 5 and a number/t > 0 such that (see (2.2) and recall
that ), is continuous)

F(ey) X(x) + IX(x) X(z) <r whenever
(3.1)

0< le[ <,yEx-k,zxq-r.

For each x , le N be a neighborhood of 0 such ha N q- N .
Since S is compact, here are points x, xe. in S such ha S c U=x (x
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A=I Nx and let minl_<_<, lix}. Further, letx be an-4- Nx) LetN,
arbitrary point of S, so that x x. + Nx; for somej 1, k. If
y x + N,, then y
Thus if 0 < e < i 5-_ i;, then (see (3.1))

F(ey) F(ey) x (x;)

This completes the proof of the lemma.
Let us now turn to the proof of Theorem 2.1, which will be by contradic-

tion. Let us assume that Z’ 10}. In the sequel we shall use the word
separable to mean" capable of being separated by a nonzero, continuous
linear functional. Thus let us suppose that K and Z’ are not separable. Let
/-i }, (K), so that R is a convex set in Rm, and 0 R.

Let us show that if K and Z’ are not separable, then K f’l II and Z re
not separable in II. Indeed, suppose that K l II and Z’ are separable, so
that there is a functionM lo 3* such that /0(x) <= 0 -<_ /0(y) for
all x K l II and y Z’, and/0(x’) 0 for some x’ II. Let R (/0(x),
(x)) Ix K}. Evidently, R is convex set in R+. By hypothesis, if

-{(0,1,...,)10>_- 0, -- 0 for i= 1,...,m},

then f3 R {0}. Therefore, there is a hyperplane through 0 in R+1

separating R from the ray , i.e., there is a vector " (’o, ’1, ’)
R"’+, " # 0, such that ’. =< 0 -< ’-’ for all . R, ( . Consequently,

o->_ Oand=o i’/(x) _-< 0 for all x K. (Recall that h (lx, l,,)
l’ :I* 0,Let l’ =o ’1 Let us show that l’ # 0. Indeed, if l’

then ’0 # 0 since " # 0 and l, l are linearly independent. Hence,
l’ (x’) ’0/0(x’) re 0, and this contradiction implies that l’ re 0. Further-

l’ Z f3 H, then l’ (y) 010 (y) => 0more, (x) =<0forallx K and iy Z’=
so that K and Z’ are separable. This contradicts our hypothesis, so that
K f’l II and Z’ are not separable in II.
By hypothesis, every ray of Z is an interior ray thereof, and Z f’l II # {0}

consequently, Z’ Z f’l II has a nonempty interior in II. Let I (Z’) denote
the interior of Z’: relative to II. It is clear that Z’ I (Z’) U {0}. We can

now conclude that there is a point 2R [ (Z’) [3 (K f’l II), for in the con-
Ztrry case (see [1 p. 417 Theorem 8]) I (Z’) (as well as could be sep-

rated from K f,. H in H, contradicting the conclusion of the preceding par-
graph. Let us show that re 0. It is sufficient to prove that 0 ( I (Z). To
verify the latter statement note that if 0 [ (Z’), then there is a point
x Z such that (-x) Z and x re 0. By the definition of an internal
cone, this means that x and (-x) are interior points of Z, so that 0 is an
interior point of Z (the interior of a convex set is convex), contradicting
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the hypotheses that Z is a cone and Z 5. Also, 0 Z’ fl K and Z’ n K is
convex, so that ff Z’ n K. Further, since II (see (2.4)),

(.) a() 0.

Let us now show that 0 is an interior point of/ in Rm. Indeed, if 0 is a
boundary point of K, then there is a vector f (fl, fro) /m, . 0,
such that f./ N 0 for all ] E / X(K), i.e., ’.X(x) =< 0 for all x K.
Let l’ (x) ’.X (x), so that l’ 5" and, since 11, lm are linearly inde-
pendent, l’ 0. Also, l’(x) -_< 0 for all x K, l’(y) 0 for all y II,
and, afortiori, l’ (y) ->: 0 for all y Z’, contradicting our assumption that
K and Z are not separable.

Thus, 0 is an interior point of/, and there is an m-simplex N c/ such
that 0 is an interior point of . Let the vertices of be z X (k), where
k , K, i 0, 1, m, and let V be the simplex in with vertices k0,
k, km. Since K is convex, V c K. Also

(3.3) h(V) S.

Now Z’ Z, 0, and, since Z is a internal cone for B t 0,
there are a neighborhood of 0 in and a cone 2 Z (with vertex at 0)
such that (interior of 2) and

(3.4) 2 N fi B.

Since 0 is a (Q, B, F)-extremal, there is a neighborhood N* of 0 in 5 such
that Y n Q N B n N* 01, where Y is given by (2.1).

Let N be a neighborhood of 0 in 5 such that

(3.5) - N c 2 Z,

and let N be a convex neighborhood of 0 in 3 such that

(3.6) N + N c N N N N* N .
(Such a neighborhood exists because 5 is locally convex.)
Since N is convex, there is a number 0,0 <: 0 =< 1/2, such that 0V N

Let S -- t}0V, so that S is a simplex in 5 with vertices x -t- 0k,
i 0, 1, .--, m, nd S - N. Consequently (see (3.6) ad (3.5)),

(3.7) S+N+N+N+N2 Z.

Since 0 is a boundary point of Z and S + N is open, it follows from (3.7)
that

(3.8) 0 . s + N.

Now 2 K, 0 K, V K, and therefore, since K is convex, S c K.
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Let k(S) k() q- /t0k(V) 0 (see (3.2) and (3.3)) so that
0 (interior of
then

Since S is compact, it follows from Lemma 3.1 that there are a number
> 0 and a neighborhood N3 of 0 in 5 such that

F(ey) X(x) < whenever 0 <: e < , x S, and
(3.9)

Let

(3.10) . = N3 VI N2,
and let > 0 be such that

(3.1.1

(Such an exists since N2 is convex.) Also note that, because N2 is convex
and 0 N:,

(3.12) nN c N whenever 0 =< v -_< 1.

Since Kis a first-order convex approximation to Q at 0, there are a con-
tinuous map .from p+l to Q, and a number such that (see (2.3))

(3.13) 0

() (0, , ,)
(3.14) =o

for 11 fl P+.
It follows from (3.10)- (3.14) and (3.6) that, for 11 P’+,
(3.15) () S + . c N - N c . VI 2 VI N*.

If ), (S), has a unique representation of the form

(3.16) X(x) with (0, ,.,) P+.

Let us denote the mpping which assigns Pm+ to each in this
mnner by q. Clearly, q is continuous mapping from. onto p+l. Fur-
ther, for ech S, let

(3.17) 7(0) F((q(o-) + o-,

so that v is a continuous map from into R. Now, for each P+
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(see (3.14), (3.13), and (3.10)), () ly, where y 0x + N3
and 0 < 1 <: . Hence, by virtue of (3.9), (3.16) and (3.17) I’(z) < #
for all z , or, by definition of #, () . Hence, , is a continuous
map of into itself, and by the Brouwer fixed point theorem (recall that

i0 is a simplex in Rm) there is a point such that , () .
Let q() (o, m) , so that (see (3.17)) F(()) 0, or (see
(2.1) and (3.14)),

(3.18) () Y l Q.

Now (see (3.14), (3.10)and (3.7)),

(3.19) (1)-() < x + 2 c S + N c 2.
i=0

Because 2 is a cone with vertex at 0, it follows from (3.19) that (f) 2.
Thus we have shown that (see (3.15), (3.4), and (3.18)) () Y f’l Q
f’l B f’l N*. Finally, it follows from (3.19) and (3.8) that () # 0. But
this contradicts the fact that Y f’l Q f’l B N* {0}. This completes the
proof of Theorem 2.1.
We shall use the following notation. If K is an arbitrary set in a linear

topological space 5, we shall denote the cone with vertex at 0 generated by
K by (cone K), i.e., cone K {xlx K, v >_- 0}. The closure of (cone
K) will be denoted by cone K.

Note 3.1. It is obvious that if 5" and (x) _-< 0 for all x K, then
l(x) __< 0forMlx coneK.
COaOLLARY 3.1. If the hypotheses of Theorem 2.1 are s(tisfied, there exists

a vector R and a functional 5* such that

(3.20) (x) + -h(x) __< 0 for all x coneK;
(3.21) i(y) _-> 0 for all y Z;

+ &.)# O if Z’ #10},
(3.22) + &.), 0 and # 0 /f Z’ {0}.

Proof. First suppose that Z’ # {0}, and consider the set 2 {(l* (y),
) (Y)) Y Z} Rm+, where l* 5" is such that l* # 0 and (2.6) holds.
Since l* and ), are linear and Z is convex, 2 is convex. If F denotes the ray

{(0,x, ,m)[0 =< 0, 0 for i= 1, ,m},

it follows from (2.6) that 2 f’l {0}. Hence, there is a hyperplane
through 0 in Rm+ separating 2 from , i.e., there is a nonzero vector
(g0,/) Rm+lsuchthat0 =< 0, g (, ...,m) R and 30/* (y
+/.X(y) =< 0forally Z. If0 < 0, weset.& (31, "",am),where
a -gi/g0 for i 1, ..., m, and l* _iali (recall that
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h (/1, ,lm)); (3.20) and (3.21) follow at once. Let us show that the
relation 0 0 is impossible. Indeed, if 0 0, then .), (y) -< 0 for all
y Z where 0, Rm. Since 11, l are linearly independent,
/.}, 0,.}, 3*.Also,.h(x) 0forallx II (see (2.4)). Byhypothe-
sis, there is a vector y0 II 1 Z, y0 0. Because Z is an internal cone for
B at 0, y0 is an interior point of Z, which contradicts the relations . h 0,
/’},(y0) 0, and .},(y) =< 0 for all y Z. Finally, - .}, l* 0
by hypothesis.

If Z {0}, II does not meet the interior of Z (which is nonempty by
definition) inasmuch as 0 is on the boundary of Z (because Z 5). Hence,
(see [1, p. 417, Theorem 8]), there is a nonzero functional 5" such that
(y) ->_ 0 whenever y C Z and (x) _<_ 0 whenever x II. Since H is a sub-
space this means that (x) 0 whenever x II, i.e., whenever/(x) 0
for every i 1, m. But according to [1, p. 421, Lemma 10], this means
that i=1 (-al) for some real numbers al, am. Setting

(al, a,), (3.20)- (3.22) now follow at once.
Let us now turn to the proof of Theorem 2.2, which will also be by con-

tradiction. Thus let us suppose that K and Z are not separable. Let I (Z)
denote the interior of Z. Clearly, Z I(Z) U {0}, and since Z 5,
0 ( I (Z). There is a point t C I (Z) 1 K, for in the contrary case (see [1,
p. 417, Theorem 8]), I (Z), as well as Z, could be separated from K.

Since [ (Z), 0, and it follows from the definition of an internal
cone that there are a neighborhood of 0 in 3 and a cone Z (with
vertex at 0) such that (interior of 2) and (3.4) holds. Let N be a
neighborhood of 0 in 5 such that (3.5) holds. Because 0 is a (Q, B)-extremal,
there is a neighborhood N* of 0 in 3 such that

(3.23) Q 1 B l N* {0}.

Finally, let N be a convex neighborhood of 0 in 3 such that

(3.24) N+NN* and NN1.

Thus, (3.12) is satisfied. Also, - N + N Z, so that, since-- N. is open and 0 is on the boundary of Z,
(3.25) 0 + N.
Let > 0 be such that

(3.26) V N whenever 0-_< v =< .
Now K is a first-order, convex pproximation to Q. Consequently, there

are a positive number -< rain/1, } nd a vector [( -t- N)] Q.
It now follows from (3.12), (3.26), and (3.24) that

(3.27) N* ’l Q.
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Also (see (3.24) and (3.5)),

so that, since 72 is a cone with vertex at 0, 2, which, by virtue of (3.27),
(3.25) and (3.4), mea.s that Q B N*, 0, contradicting (3.23),
and thereby completing the proof of Theorem 2.2.

4. Optimization and mathematical programming problems as extremal
problems. In this section we shall, define a canonical optimization problem
and shall show how solutions of this problem, under suitable regularit.y con-
ditions, give rise to sets Q, Z, and B as well as functions F and X that satisfy
the hypoeheses of Theorem 2.1 or of Theorem 2.2. This makes it possible to
apply Corollary 3.1 or Theorem 2.2 and obtain necessary conditions for
solutions of this optimization problem. We shall also consider a special case
of the canonical optimization problem which is a generalized mathematical
programming problem.
We begin with three lemmas.
LEMMA 4.1. Let B =oB where each B: i O, 1, ,, is a subset

of a linear topological space 5, let Z: for i O, 1, ,, be an internal cone

for B at O, and let Z fl=0 Zi Then, if Z {0}, Z is an internal cone for
B atO.
Lemma 4.1 is an immediate consequence of the definition of an internal

cone.
LEMMA 4.2. Let be a function from a set W in a locally convex, linear

topological space 5 into R1, let z be an interior point of W, and suppose that
there exists a continuous, convex functional c defined on 5 such that c (x) < 0
for some x 5 and

(4.1.) e-[(z + ey) (z)] Z-o:-+ c(x) for every x 5.

7.’hen c(vx) vc(x) for all v > 0 and all x 5, c(0) 0, and the set

Z=Ixlx3, c(x) <o} O

is an internal cone at 0 for the set

B={x[x W-z, (z+x) <(z)} U{O}.

Proof. It is an immediate consequence of (4.1) that c(vx) vc(x) for
all v > 0 and x 5. Since c is continuous, c (0) 0. Because c is also con-
vex, Z is a convex cone with vertex at 0 containing interior points.
Now let p be an arbitrary ray in Z, and let x0 p Z, x0 0, so that

c(x0) -f < 0. Because of (4.1) and the continuity of c, there exist a
convex neighborhood N of 0 in. 5 and a number ti > 0 such that (x0 -t- N)
W z, ([(z + ey) (z)]- c(x0) < r/2, c(y) C(Xo) <
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and c(w) > -./2, whenever 0 < e < t, w N, and y Xo + N. Conse-
quently,

c(y) < -/2 and e-[e(z + ey) (z)] < -/2 < O,
(4.2)

whenever y xo+N and 0 < e < 8.

Let Z be the (convex) cone with vertex at 0 generated by x0 + N. It is
clear that Zo Z, that Zo has a nonempty interior, a.nd that o is an interior
ray of Zo. Further, N (x0 + N) is empty.
We shall show that Zo fl tN B, which will complete the proof of the

lemma. Indeed, let x Zo f’l N, x -# 0, so that x e0(x0 + x’), where
eo > 0 and x’ N. Thus, e(lx (X0 + X’) (X0 + N) f’l (co-it}N). Since
N is convex and 0 N, eN c N whenever 0 _-<_ =<- 1, so that eN f] (Xo + N)
is empty whenever 0 -<- e 1, which implies that eo-lt > 1, or eo < 8, i.e.,
x eo(Xo + N) f (W- z), where 0 < eo < t. Consequently (see (4.2)),
(z + x) (z) < 0, i.e., x B. Thus, Zp f 8N c B.
LEMMA 4.3. Let Z i O, 1, v, be convex cones with vertex at 0 in a

Banach space 3 such that Z f=o Z has a nonempty interior. Let

L {lll (= *, /(y) => 0 for every y Z}, i= 0,... ,v,

L {l[1
_
*, /(y) => 0 for all y . Z}.

Then n {l =ol, l n for i O, ’}.
Lemma 4.3 is a, immediate consequence of Corollary 2 in [9, p. 51].
Consider the following problem, which we shall refer to as the canonical

optimization problem.
Given two sets O’ nd W in locally convex, liner topological spce

and real-valued functions , i 1, m, 0, -1, -v, defined on W,
find an element x W Q’ that (a) s,tisfies the equations (x) 0 for
i 1, m, (b) s,ttisfies the inequalities 9_ (x) _<_. 0 for i 1,
and (c) in so doing, minimizes; the wlue of the functional 0.

If x W, let oSx denote the set of those indices i 1, t* for which
9_(x) < 0, atd let a detote the set of those indices i 0, 1, such
thati oS.Notethat0 a forllx G W.
t DE:’INtTION 4.1. An element z 3 is a local solution of the canonical
optimization problemifz

_
W Q’, (z) 0fori 1,... ,m, ,_(z) -<_ 0

fori 1, .., u, and if there is aneighborhoodNof0in3 such that
0(x) _>- 0(z) for all x (z + N) f’l W Q’ that in addition satisfy the
relations ,,: (x 0 fori 1, m and _(x) _-< 0 fori 1,

Clearly, every solution of the canonictl optimization problem is also
local solution thereof.
DEFINITION 4.2. A local solution z of the canonical optimization problem

is regular if"
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(1) Z is an interior point of W and the functionals ,ol, ;m are con-
tinuous in a neighborh..ood of z;

(2) there exist functionals li ff 5", i 1, m, such that, for every
i>= 1,

(4.3)
(z + ey) /(x) for every x 5;

0

(3) the functionals 11, ,lm re linearly independent;
(4) either is empty or there is a neighborhood N* of 0 in 5 such that

_,(z -k x) =< 0 for all x N* and every i q
(5) for every i ,., there exists a cone Z c 5 which is an internal

cone at 0 for the set

(4.4) B /xl(z + x) - w, _,(z + x) < _(z)} U {0}

such that if

(4.5) z fl z,

thenZ 5andZ
Note 4.1. If5 is a Banach space and if , i 1, ..., m, has a

Frdchet differential l - 5" at z, it is easily seen that (4.3) is satisfied.
(Recall that i(z) 0.) However, (4.3) does not necessarily imply that
has a t rchct differential at z.
Note 4.2. If the functionals __, for i

_
o9,-, are upper semicontinuous

a.t z, it is evident that condition (4) in Definition 4.2 will be satisfied.
DE’INITION 4.3. A local solution z of the canonical optimization problem

is totally regular if (i) for each i

(4.6) -e [o_(z + ey) --o_(z)]- -0+ e(x) for every x 3,

where the e are certain continuous, convex functionals defined on 3; (ii)
conditions (1)-(4) of Definition 4.2 are satisfied; (iii) c.(x) > 0 for some
x 3 and some j g (iv) there is an x 3 such that e(x) < 0 for every
i z.

DE)’INITION 4.4. A local solution z of the canonical optimization problem
is smoothly regular if, for every i 9, (4.6) holds with some c 5", if
conditions (1), (2), and (4) of Definition 4.2 are stisfied, nd if the rela-
tions

(4.7) a_c-k al= O, a_ <= 0 for every i ,.,
Ez i--1

imply that a 0 for all i 1, m and -i
The following lemm is an immediate consequence of Lemma 4.2.
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LEMMA 4.4. Every totally regular local solution of a canonical optimization
problen is a regular local s()lution, where the sets Z: in condition (5) of Defini-
tion 4.2 are define:t, by

(4.s) z {x x , c(x) < 0/U {0}.

LEMMA 4.5. Every smoothly regular local solution of a canonical optimiza-
tion problem is a totally regular (and consequently regular) local solution.
Further, if

(4.9) II {xlx 5, l(x) 0 for i 1, ,m}, Z’ Z H,

where Z is given by (4.5) and the Z by (4.8), then Z’ {0}.
Proof. Let z be a smoothly regular local solution of canonical optimiza-

tion problem, nd let the sets Z (for i 9), Z and Z be defined by (4.8),
(4.5), and (4.9), respectively.
Let us show that Z’ {0}. Suppose the contrary. For ease of notation,

and without loss of generality, we shall suppose that . {0, 1, v},
{v -t- 1, t}, where v >__ 0 (if o9.,- is empty, then ,). By hy-

pothesis, the convex set {[c(x), c0(x), l(x), l(x)) x 5} in
R"+’+1 has an empty intersection with the convex set

{(_, ..., 0, , ..., ,,)I - < o
for i 0,1,..., ,i 0 for i 1,...,m},

so that these two sets (’:n be separated; i.e., there arc numbers
0, m, not ll zero, such that a_ _-< 0 for i g,. and

_c (x) + (x) 0
i=o i=l

for all x 5. But since c * for each i 0, , this is only possible
if (4.7) holds, which by Definition 4.4 implies that a. 0 for all i. This
contradiction shows that Z’ - {0}, and,

It is clear from Definition 4.4 that co
x 5 with c0(x) > 0. Finally, condition (3) in Definition 4.2 follows at
once from Definition 4.4, and we conclude that z is totally regular.
LEMMA 4.6. Let z be a local solution of a canonical optimization problem

such that, for every i 9 (4.6) holds with c l_ 5", and suppose that
conditions (1), (2), and (4) of Definition 4.2 are satisfied. Then if the func-
tionals li, i 1, ..., m and (-i) 9, are linearly independent, z is
a smoothly regular local solution.
The proof of Lemma 4.6 is obvious.
Now let z be a regular local solution of a canonical optimization problem,

so that .(z) 0 for i 1, m. Let N be
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such that z + N c W and 1 m are continuous in z + N. Further,
let F be the function from N into R defined by the relation

(4.10) F(x) (,(z + x),..., 9m(Z + X)).

Clearly, F is continuous and F (0) 0. Further, by virtue of (4.3), we see
that (2.2) holds, where h (x) (11 (x), ,lm (x)). Inasmuch as li 5"
for i 1, ..., m, h is linear and continuous, and, since 11, lm are
linearly independent, }, is onto RTM. Also, the set II defined by (2.4) coin-
tides with the set II defined by (4.9). Finally if

(4.11) B f’lB and Q Q’- z,
iz

(where the B are defined by (4.4)), it is easily verified that 0 5 is a

(Q, B, F)-extremal. We can now prove two basic theorems.
THnOnnM 4.1.. Let z be a regular local solution of a canonical optimization

problem, and let K be a first-order, convex approximation to Q’ z. Then
there exist real numbers al am and a functional 5* such that

(4.12) (x) + ail(x) =< 0 for all x . cone K;

(4.13) 7(y) >= 0 for all y

_
Z;

(4.14)
+ # o z’ -# {o},

and # 0 if Z’ {0},

(where the Zi for i g, are as indicated in condition (5) of Definition 4.2,
and, Z and Z’ are given by (4.5) and (4.9), respectively).

Further, if 5 is a Banach space, or if g, {0}, or if Z is given by (4.8),
with c 5", .for all but one (or all) i g then (4.13) implies that

(4.15) i= ., 1_,
Ez

where, for each i

(4.16) l_ . *, and /_(y) =>. 0 for all y Z.

If Z is given by (4.8) for some i E where c *, then (4.16) implies
that l_i a_c, where oe_ <- O.

Proof. Let us define B, Q, nd F by mea,ns of (4.4), (4.11), and (4.1.0).
It follows from Definition 4.2 and Lemm, 4.1 that the set Z defined by
(4.5) is an internal cone ’-at 0 for B. We can therefore conclude, on the basis
of Corollary 3.1, that there exist real numbers a, ..., am and a vector
[ * such that (4.1.2)- (4.14) hold.
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For ease of notation, let us again suppose that z /0, 1, ..., I,
where >- 0.

If 5 is a Banach space, (4.15) and (4.16) follow from (4.13) and Lemma
4.3. (Note that Z has a nonempty interior by definition of an internal cone.)
If g,. /0}, so that 0 and Z Z0, (4.15) and (4.16) are clearly
equivalent to (4.12).

Let us now prove that (4.13) implies (4.15) and (4.16) under the assump-
tion that Z is given by (4.8) with ci 5" for all but one (or all) i .
For ease of notation, and without loss of generality, let us suppose that
(4.8) holds with c 5" for i 0, 1, ..., 1 Clearly [(c0(y), o(y),
.., c_(y), (Y)) Y Z} is a convex subset of R+l,which, by (4.13),

does not meet the open convex set

{(0,, ,) Ii < 0 for i 0,1, ,,} R+.
Now, 0 is a limit point of both of these sets, so that there is a hyperplane
through 0 R+1 which separates them, i.e., there is a nonzero vector
(0, 1, ,) R+ such that

(4.17)
(y) - c(y) =< 0 for all y Z,

i=O

and _-< 0 for i 0,..., .
By hypothesis (see condition (5) of Definition 4.2) there is an element
y0 Z [’1=0 Z such that y0 - 0. Consequently y0 Z and c(y0) < 0
for i 0, 1, 1. By virtue of (4.17), this implies that < 0. If
we now set /_.. (-/)c for i= 0,1, ..-, -1 and l_

=0 l_, (4.15) and (4.16) follow at once from (4.17).
It only remains to prove that (4.16) and (4.8) with c 5" imply thtt

l_ a_c, where a_ N 0. But it is easy to see that these hypotheses
imply that/_(x) 0 whenever c(x) 0, so that (see [1, p. 421, Lemma
10]), 1-i a-iCi for some real number a_. If x0 Z and x0 0, then
c(x0) < 0 and 0 N /_(x0) a._c:(x0), which means that a_ N 0.
THEOnE 4.2. Let z be a totally regular, or smoothly regular local solution

of a canonical optimization problem,. Then if K is a first-order, convex approx-
imation to Q z, there exist real numbers 1 m and a_ for i
not all zero, such that

(4.18)
al(x) + a_c(x) _-< 0 for all x coneK,
i=1 z

a_ <= 0 for i 9,..

If Z’ (0} (where Z’ is given by (4.5), (4.8), and (4.9)), the inequality in
(4.18) holds for all x 5. If z is smoothly regular, then, in addition,
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i=l Ez
Proof. Without loss of generality, and for ease of notation, we shall

again suppose that a,. {0, 1, }, where u _>_ 0. Let us first suppose
that Z’ {0}. It follows from Lemmas 4.4 and 4.5 and Theorem 4.1 that
there is a nonzero functional l* 5" such that

(4.19) /*(x) =< 0 _-< /*(y) for all x < coneK and y Z’.
Consider the following two subsets of Rm+"+2:

(* (x), h (x), ..., , (x), co (x) + 0, c (x) + ) x ,
for i= 0,1, u},

i-- 0 for i= 1,... ,m;(_i<0 for i= 0,1, ...,,}.

Recalling that the c are convex functionals, we see at once that
are convex sets. Further, it follows from (4.5), (4.8), (4.9) and (4.19) that $1
and $2 have an empty intersection. Since 0 is a limit point of both $1 and
S, there is a nonzero vector
Rm++2 such that . =< 0 -_< .’ for all S, ’ S, or

*/*(x) -t- aili(x) -t- a_c(x) < 0 for all x 3,
(4.20) = =0

If a* 0, (4.18) is an obvious consequence of (4.20). If a* < 0, we shall,
suppose, without loss of generality, that a -1. Then, (4.20) can be
written in the form

(4.21) a/i(x) + a_ici(x) =< /*(x) for all x 3,
=1 =0

and we conclude, on the basis of (4.19) and (4.21), that (4.18) holds. The
numbers a, i -,..., m, cannot all va.nish, for if a 0 for all i,
then (see (4.21)) l* (x) __> 0 for all x 5, which is absurd.
Now consider the case 10} It follows from Theorem 4.1 that there

are numbers c1, ,, not all zero, such that :-=1 /(y) _-> 0 for all
y Z. Consequently, the convex subsets

( ,,(x), c0(x) + 0, ..., c(x) + ) Ix 6 ,
i=1

,_-> 0 for i= 0,1,’",u}
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and (1, 0, (-1, -,) I < 0 for i 1, 0, -u} of .+2, which
have 0 as a common, limit point, are disjoint. Consequently, there are
nonpositive numbers , i 1, 0, -u, not all zero, such that

a/(x) + _c(x) 0 for all x 5,
i=l i=0

md, if we set a for i 1, m nd a_ - for i 0, ,
we hve the desired conclusion. The last statement of Theorem 4.2 follows
tt once from Definition 4.4.

Note 4.3. If z is totally regular, but not smoothly regular local solutions,
the necessary conditions expressed by Theorems 4.1 nd 4.2 are generally
quite distinct.

Note 4.4. The necessary conditions of Theorems 4.1 nd 4.2 do not
distinguish between 0 nd the functionls

_
for i 1 nd i 9. This

means that the form of these mcessry conditions is unchanged if, in the
original problem statement, the roles of the functional (0) to be minimized
nd fctionl (_, j 1) defining n inequality constraint re inter-
changed. Further, if, for some j -, ..., m, j 0,

(4.22) e-[(x0+ ey) (x0)] 0 /(x ;x0), where l(. ;x0) 3",

for every x0 (terior of W), the form of the necessary conditions (as-
suming that (4,15) and (4.16) hold in Theorem 4.1) will be unchanged if
the role of in the original problem statement is changed from that of
defining n equality constraint to that of defining n inequality constraint,
or vice verst (except that the requirement a 0 is present only if de-
fines n. equlity constraint). In particular, if (4.22) holds for every x0

( (interior of W) and j -, m, the form of the necessary condi-
tions (except for the sign of certain a) is invrint under n rbitrary
change or interchange the roles of the in the problem statement.
DEFINITION 4.5. A canonical optimization problem is convex if W is a

convex set nd the functionls 0, -, --, are convex.
THEOREM 4.3. Let z be a local solution of a convex canonical optimization

problem such that conditions (1)-(4) of Definition 4.2 are satisfied, and
suppose, in addition, that the fnctionals

_
for i 9 are continuous in W

and that there are elements y and y in W such that _(y) < _(z) for
every i and _i(z+ 0(y-- z)) > _i(z) for every O, 0 0 1,
and some j Then if K is a first-order, convex approximation to Q’ z,
there exist real numbers a a and a_ for i not all zero, such
that a_ 0 for i and

(x) + __(z + x) oo(Z)
(4.23) = z

for all x ( K) (W z).
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/f B Il II /0} (where B is given by (4.4) and (4.11) and II by (4.9)),
then the inequality in (4.23) holds for all x (W z).

Proof. It follows t once from our hypotheses that z is a regular local
solution where for each i 9,., the set Z, in condition (5) of Definitioa
4.2 is cone (interior of B). (It is easily seen that B is convex and has a
on.empty interior, so that Note 2.1 is applicable.)
The remainder of the proof parallels that of Theorem 4.2. Indeed, it is

only necessary to replace c(x)by [_i(z + x) _(z)] and 5 by (W- z)
in the arguments. Also, note tha,t B 1 II 10} if and only if Z
where Z is given by (4.5). We point out that if the hypotheses of Theorem
4.3 are satisfied, then the necessary conditions of Theorem 4.1 ulso hold
with Z cone (interior of B) for i
Now consider the following variant of the canonical optimization prob-

lem, which we shall refer to s a simple optimization problem.
Given two sets Q’ and W in a locally convex, linear topological space 5,

and real-valued functions , i 0, -1 -, defined on W, find an
element x W 1 Q’ that satisfies the inequalities _(x)=< 0 for
i 1, u, and which, in so doing, minimizes the value of 0
The simple optimization problem differs from the canonical one in that

there are no equality constraints in the former.
]?’or x W, we define the sets x and qx as before. A local sohtion of a

simple optimization problem is defined by an obvious modification ()f

Definition 4.1.
DEFINITION 4.6. A local solution z of a simple optimization problem is

regular if z - (interior of W) and conditions (4) and (5) of Detinition
4.2 are satisfied.

DE]i’INITION 4.7. A local solution z of a simple optimization problem is
totally regular if z (interior of W) and condition (4) of Definition 4.2 as
well as conditions (i), (iii), and (iv) of Definition 4.3 are satisfied.

DEFINITION 4.8. A local solution z of a simple optimization problem is
smoothly regular if, for every i g, (4.6) holds for some c

_
5", if z (in-

terior of W), if condition (4) of Definition 4.2 is satisfied, and if the rela-
tions , a-,ic O, a._ -<-- 0 for every i

Ez

imply that a_ 0 for every i E 9,..

The following lemma follows iu the same way as Lemmas 4.4 and 4.5.
LEMMA 4.7. Every smoothly regular local solution of a simple optimiza-

tion problem is totally regular, and euery totally regular local solution is regular,
where the sets Z in condition (5) of Definition 4.2 are given by (4.8).

If z is regular local solution of a simple optimization problem, it follows
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at once that 0 5 is a (Q, B)-extremal, where the sets Q and B are given
by (4.1.1) and (4.4).
The followhg theorems can now be proved on the basis of Theorem 2.2

in the same way that Theorem 4.1 and 4.2 were proved.
THEOREM 4.4. Let z be a regular local solution of a simple optimization

problem, and let K be a first-order, convex approximation to Q’- z. Then
there exists a nonzero functional l* . 5* such that l* (x) N 0 -<- l* (y) for all
x cone K and y Z (where Z is given by (4.5) and the Z for i -C g are as
indicated in condition (5) of Definition 4.2). Further, if 5 is a Banach space,
or if 9z {0}, or if Z is given by (4.8), with c 5", for all but one (or all)
i

_ , then l* 6sz l-i, where, for each i g z, (4.16) holds. If Z is

given by (4.8) for some i- , where c C 5", then (4.16) implies that
l_ o_c where o_ <- O.
THEOREM 4.5. Let z be a totally regular, or smoothly regular local solution

of a simple optimization problem. Then if K is a first-order, convex approxi-
marion to Q’ z, there exist nonpositive numbers a_, for i z not all
zero, such that ez a_:c(x) -<- 0 for all x cone K. If z is smoothly
regular, then, in addition, ez o_c :A O.

Note 4.5. The remarks of Notes 4.3 d 4.4 are lso pertinent for the
simple optimization problem a,nd Theorems 4.4 nd 4.5.
DE’NITION 4.9. A simple optimization problem is convex if W is a convex

set nd the functionals 0, -, - are convex.
The following theorem follows in the sme wy as Theorem 4.3.
THEOIE 4.6..Let z be a local solution of a convex simple optimization

prtblem such that z . (interitr tf W) and condition (4) of Definition 4.2
is satisfied, and suppose in addition that the functionals o_, for i
satify the hypotheses of Theorem 4.3. Then if K is a first-order, convex ap
proximation to Q’ z, there exist nonpositie real numbers c_ for i 9z,
not all zero, such that

a_o_(zq- x) =< a0v0(z) for all x (c K) f (W z).
i,J

We point out that if the hypotheses of Theorem. 4.6 are stisfied, then
the ..ecessary conditions of Theorem 4.4 also hold with Z cone (in-
terior of B) for i .

Note 4.6. The canonical optimization problem my be generalized to
the following-

Let there be given locally convex, linear topological spaces :I, 3’, nd
;sets and W in 5; cot..vex (tones Z and Za in 5’ and 5 respectively,

with both Z and Za having vertex tt 0 and a nonempty interior, and
functions , 0, ad ..-1 defined on W and taking on values in R :t, and
5", respectively. Then find an element x i W Q’ such that (x) 0,
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_l(x) Z, and such that the relations x’ W Q’, l(x’)= 0,
e-l(X’) Z3, [0 (x’) e0 (x)] Z2 imply that 0 (x’) 0 (x).
We can define a local solution of the generalized canonical optimization

problem by means of an obvious modification of Definition 4.1. Such a
local solution will be called regular if (1) z is an interior point of W and e
is continuous is a neighborhood of z, (2) relation (4.3) holds for i 1 with
11 a linear, continuous map from 5 onto Rm, and (3) there are cones Z0 and
Z1 which are internal cones at 0 for the sets

Bo {x]z + x W, [o(Z + x) o(Z)] Z, o(Z + x) Co(Z)/ U/Ol

B {xlz + x W, [,_(z + x) _(z)] Z} U

respectively, such that Z f’l Z0 3 and Z1 l Z0 {0}. A local solution
will be called totally regular if the preceding hypotheses (1) and (2) are
satisfied, if (4.6) holds for i 0 and i 1, where co and cl are certain
continuous functions from 5 to 5’ and 5", respectively, such that [c(x -t- y)

c(x) ci(y)] Z+, i 0 and 1, whenever x and y 5, c0-1(Z2)
1 c-(Z.) 5, and [c0-1(interior of Z2)] [c-l(interior of Z3)] is not
empty. Finally, a local solution will be called smoothly regular if it is
totally regular with co and c linear. A generalized canonical optimization
problem will be called convex if W is convex and if

[_(ax q- y) a,_.(x) f,p_(y)] Z+:
for i 0 and 1, all x and y

_
W, and all nonnegative numbers a and

suehthata-4- 1.
If z is a totally regular local solution, it is not difficult to show (the

arguments are almost identical to those used in the proof of Lemma 4.2)
that

Z [C/-1 (interior of Z:+e)] U {0}

is an hternal cone at 0 for B, i 0 or 1, as defined in condition (3),
from which it follows at once that z is also a regular local solution. Further,
if z is a regular local solution, it is easily seen that 0.is a (Q, B, F)-extremal,
where Q Q’ z, B B1 B0, and F(x) 1(z + x). Then, if K
is a first-order, convex approximation to Q, one can obtain, on the basis of
Corollary 3.1, necessary conditions for solutions of the generalized canonical
optimization problem which generalize those in Theorems 4.1 and 4.2.
Finally, if z is a local solution of a convex generalized canonical optimiza-
tion problem satisfying suitble hypotheses (in essence the same as those
in Theorem 4.3), then z can be shown to satisfy necessary conditions which
generalize those of Theorem 4.3.
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Note 4.7. In an entirely analogous manner to that indicated in. Note 4.6,
it is possible to define a generalized simple optimization problem, and to
obtain necessary conditions which generalize those of Theorems 4.4-4.6.

Note 4.8. The special case of the canonical or simple optimization prob-
lems where Q’ is convex is of particular interest, and is usually referred to as
a mathematical programming problem. (This name is most commonly
applied to simple problems, i.e., to problems with no equality constraints.)
If Q’ is convex and z Q’, then Q’ z is also convex, and is consequently
a first-order convex approximation to itself (see Note 2.2). Thus, all of the
necessary conditions in Theorems 4.1-4.6 hold (under the appropriate
hypotheses) with K Q’ Zo

The mathematical programming problem wherein Q’ 3 is an important
special case which exhibits some particularly interesting features. If z is a
regular local solution of such a problem which is canonical in form, z
satisfies all of the necessa,ry conditions of Theorem 4.1 with K cone K

3. Then (4.12) and (4.1.4) imply that

(4.15) and (4.1_6) also hold under the indicated additional hypotheses.
If z is totally regular, then the necessary conditions of Theorem 4.2, with
K cone K 5, are also satisfied, and if, in addition c . * for each
i g., then (4.18) implies that

On the other hand, if the problem is simple in form, there can be no regular
local solutions (otherwise, according to Theorem 4.4, there would be ,t

nonzero functional l* 5" such that l* (x) _-< 0 for all x 5, which is
absurd). Thus, if z is a solution of such a problem such that z (interior
of W), and such that conditions (4) and (5) of Definition 4.2--with the
exception of the requirement that Z /0}--a,re satisfied, then Z f’l.E az Z

{0}. This means that for some j az and some subset a,’ of a,., the
cones Zi and ([’lea, Z) have a nonempty interior and have only 0 in
common, and consequently are separable;i.e., there is a nonzero functional
l_i 5" such that/_.(x) _-< 0 =< /_i(y) for all x f’lea, Z and y Z..
If 5 is a Banach space it then follows from Lemma 4.3 that there are func-
tionals l_ for every i st,, not all zero, such that ea. l_ 0 and
(4.16) holds (the requirement that 5 is a Banach space can be replaced by
other hypotheses as indicated in Theorem 4.1). If, in addition, conditions
(i) and (iii) of Definition 4.3 are satisfied, we can show, arguing as in
Theorem 4.2, that there are nonpositive numbers a_, not all zero, such
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that icez a-ici(x) _-<. 0 h)r all x - 5. Finally, if the programming prob-
lem is convex, then there are nonpositive numbers a_i, not all zero, such
that

__(z + x) __< ovo(z)
iEz

for allx (W- z).
Note 4.9. The programming problems described in Note 4.8 can, of

course, be generalized as indicated in Notes 4.6 and 4.7.
The necessary conditions of Theorems 4.1-4.6, for solutions of the mathe-

matical’ programmig problems described in Notes 4.8 and 4.9, generalize
the well-known Kuhn-Tucker conditions satisfied by solutions of mathe-
matical programming problems in finite-dimensional spaces, as well as the
Lagrange multiplier rule in the ordinary calculus.

5. Relation to earlier work. Variational problems in infinite-dimensional
spaces were first formulated almost thirty years ago. Indeed, Goldstine, in
1937 [5], obtained a Lagrange multiplier rule valid in Banach spaces. Kuhn-
Tucker conditions in Banach spaces were obtained by Hurwicz [6, p. 99,
Theorems V.3.3.4 and V.3.3.5] for (what we referred to as) simple mathe-
matical programming problems, generalized as indicated in Note 4.6 (indeed
the definitions in Note 4.6 were motivated by Hurwicz’s problen state-
ment), but with the requirement of Fr6chet differentiability or convexity
for the constraint and minimizing functionMs.

Simple convex mathematical programming problems (in our terminology)
in Banach spaces were considered in [9]. The necessary conditions presented
in [9, 2] are essentially included in our necessary conditions as discussed in
Note 4.8.
The concept of an internal cone was introduced in [7, 2] by Dubovitskii

and Milyutin under the name of "cone of forbidden variations". The idea
of a convex differential defined by (4.6) is also found in [7, 6] in a slightly
different, but equivalent form (with the term "uniform differentiability").
As will be seen in Part II of this article, and as was also shown in [7], these
differentials arise when one wishes to find necessary conditions for solutions
of optimal control problems with restricted phase coordinates, or of mini-
max control problems. Lemma 4.3 (in a slightly more general form) was
stated in [7, Theorem 3.1] without proof; a proof was presented in [9] (see
[9, Corollary 2] from which Lemma 4.3 follows at once).

Indeed, in [7] a problem very similar to our canonical optimization prob-
lem was considered. The problem in [7] was less general in that the under-
lying space 5 was a Banach space, md in that the set Q’ was the entire space
5. It was more general in that the equality constraint neither had to be
finite-dimensional nor had to be differentiable (in the sense that (4.3) had
to hold). However, no counterpart of Theorems 2.1 and 2.2 was proved in
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[7]. Roughly speaking, a theorem analogous to TheoreIn 4.1 for the case
Z fl 1I {0} was obtained, under the assumption that the points in 5
which satisfy the equality constraints lie on a "surface" which has a tan-
gent "cone" (analogous to our II) at the solution point z. General condi-
tions under which such a surface and tangent cone exist were not given.
As will be seen in ]_)art II, the set Q’, and its first-order convex approxima-

tion K, make it possible to handle a very broad class of differential equation
constraints in a very simple and natural manner. In [7], such constraints
were considered to be equality-type constraints (analogous to our i for
i > 0) which turned out to be very difficult to take into account even in
conventional optimal control problems.

Preliminary results on the subject matter of this paper were presented in
IS].
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CONSTRAINED MINIMIZATION PROBLEMS IN
FINITE-DIMENSIONAL SPACES*

M. CANON, C. CULLUM, AND E. POLAK

Introduction. The entire approach to constrained minimization prob-
lems in finite-dimensional spaces, as found in the field of optimal control,
is substantially different from the approach to these problems found in
mathematical programming. Furthermore, within each of these fields, one
finds a diversity of methods and points of view. The purpose of this paper
is to exhibit a unified approach to constrained minimization problems in
finite-dimensional spaces and to show that most of the known necessary
conditions for optimality are straightforward consequences of a fairly
simple, but all-encompassing theorem.

Section 1 is devoted to formulating the Basic Problem, i.e., the form
into which most of the known finite-dimensional constrained minimization
problems can be transcribed. A necessary condition for the optimality of
a solution to this Basic Problem is then derived by a geometric method,
first used by NicShane [1] in the calculus of variations and subsequently
greatly popularized by Pontryagin, Boltyanskii, Gamkrelidze, and M:i-
shchenko [2] in their derivation of the maximum principle. The necessary
condition, for the Basic Problem is stated as an inequality which must hold
for all the elements in a cone which is a suitable linearization of the con-
straint set. The wide range of applicability of this theorem is substantially
due to the fact that one has a great deal of freedom in choosing this line-
arization cone.

Section 2 is devoted to transcribing a wide variety of minimization prob-
lems into the form of the Basic Problem, to rederiving many classical
necessary conditions, and to obtaining several new ones. In particular, it
is shown that classical Lagrange multiplier theory, the results of Fritz
John [3], Kuhn and Tucker [4], and NIangasarian and Fromovitz [5], in
nonlinear programming theory, and the results of Jordan and Polk [6],
Halkin [7], and Holtzman [8], in discrete optimal control theory, can all
be obtained from the necessary condition for the Basic Problem. In addi-
tion, several new results are obtained for bounded state space, discrete
optimal control problems. Presently known necessary conditions for certain
bounded state space problems, such as those obtained by Rosen [9], can
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be seen to be special cases of the more general results presented in this
paper.

It is the author’s hope that the unified approach to constrained mini-
mization problems in E, presented in this paper, will facilitate the mastery
of the subject and will lead to a deeper and more fruitful understanding
of minimization problems in general.

1. The Basic Problem.

1.1. Statement of the Basic Problem. Let f"E -- E and r"E --* E be
continuously differentiable functions, and let 2 c E be a subset of E. The
Basic Problem can be stated as follows"

Find a vector C E such that

(i) 2 It, r(2) 0,
(ii) for all z with r( z O, f 2 <= f z

We shall call a vector 2 satisfying (i) and (ii) an optimal solution to the
Basic Problem.

1.2. llecessary condition for optimality. The necessary condition to be
derived will be stated in the form of an inequality which is valid for all
tiz (tiz1, tiz2, ,/tz) in a convex cone "approximation" or "linearization"
of the set . We shall make use of two kinds of "linearizations" of the set
at a point z. The first one will be defined after a review of needed terminology
and notation; the second one will be defined after the proof of Theorem 1,
to obtain an extension.
A set C is a cone with vertex x0 if for every x C, x0,

x0 -- k(x x0) C for 11 > O.Siace the vertex x0 of the cone C will
normally be obvious, we shall omit mentioning it. The notation
co z, z -t- dz, z - ez} denotes the convex hull of z, z -- dz,
z + ez, i.e., the set of 11 points y of the form

y 0z -t- (z + {iZ1) -- + k(Z - Zl),
where =0t 1, >__ 0 for all i.

DEFINITION. A convex cone C(z, t) E" will be called a linearization of
the first tcind of the constraint set 2 at z if for any finite collection
{iz, tiz:, tiz} of linearly independent vectors in C(z, ) there exists an
e > 0, possibly depending on z, tiz, tiz, tiz, such that co z, z -t- diz,
..,z+z}
If the cone C(z, ) is a linearization of the first kind, then for every

tiz C(z, 2) there exists an el > 0 such that z + diz for all such that
0 =< e -< e. The largest cone having this property is given a special name.

DEFINITION. The radial cone to the set t at a point z 2 will be denoted
by RC(z, ) and is defined by
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RC(z, it) 6z" there exists an el(z, z) > 0 such that

z + ez whenever 0_<_

Whenever the radial cone RC(2, ) is linearization of the first kind, it
contains all the other linearizations of the first kind of the set at 2. Conse-
quently, in the various theorems to follow, the radial cone RC(2, ) should
always be used if possible, since this will result in stronger necessary con-
ditions.

Next, we define the C() map F" E -- Em+ by

F(z) (f(z), (z) ).

We shM1 number the components of Em+I from 0 to m, i.e., y E+ is given
by y (y0, y, ym). The Jacobin matrix (OF(z)/Oz) of the mp F(z)
will be denoted by OF(z)/Oz.

For the Basic Problem stated above, the following theorem gives a neces-
sary condition for optimality.
THEOREM 1. If 2 i8 an optimal solution to the Basic Problem, and C(

is a linearization of the first kind of at , then there exists a nonzero vector
(o, 1, ,) E,+, with b <= O, such that for all z C(2, ) (the

closure of C(2, ) in E),

OF(2)() {,--- z} <_ o.

Proof. Let K(2) E+1 be the cone defined by

(2) K(2) OF(k) C(2, ).
Oz

K(2) is convex because C(2, 2) is convex nd OF(2)/Oz is a linear map. Let
9 F(2). We shall now show that the cone K(2) must be separated from
the ry

(3) R {y’y /(-1, 0, ..., 0), =>= 0},

i.e., that there must exist a nonzero vector E+ such that

(i) (,y} -< 0 for every y K(2),
(4)

(ii) (,y} =>- 0 for every y R.

Suppose that the cone K(2) :rod the ray R are not separated. Then the
cone K(2) must be of dimension m + 1 d R must be an interior ray of
K(2) (i.e., M1 points of R except the origin are interior points of K(2)).

Let us now construct in the cone K(2) a simplex 2; with vertices 0, y,- "+y, y such that
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(i) there exists a point on R, @0 ( 1, 0,
in the interior of , ,0) with , > 0, which lies

(ii) there exists a set of vectors z C(2, ft) satisfying

0F()(5) y tiz, i 1, ..., m -t- 1,
Oz

and such that

(6) co{, + tz, + z+} c a.

It is possible to satisfy (i) because R is an interior ray of the (m q- 1)-di-
mensional cone K(), and it is possible to satisfy (ii) because C(2, ) is a
linearization of the first kind. Note that the vectors tz, i 1, .-., m -- 1,
are linearly independent since the vectors yl, 8y2, @m+l are linearly
independent.

Since y0 is an interior point of 2:, there is a number r > 0 such that the
sphere of radius r with center at @0 is contained in 2:. For 0 < a -<_ 1, let
S be the sphere of radius ar with (tenter at a@. Clearly S 2: whenever
0 < a <= 1. For each fixed a, 0 < a _<- 1, we now define the map G from
S {a@} into Em+ as follows. For any x S {a@}, let

(7) G.(x) F(2 --H ZY-I(a@ --H x)) (! -t-

where Y is an (m + 1) X (m -I- 1) matrix whose ith column is tiy, i 1,
m + 1, and Z is :mn X (m + 1) matrix whose ith column is z. The

matrix Y is invertible because the y form a basis for Em+l by construction.
Expanding the right-hand side of (7) about 2, we get

(8)
v. (x) ) + OF(,)_ ZY- (a6y + x) () A- aSy)

Oz

-l- o(ZY-(ay -t- x) ),

where o(-) is a continuous function such that limli:ll01 o(,v)l]/ll y o.
By definition, (OF()/Oz)Z Y, and hence (8) simplifies to

(9) a,(x) x -t- o(ZY-(ay -I-- x)).

Now, for x O(S. {atiy} (the boundary of the sphere), x and
we may write x ap, where pl r. Hence for x ff O(S {a@}),
(10) G.( apl) Olpl .2[_ o( oZy-l(@ -t- 01)).

*By definition of o(. ), there exists an a 0 < a* <- 1, such that for all
pl Ere+l, with ol r,

(11) (*ZY-l(Y A- pl))]l < a r.
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We now conclude from Brouwer’s fixed point theorem (see Appendix) that
*tythere exists an 2 S, /a such that

(12) G.(2) 0,

i.e.,

{(13) F( - ZY-I(o y + 2)) + a*y.
Now + a*Sy col (f() a , 0, 0, 0), where ) 0. Thus, ex-
pnding (13),

() r( + zY-( *y + )) 0

nd

(1) ( + zY-l(*y + )) f() < f().

Furthermore, because of (6) nd the fct that for ny y in the simplex ,
the vector z + ZY-y belongs to co , + z, + zm+},
(16) + zY-(*y + ) .
Hence 2 is not optimal, which is contradiction. We therefore conclude that
the cone K(2) nd the ry R must be separated, i.e., there must exist non-
zero vector E+ such that

(17) (,y) 0 for every y K()

nd

(18) (,y) 0 for every y R.

Substituting (2) in (17), we hve

OF(2) z) < 0 for every z C(,)(19) (’ 0
Clearly, (19) must lso hold for every z C(2, ). Substituting for y from
(3) iato (18), we hve

(0) (, 1, 0, ..., 0)) _0 0.

This completes the proof.
It hs been pointed out by Neustadt [10] that Theorem 4 remains wlid

under the relaxed ssumption that C(, ) is liaeriztion of the second
kind of t , defined s follows.
DFNTON. A convex cone C(z, ) E will be clled linearization of

the second kind of the constraint set t z, if, for ny finite collection
{z, z:, z} of linearly independent vectors in C(z, ]), there exists n
e > 0, possibly depending on z, z, z, nd continuous mp from
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co {z, z + ez1, z + ezk} into ], such that f(z + iz) z + tiz + o(tiz),
where limllll0 o(z)]l/ll z o.

Remark. We observe that if C(z, ]) is a linearization of the first kind of
at z, then it is also a linearization of the second kind of at z, with the map
being the identity. Thus, unless we have specific cause to indicate whether

a cone C(z, t) is a linearization of the first or second kind, we shall refer to
it simply as a linearization of at z. We now restate Theorem 1 in this form.
THEOaE 1’. If 2 is an optimal solution to the Basic Problem and C( 2, is

a linearization of at 2, then there exists a nonzero vector (b,, ") E’+with b <= O, such that for all z C(2, ), (the closure
of (, ) in E),

OF(2) z} < O.< --0

The reader may easily modify the proof of Theoren 1 so as to apply to
Theorem 1’. Finally, it should be pointed out that all conditions such as con-
tinuity, differentiability, etc., imposed on the various functions need only
hold in. a neighborhood of the optimal point.

2. Applications. We shall now show how number of classical optimiza-
tion problems can be cast i the form of the Basic Problem, and we shll
then apply Theorem 1 or Theorem l’ to rederive several classicM condi-
tions for optimality, as well as to obtain some new ones.

2.1. Classical theory of Lagrange multipliers. The classical constrained
minimization problem admits equality constraints only. Thus, it is the
Basic Problem with gt E, the entire space. Clearly, E is a linearization
of the first kind for E at any point z E.

Thus, we conclude from Theorem 1 that if is an optimal solution of the
Basic Problem, with E, then there exists a nonzero vector E+1

such that

OF(k) z} < 0 for all tiz E.(21) (, --This may be rewritten as

\ 0z /
’iz} <__ 0 forall tiz E.

Since for any tiz E, -z is also in E, we conclude from (22) that

(23) \---/ 0.



534. M. CANON, C. CULLUM, AND E. POLAK

Now, (OF(2)/Oz) r is an n X (m-t-1) matrix with columns Vf(2),
Vrl(), vrm(), where

k 0z ’’"’ Oz k f ’"’’ 0z

We may therefore expand (23) into the form

i=l

We have thus reproved the following classical result.
THEOREhl 2. Let f, r, r, r be real valued, continuously derentiable

funclions on E. If 2 E minimizes f(z) subject to the constraints r*(z) O,
i 1, 2,... m, then there exist scalar multipliers, o, 1, , not all
zero, such that the function H on E’, which they define by

H(z)
i=l

has a stationary point at z i, i.e., (24) is satisfied.
It is usual to ssume that the gradient vectors Vr(z), i 1, 2, m,

are line,My independent for ll z such that r(z) O. This precludes
’% Vr(2) 0 and hence in (24), 0 0. Multiplying (24) by 1/
and letting /0, i 1, 2, m, we now deduce the more commonly
seen condition.
THEOREM r, r be real valued, continuously dfferentiable

.functions on E. ( i minimizes f(z) subject to r*(z) O for i 1, 2, m,
and the gradient veclors Vr(2), with i 1, 2, m, are linearly independent,
then there exists a vector E such that the real valued Langrangian L on

’ defined byEn.

(26) L(z, X) f(z) + Xr(z)
i=l

has a stationary point at , ).
We note that by (24), OL(2, )/Oz 0 md that OL(2, )/0 r(2)
0, by assumption.

2.2. Nonlinear programming. Let f E" -- E1, r" E E, and q"EE
be continuously differentiable functions. The standard nonlinear program-
ruing problem is that of minimizing f(z) subject to the constraints that
r(z) 0 and q(z) 0.

This corresponds to the special case of tim Basic Problem, with
{z’q(z) 0}. We shall now show how Theorem 1 can be used to obtain.

various commonly known necessary conditions for . to be optimal. The
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presentation is divided into two parts. It should be noted that the necessary
conditions obtained in Part I are stronger than those obtained in Part II.
Given a particular point z f, we shall often have occasion to divide the

components of the inequality constraints functions, q, i 1, ,/, into
two sets; those for which q(z) 0 and those for which q(z) < 0. To
simplify notation we introduce the following definition.

DEFINITION. For z ft, let the index set I(z) be defined by

(27) I(z) {i:qi(z) 0}.
The constraints q, i I(z), will be called the active constraints at z. We
shall denote by I(z) the complement of I(z) in {1,

Part I. The set 2 {z: q(z) =< 0} introduced above is assumed to satisfy
the following condition:
ASSUMPTION (A1).I Let 2 be an optimal solution of the nonlinear

programming problem. Then there exists a vector h E such that

(Vqi(2), h} < 0 for all i I(2).

A sufficient condition for (A1) to be satisfied is that the vectors
i I(2), be linearly independent (see Corollary to Lemma 3).

DEFINITION. For any z t, the internal cone of at z, denoted by
IC(z, ), is defined by

IC(z, ) {z:(Vq(z), z} < 0 for all i I(z)}.

By Assumption (A1), the convex cone IC(2, t) is nonempty. It is a simple
exercise in the use of Taylor’s theorem to prove the following lemma.
LEMMA 1. If IC( z, # 2f, the empty set, then

(i) IC( z, is a linearization of the first lcind of at z,

(ii) IC(z, ) {z:(Vq(z), z} <= O for all i I(z)}.

When specialized to the nonlinear programming problem, Theorem 1
assumes the following form.
THEOREM 3. If 2 is an optimal solution to the nonlinear programming prob-

lem, with (A1) satisfied, then there exists a nonzero vector Em+l, with

b <= O, such that for all

z IC(2, ) {tiz:(Vq(2), z) 0 for all i I(2)},

< o,

where It(z) f(z) + lr(z).
When some of the functions q, I(z), re liner, it suffices to require that there

exist vector h E such that (Vq(z), h} =< 0 for these functions nd (Vq(z), h} < 0
for the remaining functions q, I(z).
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Using Theorem 3 and Farkas’ lemma (see [16]) we obtain the following
necessary condition for optimality, which is in a form more familiar to
specialists in mathematical programming.
THEOREM 4. If is an optimal solution to the nonlinear programming prob-

lem, with (A1) satisfied, then there exist a nonzero vector b E"+, with
b <- O, and a vector t E, with t <= O, such that

i=1 i-l

and

(ii) uq(2) 0.
i=1

Proof. From Theorem 3,

(OH(2) z) < 0OZ

for all iz such that (Vqi(), tiz) <__ 0, i I(2). By Farkas’ lemma, there exist
scalars i -< 0, i I(), such that

OH(k) + .vq() =o.
OZ ir()

Let 0 for i C I(2)c. This completes the proof.
Most of the other well-known necessary conditions for nonlinear program-

ruing problems can be obtained from Theorem 4 by making additionM as-
sumptions on. the functions r and q. For example, the following corollaries
to Theorem 4 are immediate consequences of that theorem.
CO,-OLLAY 1. If Assumption (A1) is satisfied and the vectors Vr(),

i 1, m, are linearly independent, then any vector E"+, E,
which satisfy the conditions of Theorem 4 are such that @o, t} O.
COROLLAtY 2. Ij’ Vr(2), i 1,..., m, together with Vq(2), i I(),

are linearly independent vectors, then any vector b E’+ satisfying the con-
ditions of Theorem 4 also satisfies o < O.
The assumption in Corollary 2 is a well-known [11] sutficient condition

for the Kuhn-Tucker constraint qualification to be satisfied. When it is
added to Theorem 4 we obtain a slightly restricted form of the Kuhn-
Tucker theorem [4].
COOLLARY 3. If there exists a vector h E such that {Vqi(2), h) < Ofor

all i I(2), (Vr(2), h} 0 for i 1,..., m, and the vectors Vri(),
In practice, the Kuhn-Tucker constraint conditions can rarely be shown to be

satisfied unless the restrictions imposed in Corollaries 2 and 3 hold.
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i 1, m, are linearly independent, then any vector E’+ satisfying
the conditions of Theorem 4 also satisfies b < O.

Proof. Assume 0 0. Tking the sclr product of both sides of (i) in
Theorem 4 with the hypothesized vector h, one concludes that 0 and
hence k 0, contradiction.
The assumption in this corollary is a sufficient condition for the weakened

constraint qualification [13] to be stisfied. Augmented by this assumption,
Theorem 4 becomes a slightly restricted form of the Kuhn-Tucker theorem
with the weakened constraint qualification.

Part II. We shall now derive a necessary condition for the nonlinear
programming problem which is not based on Assumption (A1) nd hence is
weaker thn the necessary condition stated in Theorem 4. This condition
ws first proved by Mngasarin and Fromovitz [5] using the implicit func-
tion theorem and a lemma by Motzkin [12].
Whenever Assumption (A1) is not stisfied, it is possible to show that the

vectors Vqi(2), i I(2), cn be summed to zero with nonpositive scalars.
This is established in the following lemma.
LEMMA 2. Suppose that Assumption (A1) is not satisfied for the set

t {z: q(z) -_< 0}. Then there exists a nonzero ector E, with <= O, such

(i) gVq(2) 0,
i=l

(ii) iq (2) 0.

Proof. Consider the linear subspce of E,
L {v’v ((h, Vq’(2)}, (h, Vq(2)}) with h

ndwhere {i,i,... ,i} I()}.

By hypothesis L hs no rys in common with the convex cone

C {, v (v ,v ), with v < 0 for j 1,. ,a}.

ttence L can be separated from C, i.e., there exists a nonzero vector E
such that

(i) (.v} 0 for all v ,
and

(ii) (,v} 5 0 for all v L.

It is obvious from (i) that O. Since L is a linear subspace, (, v} 0
for ll v L, which implies that

that
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and therefore

(Vqi;(2),h} 0 for all hEn,
’=1

If we now let t, 3J when i i.; I(2), and t, 0 when i I(2)c, then
(/, k) is the desired vector.

COIOLLAI. A sufficient condition for the Assumption (A1) to be satisfied
is that the vectors Vq(2), i I( 2 be linearly independent.
Lemma 2 may be combined with Theorem 4 to give a necessary condition

for optimality which does not require that (A1) be satisfied. For this, the
most general case of the nonlinear programming problem, we obtain the
following necessary condition for optimality.
TItEOREM 5. If is an optimal solution to the nonlinear programming prob-

lem, then there exist a vector E"+ and a vector t* E, with o 0 and
<= O, and not both zero, such that

(ii) E iq(2) 0.
i=l

Proof. If (A1) is satisfied, Theorem 5 is slightly weaker statement of
Theorem 4. If (A1) is not stisfied, let t be the vector specified in Lemm 3,
nd let 0.

Finally, we note that if we let r -= 0, Theorem 5 becomes the well-known
Fritz John necessary condition for optimality [3].
We hve thus shown that most of the known necessary conditions for

nonlinear programming problems, previously derived by diverse nd often
unrelated techniques, cn now be obtained simply by pplying Theorem 1
nd Farks’ lemm.

2.3. Optimal control. In the field of optimal control of discrete time
systems, necessary conditions for optimality have been developed by
Jordan and Polak [6], Halkin [7], Holtzmn [8], and Rosen [9]. By recasting
the optimal control problem in the form of the Bsic Problem, it is pos-
sible to obtain from Theorem 1 and 1’ essentially all of the above men-
tioned results in unified manner. Furthermore, the derivation given in
this paper is significantly simpler in most cases. In addition, Theorems 1
and 1.’ together with Farkas’ lemma yield necessary conditions for opti-

and

(i) + E + E/Vq (e) 0
i=l i=l
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reality for a class of bounded state space problems, a result which, is new
with this paper.
The general optimal control problem that we will consider takes th.e

following form:
Given a system described by the difference equation

(28) Xiqt-1 Xi fi(x, Ui), Xi .En, Ui Em, i 0,... ]c l,

find a control sequence (Uo, u, u_) nnd corresponding trajectory
(x0, x, x) such that

(i) u U E for i 0, k 1 (control constraints),

(ii) x C {x:q(x) <= 0}, q:E-> E, i O, ]c (state

spce constraints),

(29) and, in ddition, the initial nd terminal states, x0 nd x, stisfy

(iii) go(xo) O, go:E’--> E (initial manifold constraint),

(iv) g(x O, g E - E (terminal mnifold constraint),

and such that .Zf (x, ui) is minimized.

We make the following assumptions on the various sets and functions
appearing above.
ASSUMPTIONS.

(a) fi:E" X E -- E is a C() function for i 0, ]c 1.

(b) For every u Ui, and for all i 0,... lc 1, the radial
cone RC(u, Ui) is a linearization of the first kind for U
at u.

(30) (c) go and g are C(1) functions whose Jacobian matrices have rank
l0 and l, respectively.

(d) For all x , i 0, ]c, the grtdients of the active con-

straints, Vq(x), j I(x), (see (27)) are linerly inde-
pendent vectors.

(e) fo :E, X E --> E is C() function for i 0, ]c 1.

This problem may be reformulated in the form of the Basic Problem, i.e.,
lminf(z):r(z) 0, z }, by making the following identifications. Let
z (x0, x, x, u0, u_) E(+l)+t:’; and let f, r, and 3 be de-
fined by

(i) f(z) f(x.i,
i--=O
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-Xl X0 f0(x0, U0)

(31) (ii) r(z) xk xk_ _(xi_1, u_l)

go(xo)

’g(x

(iii) 9. 0 X 1 X ]k (-0 U1 Uk-1.

Clearly f and r hve the required differentibility properties. The cone

C(z, ) IC(xo, o) X X IC(x, ) X RC(uo, Uo)
(3)

RC(u_, U-I),

where IC(x, ) and RC(u, U) were defined earlier, is obviously
linearization of the first kind for t z since assumption (d) and Lemma 3
guarantee that IC(x, ) is nonempty for every i 0, k, and by
Lemm 1 it is a linearization of the first kind for l] at x, while RC(u., U),
for i 0, ]c 1, is linerization of the first kind by ssumption (b).
Therefore, we may apply Theorem 1, from which we conclude that if 2 is an
optimal solution to the optimal control problem, then there exists a nonzero
vector (p p0), with 0 and (-p, -p, 0, ), where
p E", p0 E, E, such that

(3a) (o4 ),az}+(, z_<O

for all 5z C(2, t). Substituting for f and r in. (33) and expanding, we get

Ox Ox

for every/ix (Xo, ,/ix,/iu0, /tu_) C(2, 2).
The usual form of the necessary conditions in terms of Hamiltonian,

djoint equution, transversality conditions, etc., are obtained by consider-
ing special forms of iz. The conditions obtainable by this procedure are sum-
mrized in Theorem 6 below.
THEOREM 6. If fCO : o t_) i8 an optimal solution

to the optimal control problem, then there exist vectors po, p,’" pk in
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En, )0, X1 kk Xi C Eni, with <- O, o E, . E, and a scalar
pO O, such that

not all of the quantities pO, po p p are zero;

(ii) p, p+
Of(, ) r

O P+ Ox P

+ q
h, i 0,1,2, ...,k-- 1;

(iv) p0 LA ,0;

(v) (x, q,(,)) o, i o, ..., ;
(vi) [Of(2’ ’)r

+ oi p+l, u} 5 0

2br all u RC(, U) and all i O, 1, ..., 1.

To prove all of the bove conditions would be somewhat lborious. There-
fore, we will only derive (vi) to demonstrate how one proceeds.

Let z (0,..., 0, u, 0,..., 0) with u RC(, U). Clearly
z C(2, ), and (34) reduces to

of ( ) of,(, ) u} < o.p u (p+,
Ou Ou

Simple rearrangement yields (vi).
It should be remarked at this point that the derivation of conditions (ii),

(iii), and (v) requires the use of Farkas’ lemma (see [16]), while (iv) is
simply a definition.
To the authors’ knowledge the above, quite general, necessary conditions

have not been obtained previously, although Rosen [9] did obtain a similar
result under substantially more restrictive assumptions on the sets Ui.

In the special case where there are no state space constraints, i.e., qi 0
for i 0, ,/c, Theorem 6 reduces to the following.
COROLLARY. If the functions q =- 0 for i O, l, and is an optimal

solution to the optimal control problem, then there exist vectors po p in
E", to E, t E, and a scalar po =< O, such that

not all of the quantities pO, po p are zero;
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pi+l - IofiO(i ti)

for all u RC(ti, Ui) and all i O, 1, ..., tc 1.

i= 0, ..-,k 1;

(i) There are no state space constraints other than the initial and
terminal manifold constraints, i.e., qi 0 for i 0, 1,

(ii) Assumptions (a) and (e) for the optimal control problem are
replaced by the following, respectively:

(a’) For every u Ui, the functions f(., u), i 0,
]c 1, are continuously differentiable on En.

(e’) For every u U, the functions f0( ", ui), are continu-
ously differentiable functions on En.

(iii) Assumption (b) is replaced by the following:
(b’) For every x E and every i 0, 1, lc 1, the sets

fi(x, Ui) are convex, where f:E }( E’-E+1 is defined
by f(x, u) [/(x, u), f(x, u)].

The reformulation of the Halkin problem as a Basic Problem differs only
slightly from that used for the optimal control problem. First, we introduce
new variables v (v, v) En+ with v (v1, v, v) E where
i 0,... k 1. Then we let z (x0, Xl,..., x, v0, v_l)
E(+)n+k(n+), and we define the functions f and r and the set by

(35)

This is the condition derived by Jordan and Polak [6].
A maximum principle. Halkin [7] and Holtzman [8] have shown that by

making some additional assumptions, condition (v) in the above corollary
may be replaced by a stronger condition, which is usually called a maximum
principle. Both Halkin’s and Holtzman’s results can be obtained from
Theorem 1’, but, for simplicity,.we shall only show how Halkin’s results are
obtained.
The optimal control problem considered by Halkin differs from the op-

ritual control ,problem stated at the beginning of this section in the following
way:
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(i) f(z) v,
i=0

(36) (ii) r(z)-

go(xo)

(iii) f /z (x0, xk, v0, vl_l)’x E,
v f(x, U) for all i 0, 1, ,/c 1}.

Let 2 (a0, 2k, fro, frk-1), where fr f(2, ), U, be
the optimal solution. For the linerization of the set at , we tke the cone

C(2, ) (z’z (Xo, ..., x, v0, -.., v_), with x E

every i 0, ---,k 1}.for

Clearly C(, ) is convex cone. We shall now show that C(,
linearization of the second kind of at .

Let az1, az be any finite collection of linearly independent vectors in
VC(, ), with az (ax0*, x, av0, a -1). For each i 1, r,

and for each j 0, lc 1, there exists an e/> 0 such that

+ /(v 0f(2’ ) )i / f(, u).

As consequence, there exist n > 0 nd vectors u/ U such

+ 5(,

for everyi 1,.-., r,ndj 0,..-,k- 1. Let C0 co {2,2 + Sz,
2 + z}. Let z C0 be rbitrry, nd let z z 2. Then we my write

z ez, where 0, N 1;
i=l i=1

or z Z, where Z (ez, ez, ez) is a magrix wigh columns
and (1, ..., /.) is an r-veegor. For every z 0, he vector is
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uniquely determined by the expression Yaz, where Y is a matrix whose
rows y, i 1,... r. satisfy (yi, eaz’) ii, the Kronecker delta, for
i,j 1,-.-,r.
The map ’Co --> t is defined as follows. For every z (x0, xk,

v0, vk_l) Co and corresponding tz (x0, xk, avo, 5v_1)
z 2, let g’(z) (Xo, x, w0, w_l) with

w f.(x, .) + t,(z)[f(x:, u) f.(x., .)],
(39)

j o,...,- .,
where t(az) (l(z),.-. r(az)) Yaz, and u.i, i 1, r,
j 0,
because of the convexity of f(x, U). Since it is clear that g’(z) is continu-
ously differentiable, the reader may verify that (z) is the identity map plus
o(z 2), as required in the definition of a linearization of the second kind,
by expanding
Theorem 1’ may now be applied to this problem to obtain the usual

separation results, i.e., if 2 (2o, 21, 2, 0, 1, k--1) is an op-
timal solution to the Halkin problem, then there exists a nonzero vector

= (p0,r) withp0 =<0andr (-pl, ,--pk,o,),wherep E,
for each i 0, 1, ,/c. t0 E, E, such that

Po
i=o i=o Ox

(40)
+ (,

ag()
a:,) =< o

Ox

for all az (aXo, 8x, 8Vo, ave_l) C(2, ]). By taking appropri-
ate perturbations we cgn obtain Halkin’s necessary conditions [7].
THEOREM 7. If (0, gl, -1) i8 an optimal control sequence and

2o 21, 2) is a corresponding optimal trajectory for the Halkin problem,
then there exist vectors po, p E’, to E, t E, and a scalar
pO <= O, such that

not all of the quantities pO, po pk are zero;

(ii) p_p+l=IOf(2,ti)lX p+l Zr- Of
Ox

pO, i O, ...,t l

(iii) p
L b- t

_VO o( o)l(iv) p0 L ax j to;
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(v) pOfO(2, u) + (Pi+l ,fi(i, u)} -- pOfO(2,, ) + (P,+I ,f(2,,

all u U and all i 0,1, 1.

The reader can obtain most of the results by straightforward substitution
of appropriate perturbations, z, in (40). We shall prove only (v).

Let z (0, v, 0), with v RC(, f(2, U)). This is
certainly an admissible perturbation, and, for such z, (40) reduces to

(41) pv + (p+,v} 0 for all v RC(#,f(2, U)).

Since f(2, U) is a convex set, the vector f(2, u) f(2, ) belongs to
RC(#, f(2, U)) for every u U. Therefore, from (41), we get

p0?(,, u) fo(,, ,)] + (p,+, f(,, u) f,(,, ,)) o
for every u U. Condition (v) follows immediately.
Holtzman obtained exactly the same result as Halkin, (i.e., Theorem 7),

with (iii b’) replaced by the less restrictive assumption that the sets
f(x, U) are only directionally convex (see [8]). The derivation of this
result from Theorem 1 proceeds in essentially the same manner as the
derivation of Theorem 7 above.
Remark. It has already been pointed out that Theorem 7 differs from the

corollary to Theorem 6 only in the condition (v). In fact, using the method
outlined above, a maximum principle can be derived in the presence of state
space constraints of the type considered in 29 ii), provided all the other as-
sumptions of Halkin or Holtzman are satisfied. One then gets a theorem
identical to Theorem 6 except that condition (vi) is replaced by the maxi-
mum principle, i.e., condition (v) of Theorem 7. Theorem 7 then becomes a
corollary to this more general result.

Conclusion. We have shown that a wide class of constrained minimiza-
tion problems can be reduced to a common canonical form, the so-called
Basic Problem, for which we have derived necessary conditions of opti-
mality. It is rather clear that the present paper does not exhaust all the
possible permutations a.nd combinations of necessary conditions or mini-
mization problems that can be treated by reduction to the Basic Problem.
To name but a few, not discussed herein explicitly, we can point out opti-
mal control problems with nonseparable constraints, such as total energy,
total fuel, or else involving products of trajectory and control variables,
which can Mso be reduced to the Basic Problem. However, one gets for
these problems a necessary condition which applies to the entire trajectory
and which does not necessarily break down into a series of conditions
applicable at each sampling instant. One can Mso consider optimal control
or nonlinear programming problems in which the trajectory constraint
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sets are specified in more general form than equalities or inequalities. The
necessary conditions derived in this paper can be suitably modified to
cover such cases, yielding transversality conditions in terms of polar cones
rather than in terms of gradient vectors.
Although nothing has been said in this paper about sufficient conditions,

it is clear that under assumptions such as convexity, it is possible to show
that some of the necessary conditions given here are also sufficient.

Finally, it should be pointed out that the general approach presented
in this paper is the result of hindsight, an irritation with fragmentation,
and the authors’ conviction that in terms of problem solving, the geometric
approach taken has great conceptual, and intuitive advantages.

Appendix. The Brouwer fixed point theorem. In proving Theorem 1’
the authors have used a modified version of the Brouwer fixed point
theorem. The conventional form of the theorem, which is stated and
proved in [14], is worded as follows.
BROUWER FIXED POINT THEOREM. If f is a continuous map from the unit

sphere in E into the unit sphere in E’, then f has a fixed point.
The version used in. this paper is stated without proof by Dieudonn [15].

Since the proof is very short, it is included here.
THEOREM. If f is a continuous map from the unit sphere in E into E

with f(x) X q- g(x), where g(x) -<- 1 for all x with II x 1, then the
origin is contained in the range of f.

Proof. To say that the origin is contained in the range of f is equivalent to
saying that the function h(x) --g(x) has a fixed point. Let us define the
function h. by

-g(x) if g(x)II <= 1,h,(x) -g(x)/]] g(x) if g(x) > 1.

Clearly, h is a continuous function from the unit sphere in E" into the unit
sphere in E". Therefore, by the Brouwer fixed point theorem, h has a fixed
point, say x. If h(x)II < 1, then h(Xl) -g(x), and x is a fixed
point of -g. Suppose h(x)]] 1. Then x 1 and consequently
g(x) =< 1. Again h(x) -g(x) and x is a fixed point of -g.
The Brouwer fixed point theorem follows immediately from this theorem,

so they are in fact equivalent.

Acknowledgment. The authors wish to thank L. W. Neustadt for his
critical perusal of this paper and for his comments.

REFERENCES

[1] E. J. M(ISHANE, On multipliers for Lagrange problems, Amer. J. Math., 61 (1939),
pp. 809-819.



CONSTRAINED MINIMIZATION PROBLEMS 547

[2] L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE AND E. F. M-
SHCHENKO, The Mathematical Theory of Optimal Processes, Interscience,
New York, 1962.

[3] :F. JOHN, Extremum problems with inequalities as side conditions, Studies and
Essays, Cournt Anniversary Volume, K. O. Friedrichs, O. E. Neugebuer
and J. J. Stoker, eds., Interscience, New York, 1948, pp. 187-204.

[4] H. W. KUHN AND A. W. TUCKER, Nonlinear programming, Proceedings of the
Second Berkeley Symposium on Mthematicl Statistics and Probability,
University of CMiforni Press, Berkeley, 1951, pp. 481-492.

[5] O. L. MANGASARIAN AND S. FROMOWZ, The Fritz John necessaryoptimality
conditions in the presence of equality and inequality constraints, Shell De-
velopment Company Paper P1433, 1965.

[6] B. W. JORDAN AND E. POLAK, Theory of a class of discrete optimal control systems,
J. Electronics Control, 17 (1964), pp. 697-713.

[7] H. ]tALKIN, A maximum principle of the Pontryagin type for systems described by
nonlinear difference equations, this Journal, 4 (1966), pp. 90-111.

[8] J. M. IOLTZMAN, On the maximum principle for nonlinear discrete-time systems,
IEEE Trans. Automatic Control, to appear.

[9] J. B. ROSEN, Optimal control and convex programming, MRC Tech. Report 547,
Mathematics Research Center, University of Wisconsin, Mdison, 1965.

[10] L. W. NEUSTADT, personal communication.
[11] K. ARROW AND L. HURWICZ, Reduction of constrained maxima to saddle-point

problems, Proceedings of the Third Berkeley Symposium on Mathematical
Statistics nd Probability, University of Cliforni Press, Berkeley, 1956.

[12] T. S. MOTZKIN, Two consequences of the transportation theorem of linear inequali-
ties, Econometrica, 19 (1951), pp. 184-185.

[13] K. ARROW, L. HuRwIcz AND H. UZAWA, Constraint qualifications in maximization
problems, Navl Res. Logist. Qurt., 8 (1961) pp. 175-191.

[14] W. HUREWlCZ AND I-I. WALLMAN, Dimension Theory, Princeton University Press,
Princeton, 1948, pp. 40-41.

[15] J. DIEUDONN, Foundations of Modern Analysis, Academic Press, New York,
1960, p. 269.

[16] C. BERGE, Topological Spaces, Oliver and Boyd, Edinburgh and London, 1963,
p. 164.



J. SIAM CONTROL
Vol. 4, No. 3, 1966
Printed in U.S.A.

LINEAR OPTIMAL SYSTEMS WITH TIME DELAYS*

D. H. CHYUNG AND E. BRUCE LEE
Introduction. In the study of economic, biological, and physiological

systems, as well as electromechanical systems composed of subsystems
interconnected by hydraulic, mechanical and various other linkages [1],
[2], we encounter phenomena which cannot be readily modeled unless
relations involving time delays are admitted. In many of these systems,
the interest is not iust in a model for describing the evolution, but in
selecting parameters und situations within the system to obtain the best
evolution, an optimum system. Such parameters will be called controllers
and we develop methods for selecting the best controllers subject to various
limitations for systems involving time delays. The results are limited to
systems describable by linear differential equations involving time delays,
control parameters, and a variety of integral type criterion for optimality.
We consider linear controlled delay systems of the form

2(t) A(t)x(t- h,) + B(t)u(t).
i=O

Various remarks and a few results for the more general delay systems (sys-
tems with nonlinearities, time varying delays, etc.) are stated in [3].
The problem of optimum control, as considered here for the above sys-

tem, is to select a measurable controller u(t) from some restraint set
t c R to steer the response x(t) from the initial continuous fuactioa
(t), -h _-< _--< 0, to target set G c R minimizing the real cost func-
tional

tl
C(u) f(t, x(t), x(t h), x(t h), u(t) dt.

R is the/-dimensional real number space.
This problem has been considered in [6], [13], [14], where certain necessary

conditions were obtained, and in [11], where time optimal problems (f 1)
for linear systems of the above form were considered. Also, see [5] for a
discussion of a different class of control problems of the delay type, namely
the class of hereditary processes with control. The above system is different
in many respects from the class of hereditary systems whose evolution does
not require a whole initial function. The necessary conditions of [5] and [6]

* Received by the editors Februury 28, 1966.
Center for Control Sciences, University of Minnesota, Minneapolis, Minnesota.

This research ws sponsored by the Air Force Office of Scientific Research, Office of
Aerospace Research, United States Air Force, under Grant AF-AFOSR-571-64.
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are the same as those obtained here for our problem. Because of the special
form for our problem, sufficiency results re also obtained nd we present
a complete theory. First we consider control problems where f is essentially
quadratic in the system state x(t) and controller u(t). Both necessary
sufficient conditions re obtained by consideration of geometric propeies
of the set of ttinbility. The questions of existence of the optimal con-
trol nd its uniqueness re lso dealt with. The other cost functionls con-
sidered involve certain convexity hypotheses. An example nd summry of
other results re given.

Before dealing with the special control problem, we preseat certah needed
preliminaries on linear differential equations with time delays. The nota-
tion of [9] will be used when pplicble.

Consider the linear controlled system with time delays

2(t) A,(t)x(t- h) + B(t)u(t) + v(t),
iO

with continuous initial function x(t) (t) on [t0 h, t0], where

0 h0 h h re real constants,
x(t), the system state, is n n-vector,
u(t), the controller, is mesurable r-vector on It0, ti],
v(t) is an n-vector,
A(t) is an n X n real continuous mtrix for each i,
B(t) is n n X r real continuous mtrix.

It is well-known [1] that the bove system has unique continuous solu-
tion for t0 and the response cn be written as

x(t) x(t, ) + Y(s, t)[B(s)u(s) + v(s)] ds.

Here, x(t, ) is the solution, of the homogeneous equation

:(t) A,(t)x(t

with the initial function O(t) on [t0 h, t0]; and Y(s, t) is the fundamental
solution of the djoint equation defined by

0 Y(s, t) - Y(s + h, t)A(s + h,), to < s < t-h,
0s

k

Y(s, t) Y( + h t)A,(s + h5

h+ <-: s -<- t- h,
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with endpoint condition Y(t, t) I, where I is the n X n identity matrix.
It is also well-known that such a Y(s, t) exists and is continuous for s and
tont0 =< s N t, t0-<_ t-<_ tl.

1. Integral quadratic cost ftmctionals. Consider the system

2(t) Ai(t)x(t- hi) q- B(t)u(t)
i-----0

on [to, T] with continuous initial function (t) as above. The controller
u(t) ff R is measurable on [to, T]. Let the cost functional of control be

C(u) .q(:c(T)) + {z()’W()x() + u()’g(s)u(s)l ds,

where g(x) is a real continuous function in R, and W(s) and U(s) are
real symmetric continuous n n nd r r mtrices, respectively, on
t0 s T. We Mso assume that W(s) is positive semidefinite, nd U(s)
is positive definite, i.e., W(s)’ W(s), U(s)’ U(s),

x
U(s)u > 0 for all u 0.

A controller u(s) on [t0, T] is admissible if and only if u(s) L[to, T],
the space of square integrable functions, i.e.,

u()’u()

Then obviously u(s) is integrable on [/0, T], so the system has a unique con-
tinuous solution x(t) on [t0, T]. Also, since W(s) and U(s) are continuous,
u(s) L[t0, T] and x(t) is continuous, for any admissible control u(s) we
have

( x()

T

C(u) (x(T)) + (11 x()ll + u()ll) d < .
The problem is to minimize the cost functional C(u) while steering the

response to a target set G c R. G may be the entire space G R,
the free endpoint problem.

Define the new vriable x(t) by

Xu (t) x,(t)’W(t)x(t) 3- u(t) U(t)u(t), x,(to) O,
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where xu(t) is the response of the original system corresponding to the con-
troller u(t). Let

2(t) (xu(t), Xu(t)) R’+.
DEFINITION. Consider the system

2(t) x(t)’W(t)x(t) -- u(t)’U(t)u(t),

2(t) A(t)x(t h) + B(t)u(t),
i=O

with initial function (t), to h, -<_ to, and x(to) 0. The set of
attainability/(T) is the set of all response endpoints 2(T) (x(T),
x(T) R"+ for all admissible controllers u(t) L.[to, T].

Properties of the set of attainability re now established, because of their
usefulness in consideration of questions of the existence of the optimum
controller and characterization of optimum controllers s controllers which
steer to the boundary of this set.

T.EORE 1. Consider the system

o(t) (t)’w( t)x(t) + u( t)’u(t)u(t),

2(t) A(t)x(t h) + B(t)u(t),
i--O

.with the continuous initial function ( t), to h, <- <= to, and x( to) O.
The set of attainability I( T) R’+ is convex and its orthogonal projection
on the hyperplane x 0 is a linear manifold K(T). Also, if (yo, y)
is ’in ( T), then the halfline x >= yO, x y, is in ( T).
A proof of this result when there are no time delays is given in [9, Chp.

III] and requires no essential modificution in the above delay case.
THEOaE 2. The set of attainability ( T), of Theorem 1, is closed in

Rn+l.
Proof. Define a set (T) c Rn+l by

/(T) ((x/x-5, x) [(x, x) /(T)}.
Then clearly/(T) is also convex and contains the entire hMfline x >= v/y--6,
x y, for all (x/y-, y) in/(T). Also, /(T) lies above the hyperplne
x 0, and its orthogonl projection on the hyperplne x 0 is the same
linear manifold K(T). Since x >= 0 for all (x, x) in /(T), from the
definition of/(T) it is obvious that p (v/, p) is a boundary point of
/(T) if and only if/ (pO, P) is a boundary point of/(T). Therefore, if

By (x, x) E R+1 we mean an n + 1 column vector with components
(X[}, X Xn)
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we can show that for all the boundary points # (/p0, p) of K(T) the
corresponding point/ (p0, p) is in/(T), then/(T) is closed.
We assume that (T), and hence K(T), hs nonempty interior in

R+1, for otherwise we could define our subsequent constructions within the
linear mnifold spunned by K(T).
Euch boundary point p (pO, p) of K(T) has a support hyperplane

with exterior norma,1 extending towards the hyperplne x 0, as follows
from the properties of K(T) given. bove. Therefore there exists u point

(0, q) on the hyperplne x 0 such that p p, p) is the unique
point in (T), which is the closest point to in terms of the usuM metric,
where (T) is the closure of K(T). That is, p (, p) is the unique
point in (T) such that

pO[ + p_ ql inf [rl + r-- q
(,r)()

inf {]r + [r-- q
(rO,r)(T)

Here p- q (p- q)’(p- q).
Thus, if we show that for each given (0, q) of the plane x 0 there

exists u point p (p%, p) in (T), i.e., (p0, p) in R(T), which
satisfies the above condition then ech boundary point p (p, p) of
R(T) is in (T) and so () is closed. This in turn proves thut (T) is
closed.

Consider u sequence of controls {u(s) such that

lim (]]x,(s)]] + u,(s)]l) ds + x,(T) q a,
i

where xd s) is the response corresponding to ud s) and

Let H(t) x(t, ),

Y(s, t)B(s) u(s) ds.

Then x(t) xu,(t) H(t) + Pi(t). Now define

J(u) (llx(s)[l + u(s)l]) ds + x(T) q

H(s)II d H(T) q II’.



LINEAR OPTIMAL SYSTEMS WITH TIME DELAYS 553

Then

J(u) 2P(T)’(H(T) q) + ]] P(T)II

+ {11 P(s)]l -t- 2H(s)’W(s)P(s) + ]l u(s)ll} ds.

It is straightforward to show that

/

1--J(u,) +-J(u) + (H(T) --q)(P,(T) -P(T))-- H(s)’W(s) (P(s) P(s) ds

u,(s) -u(s)

-t- P(s) P(s) u(s) u(s) ds.
2 + 2

Since J(u) + J(u) 2 > 0 and J(u) + J(u) 2-->0 as i,j->

lim ui(s) uj(s)ll ds O,

for U(s) is positive definite. Then, by the Riesz-Fischer Theorem,
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converges strongly to u*(s) L2[to, T] and

f, (ll x*(41] + *()l]) d + *(V) q ,
where x*(t) is the response corresponding to u*(t). Hence p (p0, p)

(x*(T), x*(T)) (T) and so R(T) (T) is closed.
In the bove proof, we hve lso proved the following corollury.
COROLLhRY. Let

in Theorem 1, and let K(T) be the corresponding set. of attainability. Then
( T) is closed in R+.
THEORE 3. (Existence) Consider the system

2(t) A(t)x(t- h) + B(t)u(t),
i=O

with cost functional

C(u) g(x(T)) + (1] x(t)lt + llu(t)I15) dt.
to

If either
() g(x) is bounded below, i.e., g(x) > a,

or

(b) g(x) is a convex function,
then there exists a (minimal cost) optimal control.

Proof. Let

+ (t)ii$) t.

Then (T) is closed ,rid convex by Theorems 1 and 2. We have to show
that the function g(x) + x hs, minimum in (T). If g(x) > a, then

lira (a(x)+ x) +

uniformly in fS(T). Thusthere exists a bound a > 0 such that the minimum
of g(x) + 0 in fS(T) is assumed on the comp,ct set (T) [x a].

If g(x) is convex function, then for each real number C,, the set
R"+ defined by

=/(0, ) e(x) + x

is closed and h,s nonempty interior. Furthermore, this set is convex, for
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g(xl) + xl =< C1 and g(x) + x2 =< C imply

g(,x + (1 k)x2) -t- kxl -t- (1 )x. _<- C1, 0 <= , =< 1.

Now consider a constant C1 such that the corresponding set meets/(T),
i.e., /(T) . It is easy to show that l/(T) is compact. (See
Fig. 1. A proof can be found in [9].) But then, since g(x) x is continuous
in (x, x), it assumes a minimum value on the compact set and so there
exists an optimal control. This completes the proof.

Actually the minimum occurs at a boundary point (x, x) 0/(T) of
/(T). For otherwise, there exists a point (y0, x) /(T) with yO < x0; but
then g(x) x > g(x) + y0, that is, g(x) + x is not a minimum. Therefore
(x, x) O.(T). This is an important property. For this reason we now
study properties of the boundary 0/(T) of/(T) in more detail.

])EFINITION. Consider the system

2(t) A(t)x(t- h) + B(t)u(t),
i=O

2o( t) x( t)’W( t)x( t) + u( t)’U( t)u( t),

o

+ x
o
=c

I

FG. 1
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with initial function x(t) (t), to hm -<_ -< to, x(t0) 0. A controller
u(t) L2[t0, T] is called extremal if and only if it steers the response (t)
to the boundary 0/(T) of/(T) at T.
The following theorem is equivalent to Pontryagin’s maximum principle

[13] for the present problem, but will also provide sufficiency conditions for
optimal control.
THEOREM 4. (Maximum principle) Consider the system

2(t) A,(t)x(t h) + B(t)u(t),

o( ) x( )’w( t)x( ) + u( )’u( t)u( ),

with initial function x(t) (t), to- hm <= to, x(to) O. A controller
(t( t) L2[to, T] with response 4(t) is extremal if and only if there exists a
nontrivial solution ( t) 7o 7( t) R"+1 of the adjoint equation

(t) -- v(t + h)A(t + h,) 27o(t)’W(t),
i-=O

to <__ <= T- h,,

k

(t) -- (t -+- h,)A,(t + h,) 27o(t)’W(t),
i=O

T- h+l _-< =< T-- h, k 0,1, ..-,(m- 1),

with 70 0 a constant, such that

o a(t)]1 v + 7(t).B(t)a(t) max {7oll u + v(t),B(t)u}
uR

or

for

1
(t(t) U(t)-B(t)’v(t) a.e. on [to, T]

270

Proof. Suppose

1 U(t)_B(t),7(t),(t) 2,
Since only the ratio n/To enters the hypothesis, we can choose 7o -1/2
without loss of generality. Then

"a( t) V-( t)B( t)’7( t)’.
Recall that all constructions assume that /(T) has an interior in R"+, or we

reduce the problem to the linear manifold spanned by R(T).
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Let 2(t) (2(t), 2(t)) be the corresponding response, and let $(t)
(y(t), y(t)) be the general response to ny control u(t) L[to, T].

Consider

d 1 ]o(t) + v(t)](t) + i(t)y(t)d-t (O(t))(t) ) -Integration from to to T yields

(T)(T) (to)$(to) - f](t) dt

+ n()() a + ,()() a.

Now

v(t)/(t) dt v(t) A(t)y(t h,) -+- B(t)u(t) dt
iO

nd

ft i(t)y(t) dt

-’ ,(t + h)A(t + h)y(t) + (t)’W(t)y(t) dt
t

+ ,(t + h,) A(t + h)y(t) + (t)’W(t)y(t) dt
iO Thk+ iO

()()( h) + ()’()() .
Therefore

O(T)$(T) O(to)(to)

c(jtri 1 So(t) + 2(t)’W(t)y(t) + v(t)B(t)u(t) dt

rtoThi

+ J, v(t)A(t)(t- h,) dt
iO

for y(t- h) (t- h) on to to + h. Also

t -- (t) + (t) W(t)y(t) + v(t)B(t)u(t) dt

1 1 u(t) + (t)’bV(t)y(t) + v(t)B(t)u(t) dt.- y(t) -
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If u(t) (t) U-1B(t)’(t) ’, then y(t) (t) and

to
(t) (t) + ,(t)B(t)(t) dt.

Then, since

] (t) + ,(t)B(t)(t) mx (-1 u [ + ,(t)B(t)u),
uR

and (t) y(t) ] => 0 implies that

w hnvc

(t) (t) + ,(t)B(t)(t) dt

> y(t) u(t) + (t)’W(t)y(t) + n(t)B(t)u(t) dt,
to

unless u(t) (t) lmost everywhere on [t0, T]. Therefore

( T)(T) (t0)(t0) > ( T)(T) (t0)(t0).

Since 2(t0) (t0) (0, (t0)), we hve (T)2(T) > (T)(T) for 1.1
?)(T) 2(T) in K(T). But this shows that there is supporting hyperplne
to (T) t 2(T) hving the exterior normM vector (T). Since v0 < 0,
the supporting hyperplne cnnot meet (T) in its interior nd so it must
meet on the boundary 0R(T). Hence (t) is extreml.

Conversely suppose (t) steers the response 2(t) (2(t), 2(t)) to the
boundary, i.e., 2(T) 0(T). Let O(T) (-, (T)) be n. exterior
normal to (T) t 2(T) nd let (t) be the solution of the adjoint equation
with the bove endpoint condition (T) t T. We wnt to show that
a(t) stisfies the mximum principle.
Suppose

1] + (t)B(t)(t) + mx + (t)B(t)u)
uR

for some a > 0 on some compact subset E of [t0, T] of positive mesure.
For ech smll e > 0, define new controller u(t),

(V-(t)B(t)’(t) if t E(e),
,( t) [,a(t) i E(),

where E(e) is subset of E with mesure e. Let 2,(t) be the corresponding
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response. Then, for some constant C1 > 0,

on It0, T], for e(t) is continuous in the parameter e. Now compute as
before"

r 1 2(t) x(t)(T)( T) ( T),( T) <_

< C2e

dtI
()

for some constant C2 > 0. Thus for sufficiently sinall e > 0,

(T)o(T) > (T)(T).

This is impossible, for (T) is an exterior normal to/(T) at (T). There-
fore a(t) must stisfy the maximum principle.

Since g(x) + x assumes its minimum on the boundary O(T) as dis-
cussed Mter Theorem 4, the following corollary is an immediate result of
Theorem 4.
COROLLARY. Consider the cost functional as in Theorem 3"

Then an optimal controller is an extremal controller, that is, u(t) is of the form
u( t) U( t)-B( t)’( t)’ a.e. on [t0, T], where ( t) is a solution oj’ the ad-
4oint equation.
THEOREM 5. (Uniqueness) Consider the system

2(t) A(t)x(t- h,) - B(t)u(t)

with cost functional

Let ux(t) and u(t) be extremal controllers with corresponding responses
2(t) and 2(t). U 2(T) 2(T) 2x, then u(t) u(t) almost every-
where on It0, T].

Proof. Let (t) be the solution of the djoint equation with (T)
(- [, n(T) ), n exterior normal to (T) tt 2 0f;(T). Then, s in

the proof of Theorem 4,

u( t) u( t) U( t)-lB( t)’v( t)’

almost everywhere on [to, T].
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THEOREM 6. Consider the system

4( t) A,( t)x( h) + B( t)u( t)
i--=O

o( t) x( t)’w( t)x( t) + u( t)’v( t)u( t)

with initial condition x( t) ( t), to- h,,, <= <= to, and x(to) O. Suppose
the cost functional is given by C(u) g(x( T) + x( T), where g(x) is a
C convex function. Then there exists a unique hypersurface S., among the
family

So g(x) + x c,

such that S., is tangent to ( T), and hence m is the optimal cost. Also, there
exists a unique optimal controller, i.e., the extremal controller u*(t) which
steers the response to the single point at which S. touches :( T) is unique.
Furthermore, there is a unique solution of the equations

5c( t) A,( t)x( h,) -[- B( t) U( t)-lB( t)’v( t)’,
i:=O

(t) =--v(t + h,)A,(t + h,) + x(t)’W(t), to <- <__ T--

k

(t) v(t -- h)A(t z7 h) -- x(t)’W(t),

T- hk+ T-- hk, k 0,1, ..-,(m-- 1),

satisfying the boundary conditions

x(t) (t), to- h, -<- <= to, and (T) -1/2 gradg(x(T));

i.e., the optimal response x*( t) and t) are such that

u*( t) U( t)-B( t)’v*( t)’
is the optimal control on [to, T].

Proof. By Theorem 3, the intersection of/(T) with g(x) + x <= c
is compact for large c. Let m be the infimum of all c such that the intersec-
tion is nonempty. For c > m the hypersurface S meets the interior of/(T),
and for c <2 ,n, S does not meet K(T). Therefore S can be tangent to
/(T) only if c m and m is the minimum cost. Now let p /(T) l S
nd let r be the tngent hyperplne to S at p. Then fuils to separate
/(T) und S only in the case where r meets the interior of/(T). But if an
open set N of the interior of/(T) lies below r, then the cone with buse N
and vertex p lies interior to/(7’) und so below . However, S is tngent
to r t p which implies that S meets the interior of/(T). This is impos-
sible, for m is the minimum cost. Thus separates S and/(T).
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Now suppose there are two distinct points, pl and p., in/(T) l Sm
and hence on 0/(T). Then 1/2(pl + p) 0/(T). Let u(t) nd u(t) be
the two extreml controls with responses 2(t) ad 2(t) such that 2(T) p
nd 2(T) p. Since p p, u(t) u(t) on some positive interval.
Consider the control (u(t) + u(t)) with response 2(t) (x(t), x(t)).
Then x(T) (x(T) + x(T)). Now we wnt to show that x(T)
< (x(T) + x(T) ). By definition,

x (T) + dt
t 2 2

x +xWx+ x
W

+ + ’U + d.
U

Since Wz N + z and since

’g < 11 + I whenever 1() (),

we have

x(T) < x u

Therefore

x(T) < (z(T) + x(T)).
Then the halfline x > x(T), x x(T), is in the interior of (T), and

so (p + p) is also in the interior of (T). But (p + p) R(T)
S 0R(T). This contradiction establishes that (T) S is a single

point.
By Threm 5, there is a unique extremal controller u*(t) string the

response to p S therefore u*(t) is the optimal controller and
p (z*(T), x*(T)).
The normal vector to S at p 2"(T) is *(T) -, *(T) ), where
T) grad g(p). By Theorem 4, x*(t) and *(t) satisfy

z(t) A.(t)x(t- h,) + B(t)U(t)-’B(t)’,(t) ’,

( t) ,( + h,)A,( + h) + x( t)’W( t), to T-- h.
iO

(t) ,(t + h,)A,(t + h,) + z(t)’W(t),
iO

T- h+l <= <= T-- h, k 0,1, (m-- 1),
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*withx*(t) (t),to h,,, <= <= to, and 7 (T) --1/2 grad g(x T)).
Now let x(t), 7(t) be any solution of the above equations with the same
boundary conditions. Then 2(t) (x(t), x(t) is the response correspond-
ing to the control u(t) U( t)-lB( t) ’7( t) ’, and

o/( T)2( T) -x T) - 7( T)x( T) > ( T)

for all 2(T) in/(T). Thus (T) is the exterior normal to the support-
ing hyperplane to/(T) at 2(T). Also (T) is the inward normal to the
hypersurface S through 2(T), for 7(1’) -1/2 grad g(x(T)). Thus S
is tangent to/(T) at 2(T) and is the common supporting hyperplane.
But then S S and 2(T) 2"(I’). Therefore by the uniqueness, u(t)

u*(t) a.e., and 2(t) 2*(t). Finally, 7(t) is the unique solution of the
adjoint equation with 7(T) -1/2 grad g(z*(T)), and so 7(t) 7*(t).
Remark. It is easy to show that all the theorems in this section are equally

valid if x(t) is given by

ft
T

tl1/2x(t) \ [Ix(t) IIw + u(t) II] d

2. Controllability. In the previous section we assumed that/(T) has an
interior in Rn+l. This property is important when the target G is given by
a compact set. in this section we study the problem of controllability.

Let B be the set of all continuous functions (t) on [to h, to]. Define
the norm (t)II by

4)(t) max 4)(t) I.
to--h

Then B is a Banch space with respect to this norm.
DEFN.TON. Consider the system

2(t) A(t)x(t h) - .B(t)u(t)
i=O

in R". The system is said to be controllable on [to, T] if and only if for any
given initial function )(t) in the Banach space B on [to h,,, to] and any
given target point Xl in R, there exists a bounded measurable controller
u(t) on [to, T] which steers the given initial function to the target at T
along the solution curves .of

A(t)x(t h) - B(t)u(t).

THEOREM 7. Consider the system

2(t) A(t)x(t- h) - B(t)u(t)
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in R’. The system is controllable on [to, T] if and only if the matrix

M Y(s, T)B(s)B(s)’Y(s, T)’ ds

has ranlc n.
The proof is exactly the same as the proof for systems without time delay

[7]. For a proof see [3, Chap. 2].
COROLLARY. The set of attainability ( T) has nonempty interior if and

only if the system is controllable on [to, T].
Proof. If the system is controllable, then clearly the set of attainability

K(T) is all of R. Then, since K(T) is the orthogonal projectioI1 of/(T)
on the hyperplane, x 0;/(T) has nonempty interior, because it con-
rains the vertical rays. See Theorem 1.

If K(T) has nonempty interior, then by Theorem 1, K(T) R, and
hence the system must be controllable.

3. Closed and convex target sets. Often we wish to steer the initial
function to a closed convex target set G R. The target set G may be a
compact set. The problem is to minimize the cost functional C(u) while
steering the response to G at time T.

Consider the system

2(t) A(t)x(t h) + B(t)u(t),
i----O

with cost functional

C(u) x(T) {[I x(t) +

For simplicity we assume that the system is controllable nd hence the set
of attainability /(T) is a closed convex set with nonempty interior. If
the system is not controllable, then a similar analysis can be made in the
linear manifold spanned by/(T) in Rn+ provided G meets K(T).

Define G X R in the (x, x)-space Rn+. Since/(T) has nonempty
interior, intersects/(T) and the intersection is closed and convex. We
seek a point of 91/(T) with minimum cost coordinate x(T). Since the
projection of f’l/(T) on the x-axis is bounded below and closed, there
exists a point 2*(T) in f/(T) attaining this minimum value; the con-
trol u*(t) which steers the response to this point is an optimal controller.

If 2"(T) is a.n inner point of , then x*(7’) is the minimum value of
x(T) for all points in/(T), and this problem is the same problem as the
free endpoint problem, when G Rn, case which is covered in 1. There-
fore we assume that 2"(T) is a boundary point of /(T). Then u*(t)
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R
1

G G x

Fro. 2

is an extremM control and is given by u*(t) U( t)-lB( t) ’7( t) (see Figs.
2 and 3). Here (t) (-1/2, 7(t)), and 7(t) is the solution of the adjoint
equation"

(t) -7(t + h)A(t + h) + x*(t)’W(t), to <-_ <- T- h,,
i=O

(t) -- 7(t + h)A(t + h) + x*(t)’W(t),
i=O

T-- hk+l-<_ t-<_ T-- hk, / 0,1, ...,(m-- 1),

with (T) an exterior normal to [((T) at 2*(T).
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Fro. 3

Consider the cross section P" x x*(T) in R+1. Then 1 P and
/(T) l P are separated by a common supporting (n 1)-plane v, and
7(T) is normal to r and directed into ( l P in the plane P (see Fig. 3).
By arguments similar to those for Theorem 6, we cast show that there exists
a unique optimal controller u(t) and that x(t) and 7(t) re the solutions of

(t) A.(t)x(t h) + B(t) V(t)-B(t)’(
i=0

(t) --n(t - h)A(t - h,:) - x(t)’W(t), to <-_ T h,

(t) - (t + h)A(t + h) + x(t)’W(t),
i==0

T-- h+, <= -<_ T-- h, 0,1,...,(m-- 1),

with x(t) (t), to h, -<_ -_< to, x (T) 0G and 7(T) an interior normal
to G t x(T).

If the target G is given by f(x) <_- 0, where f(x) is a convex C function
with grad f(x) 0 for x OG, then the boundary condition is"

x(t) (t),to- h, <- -< to, f(x(T)) 0, (T) -k gradf(x(T))

for some constant k > 0.

4. Integral convex cost furmtiorals. Consider the system in .R+

2(t) A(t)x(t h) - B(t)u(t),
i.-O

(t) (t, (t)) + (t, u(t)),
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with initial function x(t) 4)(t), to h,. _<- -<_ to, x(t0) 0 and u(t) .R.
Here Ai(t), B(t), f(t, x), h(t, u) are continuous for all t, to =< _-< T,
and all z ]n, U Q Rr. Also assume f(t, z(t)) and h(t, u(t)) are convex
for each t, and

f0(t,x) >- 0, h(t,u) >= alul
for some constants a > 0 and p > 1. An admissible controller u(t) is a
measurable controller such that the corresponding cost functional

Co(u) x"(T) {f(t, x(t) - h(t, u(t) dt >= 0

is finite. Therefore every bounded measurable controller u(t) is admissible,
and u(t) L[to, T] for

CoCu) >= a u(t)l dr,

so that u (t) L..[to, T]. From convexity of f(t, x) and h(t, u), every
convex combination of admissible controls is also admissible.
We assume that the system is controllable, for otherwise we can always

consider the problem in the linear manifold which is spanned by the pro-
jection of/(T) on x-space. Here/(T) is the set of attainability as defined
in 1. Since we. assumed that the system is controllable, the projection of
f((T) on x-space is the entire space Rn.
The response of the system is given by

x(t) x(t, 4) -- g(s, t)B(s)u(s) ds,

(t) f {f(s, x(s) -nt- h(s, u(s) ds.
ot

The following theorems are direct generalizations of the theorems in the
previous sections. The proofs are similar with obvious modifications, and
hence are omitted.
THEOE 8. Consider the system

 c(t) A (t)z(t +
i----0

2( t) fl( t, x( t) -- h( t, u( t) ),

with cost functional

Co(u) z(T) 2(t) dt.

Assume the basic part of the system is controllable, that is, the system without
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x. Then the orthogonal projection of (T) on the hyperplane x 0
is the whole x-space R. Also, if (yo, y) 5( T), then the entire halfline
x >= yO, x y, is in (T). Furthermore, .(T) lies above the hypersurface
x k x for all large x and for some constant > O.
T.HEOn 9. Consider the system

2(t) A(t)x(t- h,) + B(t)u(t),
i=O

2(t) f(t, z(t)) + h(t, u(t)),

with cost functional

Co(u) x( T) 2(t) dt.

Then the set of attainability ( T) R+1 is closed and convex.
COROLLARY. Consider the system in Theorem 9 with cost functional

C(u) g(x( ) + Co(u) g(:(T)) + 0(T).

U either g(x) > b, i.e., g(x) is bounded below in R or g(x) is convex in R,
then there exists an optimal control.
Now, s in 1, we cll the controller u(t) extreml controller if nd

only if it steers the corresponding response 2(t) (x(t), x(t)) to the
boundary 0(T) of f(T) in R+. Also we define the djoin.t equation of
the system by

.0
v 0, i. e., v0(t) v0 const.,

O

(t) -- (t + h)A.(t + h) o of
=o

(t, x(t) ),

T- hk+l --<- <= T hk, lc 0, 1,..-, (m- 1),

and denote the solution by (t) (70, n(t)). Assume f(t, x) C on

[to, T]; then the convexity of f0(t, z) implies that

f(t, x) f(t, ) >__ f- (t, ) ( ).

THEOItE 10. (Mtximum principle) Consider the system

2(t) A(t)x(t h) + B(t)u(t),

2( t) f( t, x( t) -+- h( t, u( t) ),
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with initial conditions x(t) 4,(t), to- h. -<_ -<_ to, x(to) O, and cost
functional

Co(u) x(T) {f(t, x(t)) + h(t, u(t)) }dt.

A control (e(t) with response 4(t) is extremal if and only if there exists a
nontrivial a,ljoint solution ( 7o 7( satisfying

n(t) o < O,

Of (t,(t)), to <=t < T-h.,7(t) ,=o 7(t + h,)A(t -at- h) 7o 0-
Of (t, 2(t)),n(t) n(t,=o + h,)A,(t -t- h.) --o-)

T-hk+l -<_ t__< T-hk, 0,1, ,(m- 1),

Assume g(x) C is convex. Then there exists a solution x

with

where g(x) is convex and h(t, u) is strictly convex; i.e., for 0 < < 1,

h(t, )u + (1 ,)ue) < ),h(t, Ul) + 1 k)h(t, U2),

7"hen any two extremal controls steeing the responses to the same boundary
point of f(.( 7’) must coincide almost everywhere. Furthermore, there exists
a unique optimal control.
THEOnEM 11. Consider the system

2( t) A( t)x( h) + B( t)u( t),

C(u) e(:(T)) + {f(t, x(t) %- h(t, u(t) dt.

*( t), ,*( t) of

and such that the maximmn principle

7oh( t, (t( t) + 7( t)B( t)( t) mx [7oh(t, u) + 7( t)B( t)u]
uER

holds almost everywhere.
COROLLARY. Consider the same system as in Theorem 10. Suppose the cost

functional C( u) is given by

C(u) g(x(T)) + {f(t, x(t)) + h(t, u(t))} dt,



LINEAR OPTIMAL SYSTEMS WITH TIME DELAYS 569

the system

2(t) A,(t)x(t h) q- B(t)ft(t, v(t)),
i=0

Of (t, x(t)) -- v(t -k- h)A,(t -+- h,),
Ox(t)

(t) Of (t, x(t)) _, v(t q- h)A,(t -t- h),Ox(t) =0

to -< =< T--h,,

T-hk+l<=t<-T-hk, lc=O, 1,...,(m-1),

withx(t) (t),to-- h, <= <= to,?(T) -grad (x(T)).Hencea(t, (t))
is defined by the maximum principle

n(t)B(t)a(t) h(t, a(t) mx [v(t)B(t)u h(t, u)].

An optimal control is u*(t) a(t, v*(t) with the corresponding response
x*(t). If h(t, u) is strictly convex for each t, then the solution x*(t), 7*(t)
is unique, and u*( t) is the unique optimal control.

5. Remarks on the restricted endpoint problem with integral convex
cost functional. Consider the system

2(t) A,(t)x(t hi) + B(t)u(t)

with cost functional

C(u) g(x( T) + Co(u) g(x( T) + x( T),

as in Theorem 11. Assume h(t, u) is strictly convex. Then, as in 3, con-
sider the problem of steering the response to a closed convex fixed target
set G c R" while minimizing the cost functional. For simplicity, assume
the system is controllable. Then, as in 3, there exists a unique optimal
control u*(t) on [to, T]. If 2*(T) is an inner point of G X R R"+1,
then the problem is the same as the unrestricted endpoint problem. There-
fore we assume that 2"(T) is a boundary point of (. Assume C(u) Co(U)

x(T). Then, by the same argument as in 3, we can show that the mini.-
mum of x(T) in [(T) occurs at just one common boundary point
2*(T) 0O 0/(T). Therefore there exists a unique optimal control
u*(t), and u*(t) can be obtained from any solution x*(t), v*(t) of the
system

2(t) A,(t)x(t h,) q- B(t)u*(t, v(t) ),
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(t) - (t, x(t)) v(t - hi)Ai(t - h), to <-_ <= T h,

(t) Of (t,x(t)) ( +h)A(t+h))
i==0

T-h+tT-h, l=O,l,..-,(m-1),

with x(t) (t), to h to, x(T) OG, nd (T) n interior normal
to G t x(T). In fct the optimal control u*(t) is given by u*(t)

u*(t, (t)).

6. Compact controller restraint set. So far no restriction has been im-
posed on the controller u(t) (except for measurability conditions). In this
section, we restrict u(t) to compact convex restraint set Rr.

Consider the system

(t) A(t)x(t- h) + (t)u(t),
i=O

(t) y(t, x(t)) + h(t, u(t)),

with initial condition x(t) (t), to- h t0, x(to) O. Here
u(t) is mesurable on [t0, T], A(t) nd B(t) re continuous rel mtrices
on each compact interval, f0(t, x) C, h(t, u) C for all vlues of their
rgumentsx Rn, u R. Assume that f(t, x) and h(t, u) rc convex for
ech [t0, T]. The cost functional is

C(u) e(x( T) ) + :O( T)

where (z) is a convex 1 function. For simplicity, assume ha he system
is normal on [0, T], and hence he se of againabiligy K(T) in R is a
sriely convex, eompac se wih nonempy inerior. Here, also assume
ha contains more han one point. hen we know ha eaeh boundary
poin of K(T) is reached by a unique exremal controller [9].
Le () (z(), z()) R+ be ghe response of ghe sysgem, and leg

(T) be he se of aainabiligy in R+. Then since is eompae,(T) is
bounded in Rn+l.
DNPINIION. Define go be ghe vertical auraion of (T), ghag is,
consists of all points (0, z) R+1 for which here exists a poin

(, x) (T)wih 0 N
rom he above definition, i is clear ha h.e lower boundary of is

jus he lower boundary of (T).
he system is normal if no eomponeng of roY(, T)B () is idengieally ero on any

subineal of [g, T] for any nonero eonsan -veeor r0, [8].
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THEOREM 12. Consider the system

2( t) Ai(t)x( hi) + B( t)u( t)
i==O

with cost functional

Co(u) x(7_’) lf(t,x(t)) + h(t, u(t))} dt

and compact convex restraint set Rr. Then the vertical saturation v of
i( T) is a closed convex set in R"+. Thus the lower boundary of belongs to
( T) and this consists of a convex hypersurface defined over K(T) R.

Proof. Suppose : (y, y) 6/ /v converges to (y0, y) in Rn+. Then
there exists sequence u(t) such that x(T) y nd x (T) =< y,
where x(t) is the response corresponding to u(t). Then there exists subse-
quence, still called u(t), which converges weakly to an dmissible control
u(t) l with response x(t) so thut x(t) - x(t). It is easy to show that

7.’) xy => lim inf x > (T).

Hence the response (x(t), x(t)) or u(t) leds to the end point (x(T), y)
in/;(T). Thus (y0, y) is in/ nd so/ is closed in R+1. If (y0, y) is on
the lower boundary of/(2’), then x(T) yO and x(2’) y so that u(t)
steers the response to (y, y). Hence the lower boundary of/ belongs to
I(T). The proof of convexity is even more trivial.
COROLLARY. (Existence) Consider the same system as in Theorem 12 with

cost functional

C(u) g(x( T) + {f(t, x(t) - h(t, u(t) dt.

Then there exists an optimal controller.
Proof. Since g(x) -t- x increases monotonically in x for each fixed x, the

infimum of g(x) - x is just the minimum of g(x) -+- x on thelowerbound-
ary of/(T). Now the entire lower boundary of/(T) is compact, for/(2’)
is bounded; the lower boundary of it(T) is the lower boundary of/, and
t is closed. Since g(x) + x is continuous in (x, x) on the compact lower
boundary of/(T), there exists a minimum.

DEFINITION. A control u(t) is called extremal if and only if it steers the
response to the lower boundary of/(T).
TEOIEM 13. (Maximal principle) Consider the system

2(t) Ai(t)x(t hi) - .B(t)u(t),
i=O

2(t) f(t, x(t)) + h(t, u(t)),
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with cost functional

Co(u) x(T) {f(t, x(t)) + h(t, u(t)) dt

and compact convex restraint set R. A control (t(t) with response
2(t) ( t) ( t) is extremal if and only if there exists a nontrivial adjoint
solution ( t) o v( t) satisfying"

o =0, vo <= O,

of(t) v(t - h)A(t + h) --o-0 (t, (t) ), to <= <= T h,,,

Of(t) n(t - h)A,(t + h) o - (t, (t) ),
i.O

T-- h+ <- <= T-- h, l 0,1,... (m 1).
and satisfying the maximum principle"

7oh(t, (t(t)) + 7(t)B(t)(t(t) max 17oh(t, u) -- 7(t)B(t)u}

almost everywhere on [to, T].
Proof. Suppose (t) with 2(t) (4(t), 4(t)) and (t) (70, (t))

satisfies the maximum principle. Then, as for Theorem 10, we have

( T)2(T) >__ (T)(t)

for all )(T) /(T). Therefore, if 70 < 0, then 2(T) is on the lower
boundary of/(T). If 70 0, then it is on the lateral bourdary of/. But
then 4(T) is on the boundary of K(T) in Rn; and since the system is normal,
(t) is the only control which steers the response to (T) OK(T). There-
fore 2(T) (4(T), 2(T) is the uique point of/(T) with x 4(T).
Thus 2(T) is on the lower boundary of f;(T) and so (t) is extremM.

Coversely, assume (t) is extremal so that 2(T) (4(T), (T) is on
the lower boundary of/(7.’). Let (t) (70,7(t)) be the solution of the
adjoit equation with (T) exterior ormal to the convex set K at 2(T).
Clearly 70 =<_ 0. If 70 0, then x(T) is on OK(T) and hence (t) satisfies the
maximum principle; and if 70 " 0, then the proof of Theorem 10 applies.
COROLLARY. (Uniqueness) Consider the same system as in Theorem 13. If

g(x) is convex and h(t, u) is strictly convex for each t, then any two extremal
controllers steering the responses to the same lower boundary point of ( T)
must coincide almost everywhere. Furthermore, there exists a unique optional
control.

Proof. Suppose (70,7) is an exterior normal vector to / at
2(T) 0/(T). Let u(t) and u(t) be the two controls which steer the re-
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sponses to 2(T). If 7o 0, then since the system is normal, ul(t) u(t)
a.e. (see [3, Chap. 1]). If 70 < 0, then by the corollary of Theorem 10,
u(t) u2(t) a.e. The uniqueness follows, as in Theorem 6, from the fact
that g(x) + x assumes its minimum on 0/(T) at just one single point.
As in 4, define u* u*(t, 7) by

-h(t, u*) + 7B(t)u* max {-h(t, u) + 7B(t)u}.
u

If 7(t) is continuous, then obviously u* u*(t, 7) is admissible in 2. Here
we assumed 70 1.
TEORE 14. Consider the system

2(t) A,(t)x(t h,) + B(t)u(t),
i=0

2(t) f0(t, x(t)) + h(t, u(t)), x(t0) 0,

with cost functional
C(u) g(x( T) + x( T)

and compact convex restraint set c Rr. Assume g(x) C is convex in R’.
Then there exists a solution x*( t), 7*( t) of the system

2(t) A,(t)x(t h,) + B(t)u*(t, 7(t) ),

(t) - (t, x(t)) v(t / h)A,(t / h), to <- <__ T h.,,

kOf (t, x(t)) 7(t + h)A,(t +,i(t)
,=o

T h+l

_
T h, / 0,1,..-, (m 1).

An optimal control is u*(t) u* t, 7"( t) with response x*(t).
If h( t, u) is strictly convex for each t, then x*( t) 7 t) is unique, and u*( t)

is the unique optimal control.
Proof. Let S be the hypersurface defined by x -k- g(x) c in Rn+i. Then

there is only one value c m so that S, is tangent to/, and m is the op-
timal cost. Also, S, meets/ at some point p on the boundary of/(T).
The tangent hyperplane to S, is also a supporting hyperplane to/ at p, and
hence we can choose a solution of the adjoint equation such that *(T)

1, 7 (T) is normal to this hyperplane. Let u (t) be an extremal con-
trol such that x*(T) p. Then by Theorem 13, u*(t) satisfies the
maximum principle and

u*( t) u*( t, t) ).
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If h( t, u) is strictly convex, then Sm meets/(7.’) at just one point, and so
u*(t), x*(t), 7*(t) are unique.

7. An example. Consider the system given by the scalar equation

2(t) -x(t- 1) - u(t)

with initial function (t) 1 on [- 1, 0]. The problem is to find an optimal
controller u(t) on [0, 2] steering the response x(t) to the origin 0 at T 2
while minimizing the cost functional

.2

C(u) Jo u(t)2 dt.

Here u(t) R is bounded nd measurable on [0, 2].
The djoint equation is:

if 1 =< 2,/(t) 7(t - 1) if’ 0 _-< -_< 1.

By Theorem 6, the optimal controller u(t) is of the form

u(t) 1 U_IBT(t) 7(t)
270

for U 1 and B 1. Take 70 -1/2 for simplicity, and let 7(2) k,
then

if 1=<t=<2,7() /C if 0 -<- 1.

So

if 0<=t<=l.

The solution of the system corresponding to the controller u(t) is:

1/2/ct2- t--I if 0 =< __< 1,
---/t3-F 1/2(1-F/)t- (2-1/2l)t-F (--1) if 1 2.

Now x(2) 0, for the trget is the origin 0 und T 2. From the solution

bove
(2) =-+=o.

Therefore, l - and the optimal control u(t) is given by

_t if 0<__t<__ 1,
if 1__<t=<2.
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The corresponding cost functional C(u) is:

Jo 3C(u) u(t) dt
16"
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LINEAR OPTIMAL CONTROL PROBLEMS*

B. N. PSHENICHNIY]

The most completely developed area of optimal control theory, from
the viewpoint of developing effective computational algorithms, is that of
linear optimal control problems. If we classify the papers in this area ac-
cording to their conceptual approach, they can be subdivided into three
basis classes"

(1) methods utilizing the maximum principle, which consist in. finding
the initial values of the adjoint system,

(2) methods utilizing the method of steepest descent in control space,
(3) methods based on the theory of moments.
The present article is concerned only with the first class of methods.

The first paper in this direction was written, by L. W. Neustadt [1]. This
work was subsequently developed in the papers of L. W. Neustadt
himself [2] and of others [3], [4], [5]. The proof of the convergence of these
algorithms was carried out in [4] and [5] by certain geometric arguments.
This proof made it possible to draw definite conclusions on the nature of
the convergence of the iterative process by relating, at each step of the
process, the estimate for the stepwidth and the magnitude of the increment
of the function being optimized to the geometric properties of the set of
attainability.

If one carefully examines the analysis in [1]-[5], one sees that the con-
vergence of the algorithms presented therein depends only partially on the
particular linear optimal control problems, and is based on a single very
general assumption. Therefore, these algorithms are, in fact, applicable for
the solution of a considerably wider class of problems [6]. In this connection,
the close relationship of these algorithms with the Kuhn-Tucker theorem
[7] and the dual methods of solving extremal problems [8] was clarified.

Finally, the theoretical analysis carried out in developing these algorithms
made it possible to construct a general theory of convex programming
[9] by showing how a differential form of the Kuhn-Tucker theorem could
be formulated, and by relating this theorem to important results in the
general theory of extremal problems obtained in [10] and [ll].

This article represents a brief survey of work carried out by the author.
Naturally, it was not possible to include everything or to give complete

* Submitted in Russian on February 1, 1966. The translation into English was
carried out by N. H. Choksy and J. R. La Frieda and was edited by L. W. Neustadt.
The translation was supported in part through a grant-in-aid by the National Science
Foundation.

Institute of Cybernetics, Kiev, USSR.
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proofs of all theorems. Therefore, in the subsequent presentation, many
proofs are either omitted, or are only outlined in their basic features.
The reader will find complete proofs in the literature, to which the cor-
responding references are given.

1. The Kuhn-Tucker theorem and necessary optimality conditions.
The Kuhn-Tucker theorem [7] can serve as a source of necessary and suf-
ficien conditions in linear optimal control problems. This theorem may
be formulated in a quite general form as follows:

Let B be a Banach space, and let ui(x), i I1 11, m}, be convex
continuous functionals defined on B, let (x), i I. Im - 1,..., n},
be linear continuous functionals defined on B, and let X be a closed convex
subset of B.
THEOREM 1.1. In order that x yield a minimum for the convex functional

u0(x), subject to the conditions

(x) <-_ 0 for i

(1.1) tt,(x) 0 for i I
xX,

it is necessary that there exist a nonzero vector o E+ such that

(1.2) o0(x) + t,(x) -<_ 0to(x) + (x) for all x X,
i----1 i-----1

and, in addition, that

6o >_ 0 and t(x) 0 for i 11,
(1.3)

0 >= 0.

If o > O, then these conditions are also sucient.
The proof of this theorem can be found in [7] and we shall not dwell on

it here. It is interesting to consider the application of this theorem to
optimal control problems; however, in order to do this we must reformu-
late Theorem 1.1 into a differential form. Let t(x) be a convex functional,
defined on B, which is continuous and bounded on every bounded subset
of B. Let us define a set of support functionals to (x) at x as follows:

(1.4) M(x) {x*:x* B*,v(x) tt(x) >=_ x*(x x) forallx 6 B}.

Here, B* is the conjugate space of B. It is possible [9] to prove the following
theorem.
TIEORE 1.2. M(x) is nonempty, bounded, convex and closed in the weat*

topology of B*.
The convexity and weak* closure are obvious here. To prove that M(x)
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is nonempty, one uses methods which are the same as the ones used to
prove the following theorem.
THEOREM 1.3. Let e B and let

(1.5) O___(x__) lim
(x - he) #(x).

0e x-.o+ k

Then lhe limit in (1.5) exists for every e, and

(1.6) O#(x)
max x*(e).

Oe x*E M(xO)

Proof. Since g(x -t- he) is a convex function of the single scalar argument
X, the existence of Og/Oe follows from [12]. In [12], it is also shown that

(x) "(x + xe) ,(x)

is a nondecreasing function of k. Let us now verify (1.6). By definition,
for every x* M(x), we have, for > 0,

(0 + xe) ,(x) _> x*(e).

Therefore, _
_> mx x*(e).

Let us assume that, for some e,
(?it ,

e(1.7) 0e--5 > max x ).
x* M(x,O)

In the product space B1 E X B, consider the convex set

z l(, x). _>_ (x)}

and the ray

{ 0g
x0L (a,x)’a =,(x) + h--,x= +)re,h >=

Since (h) is nondecreasing, Og/Oe -<_ (X) for X >_- 0, and

(z+xe) >(x)+x
0e

From this it follows that Z and L have no common interior points, and,
since Z has interior points, Z and L can be separated; i.e., there exist a
number c and a functional y* B* (c and y* do not both vanish) such
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that

(1.8) ca + y*(x) >- c t(x) + X + y*(:c + Xe) for all x B,

whenever a (z) and X 0. It is not dieult to show that c > 0. Setting
a (x) and X 0, we obtain

(x) (x) - y*(x- z) for all x B,
C

i.e., z -(1/c)y* M(x). (By the same token, we have proved that
M(x) is nonempty.

Further, it follows from (1.8) that

(1.9)
(x) (x) x*(x x) + X

for all x B and X 0.

Setting x x in (1.9), we have O/Oe x*(e), which contradicts (1.7).
This completes the proof of the theorem.
Theorem 1.3 can serve as a basis for the development of numerical

methods for the minimization of nonsmooth, convex funetionals. However,
it is most useful in that it makes it possible to actually construct the set
M (x). The detailed questions that arise in the actual construction of
M(x) are considered in [9]. Here we shall cite, without proof, only certain
facts which are necessary for the subsequent presentation.
THEOnM 1.4. (a) U (x) c(x) + c:p.:(x), where c 0 and c O,

then M(x) cM(x) + cM(x) where oM,(x ), i 1, 2, is the set of
support functional,s for the function (x).

(b) If,(x) maxl ,(x), there

M(x) {x .x 2 Xx, z. M(x 2 X ,X > 0},
i (xo)

where

(z) {i. i m, .(z) .(z)}.
(e) If ,(x) max., z*(z), and M is a bounded, weak* closed, convez

,set in B*, then

M(x) z*" x* M, x*() .(x)}.
As an example of an application of Theorem 1.4, consider the functional

(x) x . It is well-known [13] that x max,s, x*(x), where
S* is the unit sphere in B*. Applying Theorem 1.4(c), we see that

M() {x*. x* 1, x*(x) o .
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Thus, in this case, M(x) coincides with the set of extremal functionals of
X.

Let us now turn to the question of what are the conditions for a mini-
mum of the convex functional (x) in a closed convex region

Let x 2, and let

I’o {e’e B,x -Xe ft for some X > 0}.

It is clear that I’0 is the cone of directions which lead into the interior
of ft. Let r*o denote the dual cone [14] of the cone r0.
TEOEM 1.5. The convex functional (x) attains its ninimum at the

point x if and only if
(1.10) r*o n M(x) .

Proof. Necessity. Let t(x) =< (x) for all x a, and suppose that (1.10)
does not hold. Since r*0 and M(x) are weak* closed and convex, they
are regularly convex [7], [13]. In addition, M(x) is bounded and hence
weak* compact. From this it follows that the set r*0 M(x) is convex
and weak* closed [13]. Therefore i.t is also regularly convex [7], and there
exists an element e B such that

(1.11) inf x*(e) >_- i+ max x (e) for some it > 0.
x* E r*0 x* E M (x0)

But, since I’*o is a cone, inf x*(e) 0. From this it follows [14] that e E io,
and that

0tt < _.(1.12)
0e

It is easy to show, on the basis of (1.12), that there exists a direction
leading into along which is decreasing, which, contradicts our hy-
pothesis.

Sufficiency. Let (1.10) hold. Then there exists an x0 such that x0* F*0,
and, in particular,

Xo*(X x) >= 0 for all x

and such that xo* M(x).
But, by definition of M(x), we have

(1.13) tt(x) () >- Xo*(X x) for all x.

Comparing (1.13) with the previous inequality, we see that the proof of
the theorem is complete.
The following corollary is an immediate consequence of Theorem 1.5.
COROLLAY. The convex functional g(x) attains its minimum on at

the point x if and only if there exists a functional Xo* M(x) such
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that

x0*(x) <= x0*(x) for all x ft.

Proof. If the point x t provides (x) with its minimum on 2, then it
is obvious that for x0* it is sufficient to take the functional appearing in
(1.13). Conversely, if x0* M(x) such that Xo*(X x) >- 0 for all
x t, then our result follows from (1.13).
The results we have obtained now enable us to formulate the differential

form of Theorem 1.1.
THEOREM 1.6. (The differential form of the Kuhn-Tucker theorem).

In order that x yield a minimum for the convex functional o(x), subject to
conditions (1.1), it is necessary that there exist a vector o E,+- and func-
tionals xi* Mi(x), i O, 1, n, such that

(.) oxo*(X) + ,?x*() =< :xo*(x) + o,()
i--1 il

and
for all x X,

(1.16)
dx AxWBu, 0 <= <= T,
dt

z(0) x,
where x E, A is n n X n mtrix, and B is an n X r matrix. The con-
trol u(t) is measurable function, nd u(t), for each t, belongs to a convex,
bounded, closed set U, where U c Er. Such controls will be called d-
missible.
From among 11 the dmissible controls u(t), we are to find one whose

corresponding trajectory x(t) stisfies the conditions

(1.17) x(T) x O,

(1.15) bi >- 0 and bt(x 0 for i I1, bo >-_ O.

if bo > O, then (1.14) and (1.15) are also su2cient.
Theorem 1.6 follows immediately from Theorem 1.1, the corollary to

Theorem 1.5, nd Theorem 1.4 ().
In [9] techniques for operating with convex functionls re developed

in more detail. Some examples are also considered therein. Here we shall
consider the possibility of applying the theory developed above in order
to obtain necessary conditions for one optimal control problem with linear
systems.

Let us consider an object whose behavior is described by the system of
differential equations
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(1.18) t(x(t) max g(x(t) <= O,
o_t<,

and such that the functional

o(x(t) max go(x(t)
oEtT

uttains its minimum wlue. Here g(x), i 0, 1, are convex, twice con-
tinuously differentiable functions. We note that similar problems were
considered in [10], [15], [16].
Let us study the unctionals (x(t)), i 0, 1. Since, for uny measur-

able function u(t), x(t) is a continuous vector function, the i(x(t))
can be considered to be functionals on the space C of continuous functions.
Let M* denote the set of all functions a(t), with (0) 0 and z(T) 1,
which are nondecreasing over the interwl [0, T]. Every such fction de-
fines a measure on [0, T]. In what follows, we shall often identify a(t)
with the corresponding mesure.
Then it is obvious that

T

(1.9) ,(x(t)) max ] e((t)) d(t),
aM*

Appeuling to Theorem 1.4(c), we conclude that
T

(.20) ,(x(t)) ,,(x(t)) [g,(x(t)) ,(x(t))] g(t)

for every continuous function x(t) and for those (nd only those) a(t)
such that a(t) M* nd

T

(1.21) f e(x(t)) d.(t) ,(x(t)) ma e(x(t)).
0 OtT

It ollows from (1.21) that the measure defined by z(t) must be con-
centrted on the set of those t0 for which g(x(to)) mx0tr g(x(t)).
Making use of the convexity and the continuous differentiability of go(x)
and g (x), we conclude, by virtue of (1.20), that

T

(1.22) (x(t)) i(x(t)) f (Og(x(t)),x(t) x(t))dz(t),
o

where

i---O, 1.

Thus, we can now convince ourselves that the set M*(x(t)) of all sup-
port functionals to t(x(t)) t the point x(t) (see (1.4)) includes all
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functionals of the form"
T

(1.23) x*(x) fo (Og(x(t))’ x(t)) dr(t),

where (t) M*, and the measure defined by is concentrated on the
set of to for which g(x(to)) max0<_<T g(x(t)). It is possible to show
that these functionals exhaust the entire set M*(x(t)).

Let us now turn to the derivation of the necessary conditions for opti-
mality. To make it possible to apply Theorem 1.6, we let X denote the
set of all trajectories x(t), 0 <= <- T, obtained from all possible admissible
controls. Then the above formulated problem reduces to that of finding a
trajectory x(t) X which minimizes the functional uo(x(t)) subject to
conditions (1.17) and (1.18). Applying Theorem 1.6, with due regard
to the actual form of the support functional, we arrive at the following
conclusion.
In order that the trajectory x(t) minimizes the functional uo(x(t))

subject to conditions (1.17) and (1.18), it is necessary that there exist
numbers _>_ 0 and -> 0, and a vector E such that the trajectory
x(t) minimizes on X the linear functional

T

[ Ogo(x(t)), x(t)) d(ro(t)o
(1.2)

T

+ fo (Og(x(t))’x(t))do-(t) - (b,x(T)- z),

where z0(t) and z(t) are nondecreasing functions with z(0) 0 and
z(T) lfori 0,1, and

T

fo g(x(t) d(t) (x(t) ), i O, 1,
1.25)

#(x(t) o.

If 0 > 0, then this condition is also sufficient.
Let us now make use of the fact that the trajectory x(t) of (1.16) can

be written in the form

x(t) dP(t)x -- alP(t) fo dP--I(T)Bu(T) tiT,

where the matrix (I,(t) stisfies the system of equations d/dt A and
4)(0) I, where I is the identity matrix; and let us substitute this ex-
pression into (1.24).

Omitting the rather tedious, but quite elementary, calculations which
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involve changing the order of integration in the first and second terms in
(1.24), we conclude that the expression in (1.24) is equal to

T

(1.26) (el(r), Bu) dr q-
ao

where

( q-* r) h0 (t)Ogo(x(t)) d(ro(t)
1.27 - bl q*(t)Og(x(t) dz(t) + q*(T)

and the dots denote terms which are independent of the control.
It is clear from (1.26) that in order that u(r) minimize (1.26), and

hence that the corresponding, trajectory x(t) minimize (1.24), it is neces-
sary and sufficient that the following condition hold almost everywhere"

(1.28) ((r), Bu(r)) min ((r), By),
vEU

where u(t) is the control corresponding to the trajectory x(t).
The obtained results can now be formulated in the form of the following

theorem.
THEOREM 1.7. In order that the admissible control u(t), 0 <- <- T,

be the solution of the problem formulated above, it is necessary that there exist
constants bo >= 0 and >=_ O, a vector E’, and functions (o(t) and (rl(t)
which are nondecreasing on the interval [0, T], such that:

(1) o-(0) 0, z(T) 1, i =0,1,
T

(2) f0 gi(x(t)) d(ri(t) i(x(t)), i O, 1,

(3) btl(X(t)) 0,

and that (1.28) be satisfied almost everywhere, where the function () is
given by (1.27).

If o O, then the conditions are also sucient.
Note. Let us point out certain properties of the function (r). At each

point where the (), i 0, 1, are differentiable, i.e., almost everywhere,
(r) has a derivative which is given by the formula

d0 d__(1.29) db -A* boOgo(x(r)) -r Og(x(r))
drd-

At the points of discontinuity of the zi(r), (r) also undergoes a discon-
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tinuity which is given by the formula

( o) ( + o) oo()Ogo(x()
(1.30)

+ 1Azl (r)0gl(x(r) ),

where Azi(r) is the magnitude of the iump of z(r) at the point r.

It should be mentioned that one must not consider (1.29) as a system
of equations that defines the function (r), for (r) is discontinuous,
and is not, in the generally accepted sense, a solution of (1.29).

Finally, it is not difficult to see that any additional conditions at the
right-hand endpoint of the trajectory, or any additional phase constraints
of the same type as those considered above, can be taken into account in
an analogous way, without any particular complications.

2. Algorithms. From the viewpoint of developing computational al-
gorithms, the main content of Theorem 1.1 is in essence that the original
problem with constraints can be reduced to solving a problem without
constraints, once we determine the constants , i 0, ..., n, whose
existence is guaranteed by Theorem 1.1.
The algorithm described below is based on successively approximating

these constants.
Let us consider the problem of minimi.ing 0(x), where x B, subject

to the constraints

(x) -< 0 for i I1,

(2.1) (x) 0 for i I2,

xX.
We note that for the time being no assumptions have been made rela-

rive to the functionals u(x) or the set X. In particular, the t(x) are not
assumed to be convex.
Let us define the set M E* of vectors z E+, with components

z, i 0, 1, n, as follows"

(2.2) M /z:z (x),i 0, 1,... ,n, for some x X}.
It is now possible to formulate the requirements which we shall impose
on the functionals i(x) and the set X, indirectly, through the conditions
which we shall impose on M.

BAsic ASSJMeTON. (a) M is a bounded and closed subset of En+l; (b) for
any E+ that satisfies the conditions o -1 and <___ 0 for i I
the maximum value of the inner product (b, z) for z M, is attained at a
unique point z b M.
We note that the original problem (2.1) can be reformulated as follows:
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from among all z M that satisfy the conditions

z =< 0 for i I1,
(2.)

z 0 for i I2,

find one or which the coordinate z0 is minimal.
The carry over from the original problem (2.1) to the problem (2.3)

is convenient at a certain stage, since it permits us, at that time, to digress
from the actual properties ol the funcionals ui(x) and to construct a
general scheme for the algorithm. In the process of testing, in a given
specific problem, for the conditions under which the algorithm can be
applied, to verify whether or not the conditions of the basic assumption
are satisfied.
We shall now temporarily digress from the optimization problem and

shall examine the function

(2.4) (b) max (, z).
zEM

We shall continue to assume that M is closed and bounded.
THEOREM 2.1. The function q() is continuous and convex, and its de-

rivative in any direction e E+1 is given by the formula

(2.5)
()

mx (e, z),
Oe zEM(O)

where

(2.6) M() Iz’z M, (o, z) (b)}.

Proof. The convexity of (k) is easily verified. By definition,

(, z) () >_- (, z),

(o, z) _<_ (o) (0, z0),
whenever

z M(6) and z6 M($).

Subtracting these two inequalities, we obtain

(2.7) ( k, z) >= 9($) 9(o) >__ ($ $0, z0),
from which the continuity of ($) follows. Now let 6 6o + he, where
k >- 0. Substituting this expression into (2.7), we obtain

X(e, z) >_- (o + Xe) (o) >__ X(e, z).
Since z and z are arbitrary elements of M() and M(), respectively, we
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have

(2.8) max (e,z) >_. (p(/o _{_ ke) (b) >__ max (e, z).
z M(V,) k z M(,o)

For any i > 0, it is not difficult to show that if k is sufficiently small, then
M(b + e) is contained in the ti-neighborhood of M(). Therefore,

rnx (e, z) _-< max (e, z) + (x),
zM() zM(O)

where (k) --+ 0 as k --+ 0.
The theorem now follows from the preceding inequality und (2.8).
ConoAav./f M(b) consists of the single point z(z), then

(2.9) 0() (e, z()).
0e

Moreover, if M(b) consists of a single poin z(b) for b in a certain region,
then (b is continuously differentiable in this region.
Equation (2.9) is consequence of (2.5), und the continuous differ-

entiubility of () follows from (2:9) and the previously noted fact that
M() is contained in the ti-neighborhood of M() if 0 is suffi-
ciently small.
The next theorem shows that the problem o minimizing z0 subject to

conditions (2.3) can be reduced to that of minimizing () over the
region t, where

2- {@’@EE"+,@o -1,@ <-- 0 for iE I}.

THEOREM 2.2. Let the set M satisfy the conditions of the Basic Assumption.
Then, if o and q() <_ (b) for all , we have that

z(b) <- 0 for i I,

(2.10) z() 0 for i I.,

z() 0 for i Ix,

and, for every vector z M satisfying (2.3), Zo >- Zo().
Proof. By virtue of the basic assumption and the corollary to Theorem

2.1, the derivative of 9($) in any direction e, evaluated at the point $0,
is given by the formula

o() (e, z()).
0e

Since () is a convex function, it follows that z will yield a minimum for
the function q() in t if and only if

(2.11) (e, z(b) >- 0
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for all e such that 0 + he t for some k > 0. But one can easily con-
vince oneself that conditions (2.11) and (2.10) are equivalent. Further,
if z M satisfies conditions (2.3), then

(0) _z0(0) + z( -z0() -z0 + z -z0,
i=1 i=1

i.e., z0(@) z0, which was to be proved.
In the preceding chain of inequalities, we in turn mde use of (2.10),

the definition of (@), nd (2.3).
Thus, if one finds the minimum of (@) in , then t the sme time the

original optimization problem has been solved. But, as ws shown bove,
(@) is smooth function in the region under consideration, nd its gra-
dient, on the busis of the corollury to Theorem 2.1, coincides with z().
Therefore, to obtain the minimum of , one of the methods of descent
[18], [19] my be pplied.

Note. In the proof ot Theorem 2.2, the fact that the set M(@), for ,
consists of single point played n essential role. Theorem 2.2 cn be gen-
erMized to the case when this assumption is not satisfied; however, it is
then necessary to require that the set M be convex. The relewnt lgorithms
for this cse [8], [17] are complicated and cn be pplied to optimal control
problems only with difficulty.

Let us dwell on certain peculiarities of the developed Mgorithm. It is
clear that the lgorithm cn effectively be pplied only if () cn be
computed quite simply. But

(2.12) () max (@, z) mx (x).
zM xX i=0

Therefore, everything reduces to the question of how simple it is to com-
pute the mximum in the right-hand side of (2.12). Fortunately, in linear
optimal control problems () is quite esy to clculte.
We shM1 now consider how to pply the pproach described above to

the solution of optimal control problems with linear systems, by means
of the ollowing example.

Let there be given an object whose behavior is described by the linear
differential equation

(2.13)
dx A(t)x + G(t, u).
dt

Here, A (t) is n n X n mtrix and G(t, u) is vector-function, and A (t)
nd G(t, u) depend continuously on their rguments. For the dmissible
controls we take the set of ll measurable functions u(t), defined on the
interval [0, T], such that u(t) U ior ech [0, T], where U is some
compact set. From mong ll the admissible controls u(t) we re to find
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one such that the corresponding solution x(t) of (2.13), with initial condi-
tion x (0) x, satisfies the constraints"

z Ax(t) <- O, tc 1,...,m,
(2.14)

m-bl
Z A"+x(t,+) b’+ O,

and such that the functional
T

(2.15) Zo Jo g(u(t)) dt

assumes its minimum vulue.
In (2.14) nd (2.15), the A, / 1, m -t- 1, are n X n mtrices,

the b are ectors of dimension n, the t nre fixed times with 0 < tl t2
< t < t+ T, and g(u) is continuous function.
For the set X considered ubove, we shll choose the set of all admissible

controls u(t). Thus, X is the set of all measurable functions u(t) such that
u(t) U for each t. Then the constraints (2.14) nd the functional (2.15)
being minimized define, ccording to (2.2), the set M in space of dimen-
sion n -F n. -F -F n,+ -F 1. (It is obvious that in all the preceding
arguments the dimension of M is equal to the number of constraints
t(x), which in this particular case is n -F n -F -F n+, plus 1 for
the functionM being minimized.)
The set M is bounded, and, on the basis of [20], it is closed. The function

() for this prticulr problem has the form

(2.16) e() max 0 g(u(t)) dt -F (k, Akx(tk)_ b)
u(’) EX k=l

where # (0, 1, ,m, m.1) is a vector of dimension nl + n2 +
n+l W 1, and the vectors k, ]c 1, ..., m 1, have dimension

n. Finally, the region 2 for this particular problem is defined by the con-
ditions 0 -1 and k __< 0 for k 1, m.

Let us consider the problem of computing the maximum in (2.16). If
(t) is the matrix satisfying the equations

d((t) A(t)(t),
dt

(0) ,
where I is the identity matrix, then the solution x(t) of (2.13) is given by
the expression

x(t) ((t)x -F (t) fo (-I(r)G(" u(-)) dr.

Substituting this expression into (2.16), we obtain, after some tedious but
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not complicated transformations, that
T

(2.17) () max f0 [og(u(t)) - ((t),G(t,u(t)))] dt + ...,
u(.)x

where the dots denote terms which are independent of u(. ), and the func-
tion (t) is uniquely specified by the following conditions-

(a) on the interval t < -<_ t+l, (t) satisfies the system o equations

dh A*(t);(2.18)
dt

(b) (t) is discontinuous from the right at the points ti, i 1, m;
in particular,

(2.19)
(tm+l) (Am+l)*cm+l,

(ti) (t + 0) + (A)*.
It follows from (2.17) that the right-hand side of (2.16) attains its

maximum when u(t) satisfies the following condition almost everywhere
on the interval [0, T]"

(2.20) hog(u(t)) + (/(t), G(t, u(t))) max [0g(v) + ((t), G(t, v))].
vU

In order for our algorithm to be applicable, it is necessary and sufficient
that (2.20) uniquely determine the control u(t). In particular, this will be
true if g(u) is a strictly convex function and G(t, u) is linear in u.

Let us now assume that (2.20) uniquely determines u(t), and let us de-
scribe one step of the algorithm. As we already noted, the original problem
reduces to that of minimizing the function () subject to the conditions
0 -1 and Ck _<_ 0 for ] 1, m. Therefore, one step ot’ the algo-
rithm coincides with a step in a direction of descent for the minimization
of (). Thus, suppose that the vector (N) has already been constructed,
where k(N) <_ 0 for ] 1, m.

Step 1. The computation of (()) and zkt).
For the vector b), we determine the function ()(t) from (2.18) and

(2.19). From (2.20), we determine u()(t). Integrating (2.13), with
u(t) u()(t), we find x()(t), and then, from (2.14), we determine
zk() for/ 1, ..., m + 1.

Step 2. The construction of b(+).
In accordance with the method of steepest descent [18], we set

/(m-l)(N+l) (m--l)(N)

bk(V) k(g) b(V) Z(N)hz if < 0 or >- 0,
(+)

() if k() 0 and z() < 0.
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The stepsize XN is calculated from the condition

where

<<.k <_m Zjk(N)
l<_J<nk,

and the minimum is taken only over those values of k and j for which the
ratio .()/zk(v) is positive. Also, X0 is a sufficiently small positive number,
and and z.k denote the jth components of the vectors Ck and zk, re-
spectively.
The convergence of the indicated method, in connection with optimal

control problems, was investigated in more detail in [4], [5], [6]. The rela-
tionship between the magnitude X of the step and the geometric structure
of the region of attainability is also given there.
From all that has been presented, it becomes clear that the algorithms

originally developed in [2] are of a quite general nature and may be ap-
plied to a wide class of problems.

Conclusion. Among the papers written in the U.S.S.R. which touch on
the systematie approach described above, we should take note of [21],
[22]. There, a time-optimal problem where the trajectories are ehosen from
an arbitrary convex set, and also problems with retardation, were con-
sidered. Furthermore, the development of an algorithm, when there is not
necessarily a uniquely determined element that maximizes (), is con-
sidered in [22].
In eonelusion, I consider it my pleasant duty to express my gratitude to

Professor L. W. Neustadt for his kind invitation to write this article, and
for the work, which he took upon himself, with respect to its editing.
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ON THE DUALITY BETWEEN ESTIMATION AND CONTROL*

J. D. PEARSON
Abstract. The problem of smoothing is shown to be a variational dual to a problem

of control or regulation. Two fundamental equations occur in both contexts which
relate to an earlier duality principle.

1. Introduction. This paper investigates the relationship between the
problems of statistical estimation of the state of a linear dynamical system
under Gaussian disturbances and the design of a linear regulator with a
quadratic performance index. By using an equivalent deterministic smooth-
ing formulation of statistical estimation, the two problems are shown to be
variational duals. This duality results in the equivalence of their solutions,
which also appear as the optimal estimate and variance equations. The
apparently novel formulation of these well-known results explains the
close connection between the two problems, and relates to an earlier
"duality" equivalence principle [1]. However the duality employed here is
fundamental to variational problems [7].

2. The estimation problem. Given"
(i) a partially observed linear dynamic system disturbed by Gaussian

white noise inputs,

dx Fx(t) -t-Gu(t),
dt

z(t) Hx(t) + v(t),

where x(t) is an n-component state vector, u(t) and v(t) are respectively
a- and/-component vectors from independent Gaussian white noise sources,
F, G and H are constant matrices;

(ii) a priori estimates of x(0), u(t), v(t) for 0 =< __< T,

E(x(O)) o, E((0)(0)’) P0,

W(u(t)) (t), E((t)(t)’) Q,

E(v(t)) O, E(O(t)O(t)’) R,

where P0, Q, R are constant positive definite symmetric raatrices,
(x ), prime indicates transpose, E(. is the expectation operator;

(iii) observations for 0 -< _-< T of z(t)

* Received by the editors August 10, 1965, and in final revised form January 21,
1966.

Systems Research Center, Case Institute of Technology, Cleveland, Ohio.
Now at Research Analysis Corporation, McLean, Virginia.

594



DUALITY :BETWEEN ESTIMATION AND CONTROL 595

(iv) that the model and observation process is inherently completely
controllable and observable; i.e.,

rank [G, FG, F2G, F’-IG] n,

rank [H’, F H,..., (F’)n-lH
The problem is to find a maximum likelihood estimate 4(t) of x(t) for

0 =< =< T, and2(T) ofx(T).

3. The primal and dual smoothing problems. It is reasonably well-known
that the maximum likelihood estimate of the smoothed trajectory is given
by solving an equivalent primal minimization problem [5], [6], [8].

In this section both primal and dual formulations of the solution will
be developed in detail to uncover two fundamental equations which play
a central role in smoothing, estimation and regulation.

3.1. Primal smoothing problem. Given z(t), (t), 40, P0, Q and R for
0 =< _<_ T, minimize the functional

1
-2 x(0) o I1 0- / (!i z(t) Hx(t)I1

(3.1)

subject to the following controllable dynamic constraint"

dx
3.2

dt
Fx(t) -t- Gu(t),

where x IIQ denotes x Qx, and where a forcing function u(t), 0 =< -< T,
and x(0) are to be found, which generate the smoothed trajectory (t)
over this interval.

Associated with this problem there is a second dual maximization
problem.

3.2. Dual smoothing problem. Given are the following dynamic con-
straints"

(3.3) Q-(u(t) a(t)) -t- G’p(t) O,

(3.) dp H’R-1Hx(t) -+- F’p(t) H’R-z(t),+
(3.5)

p(O) + P-l(x(O) o) O,

p( T) O,

where p(t) is an n-component multiplier or co-state associated with the
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dynamic constraints (3.2); maximize the following functional [7]:

1{
(3.6)

/ u(t)--a(t),l- + 2p(t)’ (Fx(t)+ Gu(t)- tt))dt}.
This latter equation is the Lagrangian form of the primal problem sub-

ject to constraints (3.3)-(3.5), which are the first order necessary condi-
tions for a minimal primal solution. Observability plays a more obvious
role in a later formulation (5.1)-(5.2).
Equations (3.2)-(3.5) define a minimizing curve 4(t), p(t) for (3.1)

and a maximizing curve for (3.6) as can be shown using the convexity
properties of the integrands. It follows that the roles of state x and co-state
p for the primal problem become state p and co-state x for the dual prob-
lem; also, that the minimal value of (3.1) is the maximal value of (3.6).
An alternative "feedback" solution can be developed for both problems

as opposed to the "open loop" solution given by solving (3.2)-(3.5).
In (3.4) the following substitution for p(t) is employed:

(3.7) p(t) -P-(t)(x(t) e(t) ),

where e(t) is Un n-component vector of time functions and P(t) is required
to be an n X n symmetric positive definite matrix. The forcing function
u(t) in (3.2) and (3.3) then assumes the form:

(3.8) u(t) (t) + Q-G’p-i(t)(x(t) e(t)).

Performing the substitution, (3.7) requires that P(t), e(t) satisfy the
following differential equations and boundary conditions:

de Fe(t) + G(t) + P(t)H’R-(z(t) --He(t)),
(3.9) dt

e(0) 0,

dP FP(t) + P(t)F’ + GQG’ P(t)H’R-HP(t),
dt(3.o)

P(0) P0.

R. E. Kalman has shown that (3.10) has a positive semidefinite solution
for positive definite P0, Q, R. Since the same form of (3.10) holds for p-l(t),
it follows that P-l(t) exists and P(t) is positive definite [2].
A feedback solution for the dual problem can obviously be found by

using (3.7) in its alternate form, where x(t) is the dual co-state to be
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eliminated in terms of the dual state p(t),

(3.11) x( t) e( t) P( t)p( t).

Clearly, P and e will satisfy the same equations and boundary conditions.
The equations for e and P are fundamental to what follows, for they will
appear as the estimator and variance equations in the estimation problem,
and as the feedforward and feedback equations in the regulator problem.
In addition they solve the smoothing problem.

4. The optimal estimation solution. The best estimate 2(T) of x(T),
given past observations z(t) for 0 -< -<_ T, coincides in the linear case with
the optimal smoothed terminal state (T). Equations for the rate of change
of the estimate 2(T) can be found directly from (3.9).
The terminal state 4(T) is given by (3.7) and the second equation of

(3.5)

(4.1) (T) e(T) 2(T).

Since (3.9) and (3.10) satisfy all the required initial boundary value
problems, and (4.1) satisfies the terminal boundary value problem in
(3.5), it follows that (3.9) is the optimal estimator equation when T.
In fact it is true for any time T.

d2 F2(T) - G(T) + P(T)H’R-I(z(T) H2(T)),
(4.2) dT

2(0)

The matrix P(T) is then the variance of (T) with (3.10) being the
variance equation.

It is interesting to note that this result now yields a uniformly simple
approach to smoothing given the optimal estimate 2(T) of covariance
P(T) and using 3.8)-(3.10).

5. The optimal regulator problem [7]. The dual smoothing problem can
be transformed into a regulator problem. To do this (3.6) is rewritten to
eliminate all the primal variables (see Appendix) using partial integration
and substitutions from (3.3)-(3.5). An equivalent more interesting prob-
lem follows.

Given is a controllable dynamic system,

dp + F’p(t) -t- H’m(t) O,
dt(5.1)

p(T) 0,
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where re(t) is a/-component forcing function, p0 P(lxo, and

is constant; mximize the functional

1c(T) p(0) p0 ]o
(5.2)

T

2 (]1 (t) + %(t) + e’p(t) O-a(t)) dt.

Note that observability of the basic process in 2 implies controllability
of this dual problem, which resembles one of making the observed state
G’p(t) follow a reference function Q-u(t). The following equivalence
transformation reveals this similarity more clearly:

t* -t,

F*= F,
(5.3)

G* H,
H* G’.

To these are added two reference functions:

m*( t) -R-lz( t)
(5.4)

z*(t) Q-l(t).
5.:t. Optimal regulator problem. Given a controllable dynamic system,

dp F*p t* -t- G*m( t*
(5.5) dt*

p(T) 0,

minimize the performance index

1 p(0) p0 liP0 c(T)
(5.6) 1 f z* t* m* t*zt-- (11 (t*) H’p( [[ -t- m(t*) ) dt*.

The solution to this problem is obtained simply by transforming the dual
smoothing solution.

dp F*p(t*) + G*m*(t*) + G*R-1G*’(e(t*) P(t*)p(t*)),
(5.7) dt*

p(T) 0,



DUALITY BETWEEN ESTIMATION AND CONTROL 599

de t* H*t * t* t* G* m* t*----F*’e( )-t- Qz )-P( -- R-1G*’e(t*) O,
e(O) o,

(5.9)

__
P(t*)F* + F*’P(t*) -- H*’QH* P(t*)G*R-IG*’P(t*) O,

P(O) Po.
The regulator problem operates in reverse time" T ->- t* _-> 0. Here

e(t*) is a "feedforward" function depending on the reference functions
z*(t*) and m*(t*), and P(t*) is a "feedback gain" determined by the
relative weighting Q and R.

6. The duality equivalence principles. Clearly there is a connection be-
tween the problems of smoothing, estimation and regulation, which can
be summarized as follows.
DUALITY EQUIVALENCE THEOREM. The problems of optimal smoothing

defined by (3.1)-(3.2) and optimal regulation defined by (5.5)-(5.6) are
variational duals under the equivalence transformations (5.3)-(5.4). The
equations for estimation (3.9)and variance (3.10) are equivalent to those for
feedforward (5.8) and feedbacc (5.9) under transformations (5.3)-(5.4).

Practically speaking, the two problems have the following equivMence:
(i) The primal state and co-state are the dual co-state and state respec-

tively.
(ii) The minimal performance indices have the same value, by definition.
(iii) The e and P equations are the same under the equivalence trans-
formation.
(iv) Primal controllability and observability are revealed as the essential
conditions that dual formulations of the same problem are controllable [2].

7. Conclusions. The central role of two differential equations for e and P
in the solution of the dual smoothing and regulator problems has been
demonstrated.
An earlier equivalence between estimation and regulation is not strictly

applicable to continuous formulations of both problems [1], [3], [4]. This
earlier principle applied here states that solutions of the estimation and
regulation problems are the same under the equivalence transformation
(5.3). The variance equations (3.10) and (5.9) are equivalent but only the
homogeneous parts of the estimation equations (4.2) correspond to (5.7).
Equations (5.8) play no role whatever. The results of this paper thus pro-
vide a conventional justification of a very useful concept.

8. Appendix. The derivation of (5.2) is performed by substituting the
dual constraints (3.3)-(3.5) directly into the Lagrangian form (3.6),
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with the aid of partial integration of the p’(dx/dt) term,

1-- (x(0) + )’p0-1(x(0) 0)

(8.1) 1 fo
r- [(Hx(t) -+- z(t) )R-(Hx(t) z(t)

-4- (u(t) -4- %(t) )’Q-(u(t) (t(t) )] dt.

In order to eliminate the primal vribles x(t), x(0), u(t), the following
transformations re obtained from (3.3)-(3.5).

(8.2) x(0) 0- Pop(O),

(8.3) u(t) a(t) qG’p(t),

(8.4) Hx( Rm( + z(

The resulting dual functional now takes on the following form:

{ fo
r t}1

(8.5) e0-10- p(0)II0

/ f0 re(t) + R-lz(t)112R + G’p(t) Q-a(t)[[) d

Equation (5.2) follows directly from this result, and the dual constraint
(5.1) is obtained using (3.4) and (8.4).
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OPTIMAL PROCESSES IN DISTRIBUTED PARAMETER
SYSTEMS AND CERTAIN PROBLEMS IN INVARIANCE

THEORY*

A. I. EGOROV

Abstract. In this paper we investigate optimal processes in systems whose be-
havior is described by various boundary value problems for partial differential equa-
tions.

The majority of physical processes with which an engineer has to deal in
his practice are controlled processes and, consequently, in realizing them it
is important to obtain variants which are optimal (in some sense or other).
The maximum principle of L. S. Pontryagin [1] has proven to be an effective
mathematical method for the solution of optimal control problems when
the process can be described by ordinary differential equations. However,
many controlled processes are described by partial differential equations
with supplementary (boundary and initial) conditions. These equations may
be of various types (equations of mass- and heat-transfer, of hydro- and
aerodynamics, of heat conduction, of kinetics of chemical reactions, etc.).
If the behavior of the control system is described by equations among which
there are partial differential equations, then it is called a distributed-param-
eter system (see [2]). In a number of the simplest eases these systems can be
described by differential-difference equations and, consequently, the maxi-
mum principle can be applied (see [3]).
Optimal control problems for more complex systems cannot be solved

directly with the aid of the maximum principle of L. S. Pontryagin (see
[4, pp. 516-518]). Therefore, attempts were made to generalize this principle
so that controlled processes in more complex distributed-parameter systems
could be investigated (see [5]-[15]). In particular, a method based on the
application of differential equations in Banaeh spaces was proposed in refer-
enee [10]. In many eases such a method allows us to treat partial differential
equations as ordinary differential equations and to solve the optimal con-
trol problem when the functional

(1) I f(t,x(t),u(t)) dt

* Originally published in Izv. Akad. Nauk SSSR Ser. Mat., 29(1965), pp. 1205-1260.
Submitted on March 13, 1964. This translation into English has been prepared by N.
tI. Choksy.
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is chosen as the criterion of optimality. Although this method has definite
merit, it also has intrinsic deficiencies since the introduction of Banach
spaces imposes auxiliary constraints on the class of admissible controls not
called for by the nature of the problems. Moreover, the choice of functional
(1) as the optimality criterion for problems with partial differential equa-
tions is not as successful a one as for problems with ordinary differential
equations. In particular, the indicated method cannot solve the problem,
important in practice, when the functional (1) is replaced by an integral
computed over the surface bounding the region in which the equation is
considered.
Of definite interest is the method (see [13]) which is based on the repre-

sentation of the controlled quantities by means of integral relations. How-
ever, it is not possible to consider it as satisfactorily substantiated. More-
over, the application of this method to processes which are described by
boundary value problems for partial differential equations is not sufficiently
effective for the following reasons. Firstly, the reduction of boundary value
problems to integral equations cannot always be effected in practice, al-
though the problem can be solved by other methods. Secondly, it is always
desirable to have the optimality criteria expressed in terms of quantities
occurring in the equations and in the supplementary conditions.

In the present paper a method of solution is used which is equally ap-
plicable in cases of hyperbolic, parabolic, and elliptic equations. Using the
same method, L. I. Rozonoer [16] has studied the case when the controlled
process is described by ordinary differential and finite-difference equations.
In succeeding papers (see [17]) he obtained the condition for the invariance
of systems relative to external excitations; moreover, the starting point in
these investigations was the formula for the increment of the functional
from [16]. Analogous results (however, for particular cases only) were suc-
cessfully obtained also for distributed-parameter systems.
The paper consists of five sections. In 1 and 2 various optimal control

problems are considered for processes which are described by boundary
value problems for hyperbolic equations with data on the characteristics.
Necessary optimality conditions are formulated in the form of the maximum
principle.

In 3 connections are established between the problems being investi-
gated and the problems of the calculus of variations. It is shown that the
Euler-Ostrogradski equations can be obtained from the maximum principle
when the control region is the whole space. However, if this region is closed,
the Legendre condition need not be satisfied along the optimal surface.

Section 4 studies the optimal control problem when the processes are de-
scribed by boundary value problems for parabolic systems. A formula for
the increment of the functional is obtained, with the help of which the
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optimality conditions are found. These results are carried over to the
analogous problems connected with elliptic and hyperbolic systems.

Section 5 deals with problems in invariance theory. Necessary and suffi-
cient invariance conditions relative to external excitations are obtained for
linear equations when functionals analogous to those considered in 1-4
are chosen as the criteria of invariance.
The author takes this opportunity to express his thanks to L. S. Pontrya-

gin and to the participants in his seminar for their attention to the present
paper. Furthermore, the author sincerely acknowledges V. G. Boltyanskii,
O. A. Oleinik and Yu. V. Egorov for very useful discussions of the results ob-
tained in the paper.

1. Optimal processes ia systems whose behavior is described by hyper-
bolic equations.

1.1. Statement of the problem. Optimality conditions. Let the controlled
process be described by the system of equations

z, f( x, y, zl z, z, Zn, Zly Zmy V),
(1.1)

i= 1, ,m,

where the functions f have continuous first-order derivatives with respect
to x and y and are twice continuously differentiable with respect to the re-
maining arguments in the region G, 0 -_< x _-< X, 0 =< y -< Y. As the class of
admissible controls we shall take the set of pieeewise-eontinuous functions
v v(x, y) defined in the region G and with values in some bounded convex
region V (open or closed) of the r-dimensional Euclidean space. It is as-
sumed that the lines of discontinuity of the admissible controls are suffi-
ciently smooth. On the function z defined by 1.1 are imposed the boundary
conditions (the Goursat conditions)

(1.2) z(0, y) ,,(y), zi(x, O) bi(x), i 1,..., m,

where and are continuous, piecewise-continuously differentiablefunc-
tions defined in the region G and satisfying the coniugate conditions

,(o) (0).

To every admissible control there corresponds a unique solution z(x, y)
{z(x, y), z(x, y) of the problem (1.1)-(1.2) having derivatives

z,, which are integrable in the region G (see [18]). Here, however, we have
to distinguish two cases.

1 If the line of discontinuity of the function v(x, y) is parallel to one of
the coordinate axes, the boundary value problem 1.1 )-(1.2) splits up into
two analogous problems in regions which abut each other along this line.
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Having solved these problems in sequence we determine the solution of the
original problem, which will be continuous in the region G and will have
everywhere, except on the points of the line of discontinuity of the control
v(x, y), continuous derivatives z(x, y), z(x, y) and z,(x, y) (see [18]).

(2) Let the line of discontinuity F of the function v(x, y) not coincide
with a characteristic of system (1.1) on any nonzero segment. By a solution
of the boundary-value problem 1.1 )-(1.2) we shall mean a function z( x, y)
which stisfies the system (1.1) at all points of region G not lying on F, the
conditions (1.2), and certain preassigned smoothness conditions on F (see
[19]). Such solution is determined uniquely; it is continuous in the region
G nd has piecewise-continuous derivatives z, z,, z.

Therefore, in what follows we shall assume that to every admissible con-
trol there corresponds a class of functions in which the boundary-vMue
problem 1.1 )-(1.2) is solwble uniquely.

Let A, i 1, m, be a given system of real numbers. We shall take
an arbitrary control v( x, y), denote by z( x, y) the solution of problem 1.1 )-
(1.2) corresponding to it, and consider the functional

(1.3) S Az,(X, Y),
i=l

where X and Y are the constants occurring in the definition of region G.
We pose he problem: from among all the admissible controls find the

control v(x, y) (if it exists) such that the solution z(x, y) of the Goursat
problem corresponding to it makes the functional S attain its largest
(smallest) value.
The admissible control which realizes the minimum (maximum) of func-

tional S will be called rain-optimal (max-optimal) with respect to S (see
[16]).
Let us remark that the problem 1.1)-(1.2) being considered is of great

theoretical and practical interest. The investigation of the solvability of
this problem under various assumptions relative to the functions
and has an extensive literature devoted to it (for example, see [20]-[25]).
It is also well-known (see [26]-[28]) that the study of gas sorption and de-
sorption processes, drying processes, etc., leads to such problems. The
presence of the control parameters in (1.1) makes it possible to handle the
process and in many cases to choose the best mode which (from a mathe-
matical point of view) leads to the determination of the maximum or the
minimum of a certain functional. In a number of cases the problem can
reduce to the investigation of (1.3). Let us consider some examples.
Example 1. It is required to minimize the functional

ff fo(x, v, z, dx dy.I
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If we introduce the new variable z0 by setting

(1.4) Zo. fo( x, y, z, z z v), zo(O, y) Zo(X, O) O,

then the problem leads to the determination of theminimumofthefunctional
S z0(X, Y), which is a special case of (1.3) nd is defined on the functions
z0, zm given by the set of relations (1.1)-(1.2) and (1.4).
Example 2. It is required to minimize the functional I (zl(X, Y),

zm(X, Y)), where is a twice continuously differentiable function.
We introduce the new function z0( x, y) with the aid of the equation

zo O(z(x’ y)’ z(x, y)
.=1 Oz Ozk

z, z, + O

=
f(x, y, z, z z, v)

and of the supplementary conditions

z0(0, y) I,(l(y), ,(y)), zo(x, o) ((x), ..., ,(x)).

By the same token the problem is reduced to the study of the functional
S zo(X, Y).
Example 3. It is required to minimize the functional

X

I F(x, z(x, Y), z(x, Y)) dx.

We introduce the auxiliary function Zo(X, y) with the aid of the equation

Zo
OF OF
z - f(x, y, z, z, z v)

and of the supplementary conditions

zo(O, y) O, Zo(X, O) F(x, (x), ’(x) dx.

Example 4. Analogously we consider the problem of minimizing the func-
tional

Y

I F(y, z(X, y), z(X, y)) dy.

To solve the optimization problem we have formulated let us introduce
he auxiliary functions ul, u,,, with the aid of the equations

(1.5) u, OH(x, y, p, v)
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and of the supplenen.tary conditions

(1.6)
ux(x, Y) OH(x, Y, p, v)

OZiy

uiu(X, y) OH(X, y, p, v) u(X, Y A

where the A are the constants occurring in the definition of functional S,

p (Zl Zm Ul "ll, Zlx Zmx Zly Zmy)

H ufi(x, y, z, zx, zy, v).

Equations (1.6) are linear differential equations in the ordinary deriva-
tives with initial data.
In the general ease the functions zix, zyu, v and vy occur on the right-

hand sides of (1.5). However, the existence of these derivatives does not
follow from the conditions imposed on (1.1) and on the admissible controls.
Therefore, in what follows we shall assume that the functions f are of the
form

a,jk(x, y, z)z1xz -t- b(x, y, z)zj
,/=1 3"=1

-t- c(x, y, z)z, + di(x, y, z, v),

where the functions a, b, c and d are continuously differentiable with
respect to x and y and twice continuously differentiable with respect to the
remaining arguments. If it turns out that a, b and c depend on v, then
it is necessary to require that the admissible controls have the piecewise-
continuous derivatives v(x, y) nd vu(x, y).
When these conditions are satisfied the system of linear equations (1.5)

will huve piecewise-continuous coefficients and, together with the supple-
mentry conditions (1.6), will uniquely determine the functions
u(x, y), u(x, y) for ech admissible control. Therefore, in wht fol-
lows we shall assume that the functions f and the admissible controls are
such that the boundary value problem (1.5)-(1.6) is uniquely solvable for
each admissible control.
We shall say that an admissible control v(x, y) satisfies a maximum con-

dition if the relation

(1.7) H(x, y, p(x, y), v(x, y)) ((=)) sup H(x, y, p(x, y), v)

is fulfilled, where z(x, y) and u(x, y) are solutions of problems 1.1 )-(1.2)
and (1.5)-(1.6) corresponding to the control v(x, y), while the symbol
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(( )) denotes n equality which is wlid t ll points of the region G,
0 -< x =< X, 0 _-< y =< Y, except perhaps on set of points lying on finite
number of lines with zero re. A minimum condition is defined nlogously.
THEOREM 1. (The Niximum Principle). In order that an admissible con-

trol v(x, y) be rain-optimal (max-optimal) with respect to S, it is necessary
that it satisfy a maximum (minimum) condition.
Although this theorem does not give sufficient conditions for the existence

of optimal controls, it cn be used tor practical solution of the optimal
problem. Indeed, according to the mximum principle solution of thls
problem leds to the necessity of determining the 2n + 1 unknowns z, u
nd v from the 2n + 1 equations (1.1), (1.5) nd (1.7). The first 2n rela-
tions re second-order differential equations nd, generally speking, 4n
rbitrry functions will pper in their solutions. To eliminate them we
hve the 4n supplementary conditions (1.2) nd (1.6). By the sme token
we hve determined, generally speking, the isolated solutions of problem
(1.1)-(1.2) stisfying the conditions of the mximum principle. If within
the meaning of the problem it turnu out that the optimization problem
necessarily hs a solution, then t least one of the isolated solutions we hve
found will also be the desired one.

1.2. Formula for the crement of functional S. To prove Theorem 1 let
us consider the functional

lip, v] ui Z+x H(x, y, p, ) dx dy.
i=l

If v is some admissible control and z z(x, y) is the solution of problem
1.1)-(1.2) corresponding to this control, then the functional I equals zero

for an arbitrary function u (u, u).
Let v v(x, y) be some admissible control and let z(x, y) and u(x, y) be

the solutions of the boundary value problems 1.1)-(1.2) and 1.5)-(1.6)
corresponding to it. Let us give the function v an admissible increment Av,
and let z + Az and u + Au denote the solutions of the same problems but
corresponding to the control v + Av. It is obvious that the functions Az
and Au satisfy the equations

Az A 0H
Oui

z dx - A i= 1,.-.,m,

and the supplementary conditions

(1.9) Az(0, y) Az(x, 0) 0,
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(1.10)

Au(x, Y) --A OH(x, Y, p, v)
Oz

Au(X, y) A OH(X,y,p,v)
OZlx

(1.11) Aui(X, Y) O, i 1,..., m,

where

OH OH(x, y, p -k- Ap, v + Av) OH(x, y, p, v)(.2)
Op Op Op

Equations (1.10) are differential equations in ordinary derivatives and,
moreover, for linear f the functions

(1.13) Aui(x, Y) O, Au(X, y) 0

are their solutions and satisfy the supplementary conditions (1.11). By
virtue of the uniqueness theorem, the functions (1.13) form a unique solu-
tion of’the boundary value problem (1.10)-(1.11).

Furthermore, according to the remark made above,

(1.14) AI I[p + Ap, v + Av] I[p, v] O.

On the other hand,

(.5)
[H(x, y, p + Ap, v -- Av) H(x, y, p, v] dx dy.

With the help of Green’s formula (see [29, p. 196]) we transform the
expression under the integral sign:

ffa qsx sq) dx dy f (qs- sq.)dy- (qs.- sq.)dx,

where L is the contour bounding the region G and q and s are arbitrary
functions having piecewise-continuous first and second order derivatives.
Since G is a rectangle, the Green’s formula can be reduced to the form

28/CU

ffo qs u sq, dydx

{[q(x,y)s(x,y)]x=0}u=o fo
x

fo
Y

sq)=o dx X=o(sq dy.

We set q Aui, s Az: in this equality. Taking into account (1.8) with
the supplementary conditions (1.9), (1.10) and (1.11), after elementary
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manipulations we obtain"

AuiAzi dx dy

i=1
Azi + A Az + A Az dx dy.

On the other hand, by virtue of the first m equations from (1.8) we
have:

AuAz,v dx dy A
OH

= = Au dx dy.

From the last two equalities we obtain:

(1.17) dz dg pd dg.

We se , in (1.16). hen by virtue of (1.) and (1.8)
and of (1.6) and (1.9) we have:

(1.18)
u,Aziv dx dy -- A,Az,(X, Y)

i=l i=l

OH OH
Az + Azi, + Azi, dx dy.

Furthermore, since the functions z form the solution of the system 1.1 ),

ffo (1.19) Auizixu dx dy
OH

= =- Aui dx dy.

Applying Taylor’s formula we get the equality
4m

(, , + ap, v + v) (, , , v) o(, , , v + v)
= Op

1 OH(x,y,p Ohp, v Av)(1.20) + .= OpOp

+ H(x,y,p,e + v) H(x,y,p,v), 0 0 N 1.

From (1.14), 1.1) and 1.17)-( 1.20) i follows ha

I A(X, Y)

fro [g(’ ’ p’ v + v) (, , p, v)l d g
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_Fo. (. . . + ) o. (x. . . v)l dy
L Op Op

ff o’(x, , +, +) ApAp dx dy.

Applying Tylor’s formulu to the functions OH/Op und taking (1.14)
into account, we finally obtain:

ff [H(x,y,p,v + Av) H(x,y,p,v)] dxdy v,(1.21) AS

where AS AAz(X, Y) is the increment of functional S, + ,
1

i=1 Opi D Ap dx dy,

1 ffooH(x,y,p+Op,v+v)(1.22)
.= OpOp

OH(x, y, p + OAp, v + Av) ApAp dx dy.
OpOp

1.3. Estimate of the remaiader term v in (1.21). To obtuin the necessary
estimates of the quantities v we introduce the auxiliury functions a(x, y)
und fl(x, y) by setting

Since the functions f stisfy Lipschitz condition, from the first m equ-
tions of (1.8) nd conditions (1.9) we obtain:

1 k1

(1.23) Az a dx,

=4 k1

wher nd N re sTecio ositive oontnts. B introduoit t nota-
tions

=1 =1 =1 k=1
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from (1.23) we have-

a(x, y) _<= Nm a(x, y) dy -t- Nm [(x, n) - /(x, v)] d

+ Nm Av dy, "y <= o(x, y) dx,
(1.25)

fl(x, y) <-_ Nm fl(x, y) dx + Nm [a(x, y) + fl(x, y)] dx

+ Nm Av dx, , <= (x, y) dy,

where 0 x =< -_< X, 0 =< y < =< Y. Hence, by virtue of a well-known
lemm (see [30, p. 19]) it follows that

a(x, y) <= M [/(x, y) - fl(x, y)] dy -t- M1 Av(x, y) dy,

(x, y) =< P [,(x, y) - (x, y)] dx + P1 Av(x, y) dx,

where M, M1, P, P are positive constants. Taking the estimates for the
function -y in (!.25) into account we get"

a(x, y) < M. fl(x, y) dy -t- M Av(x, y) dy,

(x, y) <= P. rjo
Hence we find that

a(,/) =< M,f0f0

1.26

(,,) <= P f0’fo

a(x, y) dy --]- P fo
x

Av(x, y) dx.

foY oa(x, y) dx dy - M4 AV(X, y) dx dy

+ M Av($, y) dy,

(x, y) dx dy + P4 Av(x, y) dz dy

+ P Av(x, n) dx.

Integrating the first of these inequalities with respect to in the limits from
0 to and applying the lemma mentioned above we get"

X Y
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Hence also from the first inequality in (1.26) we have"
X Y Y

OxX, Oy Y.

AnMogously, we find"
X Y X

Hence also from (1.25) we obtain"
X Y

Thus, ghe inequaligies

lAzy(x, y) Q ffo y) dx dy,

(1.27) (, )1 N v(z, dz dg + R v(z, dg,

ffoz(x, y) Q= av(x, y) dx dy + R= av(x, y) dx,

are valid for all x and y, 0 x X, 0 y Y, by virtue of (1.24).
By applying analogous methods to the last m equations of (1.8) we get"

(1.28) Au,(x, y)[ 5 Qa fro &v(x, y) dx dy.

Since the functions H/Op satisfy a Lipschitz eondition, from the first
formula in (1.22) we have by virtue of (1.27) and (1.28),

[W[ T Av(x,y) dxdy

+ T Av( y) dy dx+ Ta Av( y)dx dy.

Consequently,

v TxXY + T Y + TaX)fro [Av(x, y)] dxdy,

where the T are specific positive constants.
The functions OH/OpOp are bounded in the region G. Therefore,

[w] (TXY + TY + TX) fro [Av(x, y)] dxdy.
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Thus, the remainder term in (1.21) satisfies the inequality

(1.29) ]71 -< (A M:eas G-t- BX-t-" CY) ffo [Av(x, y)]2 dx dy,

where A, B and C are specific positive constants. If the function Av is
nonzero in the circle G, of radius e, then from (1.29) it follows that

(1.30) 171 -< Le ff Av(x, y) dx dy,

where L does not depend on

1.4. Proof of Theorem 1. The case of a liaear system of equatioas. It is
easy to obtain the proof of Theorem 1 from formul (1.21) for the incre-
ment of the functional and from estimate (1.30) of the remainder term in
this formula.

Indeed, for the sake of definiteness let v(x, y) be control which is rain-
optimal with respect to S, and let z(x, y) and u(x, y) be the solutions of
the boundary value problems 1.1)-(1.2) and 1.5)-(1.6) corresponding
to it. Then, the inequality AS >= 0 is valid for any admissible increment
Av(x, y). Let us suppose that in the region G there exists
at which the maximum condition is not satisfied, i.e., there exists a con-
trol v such that-

(1.31) It( ,
Since the functions z(x, y) and u(x, y) are continuous, while z,

and v(x, y) are piccewise continuous, there exists a closed region G G
containing the point (, v), in which the left- and right-hand sides of
(1.31) are continuous and, consequently, uniformly continuous. If ((,
is a point of discontinuity of control v, then it is obvious that it can be
put on the boundary of region G. It follows from (1.31) that we can find
anumber > 0 for which

(1.32) H(x, y, p(x, y), v

at all points (x, y) G G, where G is circle of rdius . Le us tke
the control

{:Ix’Y) if (x,y) ( G,
ve(x,y)

if (x,y) G.

Then, by virtue of relations (1.21), (1.30) nd (1.32),

_ff_AS
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where Av v v(x, y). Since the function Av is bounded, the number e

can be chosen so small that the expression within the square brackets on
the right-hand side of the last inequality is positive. Then AS will be nega-
tive, which contradicts the min-optimality with respect to S of the con-
trol v(x, y). The theorem is proved.
The formula (1.21) for the increment of the functional together with

the formulas (1.22) for the remainder term allows us to obtain more
general results for a linear boundary value problem.

Indeed, let the controlled process be described by the boundary value
problem

Zixy [ck(x, y)zk + dk(x, y)ze nt- tie(x, y)z] + f(v),

(1.33) z(0, y) (y), z (x, 0) ,(o),

i- 1, ,m,
and let it be required to determine the control by which the functional S
attains its minimal (maximal) value. In this case,

H(x,y,p,v)

and the functions u form the solution of the boundary value problem

1.84
u..(x, Y) -- ds(x, Y)u(x, Y),

v)u (X,

u(X, Y) -A, i 1, m.

From what was proved earlier, since

Au(x, Y) Au(X, y) ------ 0(see (1.13) ),

Au(x, y) - 0.

Furthermore,

OH(x, y, p, v -t- Av) OH(z,y,p,v)
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Therefore, 1 0. Let us now compute v2. We have"

02H( x, y, p, v
OwOwk ------ 0, i,/c 1, 3m.

Hence,

i=l k-l

x, y, p -- OAp, v -- Av)
OuOw

O2H( x, y, p --[- O Ap, v -t-- Av Au, Aw dx dy.
OuOw

Since Au(x, y) - 0, it follows that w 0. Consequently, in the case being
considered, (1.21) takes the form"

AS ffo [H(x, y, p, v 4- Av) H(x, y, p, v)] dx dy.1.35

With the aid of the latter formula it is easy to prove the following
theorem.
THEOREM 2. In order that an admissible control v(x, y) in the boundary

value problem (1.33) be locally rain-optimal (max-optimal) with respect to
S, it is necessary and sufficient that it satisfy the maximum (minimum)
condition.

:t.5. Control of a system with the aid of boundary conditions. Up to now
we have assumed that the control is realized with the aid of the functions
v occurring in (1.1) or (1.33). The boundary values (1.2) of the functions
z were fixed. However, the method we have presented allows us to solve
a more general problem.
Let the controlled process be described by the system (1.1), but let the

boundary values of the functions z be given not by conditions (1.2)
but with the id of the differential equations

V )2(1.36) z(0, y) =i(y, zl,.’.,z, ), z(x, 0) =p(x,z,..- z,,, ),

and the initial conditions

(1.37) z(0, 0) z, i 1, m,

where the functions and b are continuous in y and x and are twice
continuously differentiable in the remaining arguments; v and v are the
control parameters taking values from the region V and V2, respectively,
in s- and t-dimensional Euclidean spaces.
The presence of parameters in (1.36) allows us to control the process

with the aid of the boundary conditions. As the admissible controls in
(1.36) we take the piecewise-continuous functions v(y) and v(x) with
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values in the regions V and V, respectively. It is well-known (for ex-
ample, see [31, pp. 16-17]) that every pair of admissible controls v1(y),
v(x), with the help of (1.36) and (1.37), determines a unique pair of
absolutely continuous functions z(O, y), z(x, 0). Everywhere in the fol-
lowing, by an admissible control in the boundary value problem (1.1)-
(1.36)-(1.37) we shall mean the function

o(x, y) (v(x, y), vl(y), v2(z) ),

whose components are piecewise-continuous functions with values in the
regions V, V and V, respectively. Therefore, to each admissible control
w(x, y) there corresponds a unique solution of the boundary value problem
(1.1)-(1.36)-(1.37) with the same smoothness conditions as were in-
troduced for the boundary value problem (1.1)-(1.2).
We introduce the notation"

q (Zl, -.., z,,, u, ..., u),
(., , ) (,v, , ),

VH(x, q, v) 2 u(x z, ).

We determine the functions ui with the aid of (1.5) and (1.6).
The optimal problem with. boundary conditions (1.36)-(1.37) has not

yet been successfully solved in the general, form.. However, it can be solved
by the method proposed above if the following conditions are satisfied"

k,i 1,...,m, v V, v V, v V.
Thus, in what follows we shall assume that conditions (1.38) are ful-

OH(x, y, p, v) OH.(x, q, v)
Ozi =0

(1.38’)
OH(x, y, p, v) OHm(y, q, V

’; ]x--o oz
are valid for any function u(u, u,) md for all v, v and v from the
regions V, V and V, respectively.
We shall say that an admissible control 0(:c, y) in. the boundary value

filled and, consequently, the equalities
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problem 1.1)-( 1.36)-(1.37) stisfies the maximum condition if

H(x, y, p(x, y), v(x, y)) ((=)) sup H(x, y, p(x, y), v),

(1.39) Hi(y, q(O, y), vl(y) (=) sup Hi(y, q(O, y), vl),
vlEv

H2(x, q(x, 0), v2(x)) (=) sup H(x, q(x, 0), v),
vVEV2

where z(x, y) nd u(x, y) re the solutions of boundary value problems
(1.1)-(1.36)-(1.37) nd 1.5)-(1.6) corresponding to the control co(x, y)

v (y), v(x)), while the symbol (=) denotes that the equality(v(x, y),
is vlid almost everywhere in the ranges of the arguments. The minimum
is defined analogously.
THEOREM 3. [n order that an admissible control ( x, y) in the boundary

value problem (1.1)-( 1.36)-(1.37) be rain-optimal (max-optimal) with respect
to S, it is necessary that it satisfy the maximum (minimum) condition.
The proof of this theorem is carried out by exactly the same scheme s

was the proof of Theorem 1" we start by deriving the formul for the
increment of the functional, next wc estimate the remainder term, and
finally we prove the theorem.
To obtain the formula for the incremen of the functional we take n

arbitrary admissible control (x, y) and we denote by z(x, y) and u(x, y)
the solutions of boundary value problems 1.1)-( 1.36)-(1.37) nd 1.5)-
(1.6) corresponding to it. Then the following equality is vlid"

I[p, ] uz, It(x, y, p, v) dx dy
i=l

u(x, O)z(x, O) H(x, q(x, O) v) dx

+ [ (o, )(o, ) (, (o, ), v) @ o.

Le denote an arbigrary admissible ineremeng of ghe eon.grol (z, g),
and z and , ghe ineremengs of ghe functions z(z, ) and (z, y) cor-
responding o i. Obviously,

I=I[p+@,o+]-[p,]=o.

For the transformation of AI we shall start with the equality

ffa pq dy dx -f- fo
x
p(x, O)q(x, O)dx -f- fo

r

p(O, y)q(O, y) dy

a.40 ffo qPx dy dx fo
x

q(x, Y)p(x, Y) dx fo
r

q(X, p)p(x, ) @

+ p(x, )q(x, Y)+ p(o, O)q(O, o),
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valid for any twice pieeewise-continuously differentiable functions p and
q, which can be obtained from the Green’s formula (1.16).

Setting p au, q Az in (1.40) and taking conditions (1.38’) into
account, we obtain:

ffo foAu Az, dx dy + Au(x, O)Az(x, O) dx
=1 =1

Y

+ [ Au,(0, y)Az(0, y) dy
J0 i=1

= Oz Az + A Azv dx dy
Ozi

OH(x, O, p(x, 0), v) z(z, 0) &

OH(O, y, p(O, y), v) z,(O, y)A dy
Ozix

= hz A Az AAz d dy
Oz

Az(x, O) do
+ [" oH, o, , zO, .o =

On the other hnd,

AuAz dx dy + Au(x, O)Az(x, O) dx
=1 =1

Y

+ [ u,(O, y)z,,<o, y) y
i=1

ffo 5uidxdy + X i=l OH2(x, q(X,oui 0), v2)
&ui(x, O)dx

0 i=i
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From the last two equalities we obtain:

ffo AuAz. dx dy -t- Aui(x, 0)Az(x, 0) dx

(1.41)

Y- fo i=1 Aui(0, y)Azy(0, y) dy

[ffo OH foX OH2(x, q(x, O)v2)1
A Apdxdy- A

/ f Aq(0, y) dy
i=i Oq

Aq,(x, O) dx

Furthermore, by the same method that we used to derive (1.18) and
(1.19), we find:

ffG fo
X

za d + ,(x, O)z(, O) d
1 1

Y

+ fo ,=1 u,(0, y)Aziy(0, y) dy --,=1 AAz,(X, Y)

x

=i
6z(x, O) dx

+ o(, q(o, ), v) (o, ) ,
=1 Oz

Auz dx dy + Au(x, O)zx(x, O) dx
=1 =1

(1.43) - Au(0, y )z( O, y) dy Au dx dy
il i-l ii

X

" fO OH2(x’ q(x’ O)’ u(x, O) dx

Taking into account (1.41), (1.42), (1.43), and the fct that AI 0, by
the same method we use in the proof of Theorem 1, we obtain the formula
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for the increment of the functional:

--JJ [H(x, y, p, v -1- ,Sv) H(x, y, p, v)] dx dy

X

(1.44) fo [H.(x, q(x, 0), v -t- Av) tt.(x, q(x, 0), v)] dx

Y

fo [H(y, q(O, y), v + Av) H(y, q(O, y), yi)] dy

wherev ,
Vl

i=1 Op Op
4m

+ og(z, y, p + op, v + v)
= Op Op

OH(x, y, p + OAp, v + Av)? ApAp; dx dy,
Op Op

= Oq Oq

’ [og(z q(z O) + Oq, v + v)(1.44’) .q(x, O) +

Oq Oq J J

Oqi=l

og,(y, (0, y), v)] q,(O, y)
Oq

+ " [OH(y, q(O, y) + 04Aq, V + AV

= OqOq

dy.
OqOq, J

Let us now estimate the remainder term n in (1.44). The quantities
n and are determined in terms of the values of the functions z and u on
the boundary of region G. By virtue of the Lipschitz condition, from (1.36)
and (1.37) we get:
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]AZ(X, 0)] <-__ N _. ]Az(x, 0)[dx + P Av,(x)[dx.
=1 =1 k=l

Hence, in accordance with the lemma referred to above it follows that

We introduce the notation"

,,() d,
i=l

, (x) dz.
i=1

=1 1 =1

Since the functions f satisfy Lipschitz condition, then just as in the
derivation of (1.23) we obtain"

(z, ) (z, ) + [(z, ) + (z, )]

+

+ M av(z, ) dz + M v() d + Mv (),

where0 <= x <= <-_ X,O -<- y <= -< Y. Hence we find"

(z, y) <= N. [(z, ) + .(z, y)] dy + N zxv(z, ) d

+ Ns fo
x

(x, y) <= Me fo
Av (x) dx + NAv (x),

[a(x, y) + 7(x, y)] dx + M7 fo
x

Av(x, y) dx

Ave(y) dy + M Av y ).
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Taking the estimate for the function into account we shall have:

a(x, y) <- No fl(x, y) dy + N Av(x, y) dy

+ N v(x) dx + Nv(x),
(*)

fl( x, y) Mo a( x, y) dx + M Av(x, y) dx

+ Ms Ave(y) dy + MAv(y).

From these inequalities we get:

(, n Nil ( X, y) dx dy + N12 AV( X, y) dx dy

+ N7 Av(, y) dy + NI: Av(y dy + Ns Av:(x) dx + NAv(),

((, N ]gll ( X, y) dx dy + MI Av(x, y) dx dy

+ M Av(x, n) dx + Ms Avl(y) dy + Mla Av(x) dx + MAvl(n).

Integrating the first of these inequalities with respect to in the limits
from 0 to nd applying the lemma mentioned above, we obtain:

a(, v) d N Av(x, y) dx dy + N Av(y) dy

+ N v(x) dx.

Analogously, from the second inequality we obtain:

fl(, n) dn MI4 Av(x, y) dx dy + M15 Av2(x) dx

r

Av (y) dy.+ M16

Hence also from (*) we get:

ffo jlAz(x,y)[ <= NI Av(x, y) dx dy + N

+ N ,v(x) dx,

Ayl(y dy
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Az(x, y) =< N Av(x, y) dx dy -{-- Ns Av(x, y) dy

+ N v dx + No Av dy + Nv(x),
1.46

ffoz(x, y) M Av(x, y) dx dy + M Av(x, y) dx

M v + Mo v dx + Mv y ).+
Analogously we hve:

Au(x, y) M=, Av(x, y) d, dy + M=, Ave(y) dy

(a.47) x

M=a v(, dx.+
If Av?(y) Av=(x) O, bu Av(x, y) O, then from (1.46) and (1.47)
we obtain (1.27) nd (1.29). Hving established this fact we proceed
directly to the proof of the theorem.
For definiteness let the admissible control (,, y) (v(m, y), v(y), vz(,)

be min-opimal with respec to S. Then, the inequality AS 0 is valid for
an rbitrary . Le us assume tha the theorem is false. Then in he
closed region G we can find either subregion G in which the first equality
in (1.39) is not satisfied, or a line segmen lying on the bounda,ry of G on
which one of the last two equalities in (1.39) is no satisfied.

In the first of these cases we can find an admissible control V such
hat

H(x. y. p(x. y). v) H(x. y. p(.. y). v) > 0 if (. y) ,.
Then, there exists a 6 > 0 for which

H(.. y. v(*. y). a) H(.. y. p(.. y). v) > a

if (,, y) G, c G, where G, is a circle of radius e, lying together wih
its boundary inside the region G. Setting Av Av 0 and repeaing
the argumen used in the proof of Theorem 1, we obtain AS < 0 with the
aid of estimates (1.46) nd (1.47). But this contradicts the hypothesis,
and hence the first equality in the mximum conditions is satisfied.

Let us consider the second case. For the sake of definiteness we assume
that it is the lst equality in (1.39) ha is not satisfied. Then, there
exist control az V nd segment of the boundary y 0 of region G
such that

H=(. a(.. 0). a) H=(.. a(x, 0). =) > 0
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if x 1. Consequently, we can find a number/t > 0 such that

H.(z, q(x, 0), 02) H2(z, q(x, 0), v2) >
if x l c l, where l is a segment of length e. Let us set

AYi AYi 0

and consider the auxiliary control

& l(x, y) (v, v1, 2),
where

-2 v if x l,
V

02 if x l.

Then, the remainder term r/in (1.44) coincides with w. (see (1.44’) ), where
Av: 02 v and, consequently, Av is nonzero only if x l.

Since the functions OH2/Oq satisfy a Lipschitz condition, and the OH2/
OqOq are bounded, by virtue of estimates (1.46) and (1.47) we get"

i, <- Me /v2(x) dx,
Io=1

where M is a constant not depending on e. With the help of this estimate it
is easy to establish that AS > 0, but this contradicts the assumption of
rain-optimality with respect to S of the control (x, y).
Thus Theorem 3 is completely proved.
Now let the controlled process be described by the system of linear

equations

(1.48) z = [c(x, y)z + d(x, y)z + g(x, y)z] + fi(v),

i= 1, ...,m,
with the supplementary conditions"

(1.49)
zi(O, y) c,(O, y)z -t- q,(vl),

k----.1

z,(x, o) g(x, O)z(z, o) + ,(v),

(1.50) z,(O, O) z, i 1, m.

The requirements (1.38) imply that the coefficients in (1.49) have to
be specially chosen. Just as in the proof of Theorem 2 we find that in the
case being considered the remainder term v in (1.45) equals zero and,
consequently,
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--JJ. [H(x, y, p, v -4- Av) H(x, y, p, v)] dx dy
x. [H2(x, q, v -4- Av2) H(x, q, v2)] dx

Y

fo [ttl( y, q, v "4- Av1) H( y, q, vl)] dy.

From this formula there follows the validity of the following theorem.
THEOaEM 4. In order that an admissible control w( x, y) in the boundary

value problem 1.48)-( 1.49)-(1.50) be locally min-optimal (max-optimal)
with respect to the functional S Aiz,(X, Y), it is necessary and suf-
ficient that it satisfy the maximun (minimum) condition.

2. Other optimal control problems for hyperbolic systems. Let us con-
sider the same problem of minimizing the functional S _, Azi(X, Y),
in which the controlled process is described by the boundary value problem
(1.1)-(1.36)-(1.37), where zi, i 1, m, are given numbers. The ad-
missible controls determined in 1 were constrained by the requirement
that the numbers z(X, Y) corresponding to them should belong to the
convex set D in the space of the variables z, zm. Thus, in the prob-
lem being considered the admissible controls transfer, by (1.1) and (1.36),
the point (z, z,,,o) to a point in region D. In what follows we shall
assume that the convex region D contains an interior point and is closed.
To solve the problem, just as in [16] we introduce the function

A(z) (A, z} Az,

and we denote by D* the set of points z* D* at which

A(z*) minA(z).
zD

If the set D* is not empty, then

A(z*) <- A(z), z* D*, z D,

and, consequently, the functional

S _, Aiz(Z, Y),

defined on the solutions of the boundary value problem (1.1)-(1.36)-(1.37),
cannot take values less than A (z*). If an admissible control exists which
transfers the point z to any point of the set D*, then this control is min-
optimal with respect to S. In this case the problem is reduced to seeking
the controls which transfer z to the given region. We shall not consider
such problems in what follows, i.e., we shall assume that there are no
admissible controls transferring z onto D*.

2.1. Necessary optimality conditions. We shall say that an admissible
control (x, y) satisfies the maximum condition relative to given func-
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tion u(x, y) if the conditions (1.39) are satisfied, where z(x, y) is the solu-
tion of the boundary value problem (1.1)-(1.36)-(1.37).
THEOREM 5. If w(X, y) i8 a control which is min-optimal with respect

to S, and z( x, y) is the solution of the problem 1.1 )-(1.36)-(1.37) correspond-
ing to it, then there exists a vector-function u( x, y) relative to which the con-
trol ( x, y) satisfies the maximum condition.

Let (x, y) (v(x, y), vl(y), v2(x)) be a control which is rain-optimal
with respect to S, and let z(x, y) be the solution of the boundary value
problem (1.1)-(1.36)-(1.37) corresponding to it. We denote by D-(D+)
the part of region D for which A (z) =< ’ Aizi(X, Y), z D-, (A (z)
-> _Aizi(X, Y), z D+). The common part of these closed convex re-
gions is the plane

A(z- z(X, Y)) 0

on which the point z(X, Y) lies. Admissible controls transferring the point
z to the interior of region D- do not exist since the control (x, y) is
rain-optimal with respect to S. Having noted this fact we introduce the
variational equations by assuming that all the admissible controls are
piecewise continuous. We choose arbitrary points (xi, y.), i, j => 0 (x0 0,
y0 0), in region G, and by Gj denote the rectangle, formed by the
neighboring points (x,, y,), whose lower left corner lies at the point (x, yj).
We construct the squares Ii., xi+l r -<_ x -<_ x+l, y+l r =< y =< yj+,

where the number r is chosen so small that for the given set of points
(x, y.) these squares have no points in common.
Let us take arbitrary piecewise-continuous vector functions a(x, y),

(x) and 9(Y), defined for x, y [0, 1] and taking values, respectively,
in the ranges V, V and V of the control parameters v, v and v. We in-
troduce the functions

Iv(x, y) if (x, y) ( I-1.-,
v(x’Y’a)- ta(x-xY--Y)if."

(x,y)I-,-,

i(y) if y $ [y , y],

v g,) g r-- if g [g--r,g),

X-x if x [x--.x).
T

In the ease when the number of points (z y) is finite, ghere is no doubg aboug

ghe existence of such a r.
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We shall call the function

(2b(x, y, aik, , ") (v,(x, y, ai), v,l(y, "y), vb2(x, )

the variational control and denote by 2 the collection of all possible varia-
tional controls corresponding to all possible squares Ii and all possible
functions ak, and k of the type indicated above. We denote by z(x, y, (2b)
the solution of boundary value problem (1.1)-(1.36)-(1.37) correspond-
ing to the control (2 t. Then the function

Az(x, y, (2) z(x, y, 0,) z(x, y, (2)

is the solution of the boundary value problem

(2.1) AZix,( x, y, (2) A
OH (x,y)G,

(2.2)
Azy(0, y, (2) A Ou’ Y [0, Y],

zXz(x, 0, ) A x [0, X],

(2.3) Azi(O, 0, (2) 0, i 1, .-., m.

Since equations (2.2) are equations in ordinary derivatives, according to
the results of [16] it follows from (2.2) and (2.3) that

fo  (O,oz 
nt- R[yi, "1,], y < y < yk+,

Zi(X O (2) fO k=l i(X Z(XozO (2) (2)Zk,(X O (2)dx,

+ Q[x,
y----1

where

zi lim zXz__,
->0 T

xi x x+,

R,i [y, V] [oi (y-, z(0, yi, v), vi(Y)) i(Y", z(0, yi, v), v(y))] dy,

Q(x ) [i(xi z(xi o, v), i(x)) i(xi z(xi o, v), v(x))] dx.
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In the same reference it is shown that

z,(x, O, o) A.(x, x)Q,(xi w),
(2.4) ’= s=l

z(O, y, ) B(y, y)R,(y, ),

where the matrices A. and B. are independent of the choice of the func-
gions and
From (2.1)

(.) + i
, o.(x. .. v> x, + x x ,,. + ,,

Here we have introduced the following notation"

Lxj LykIk[COb] F(x, y, w, ak, v) dy dx,
y--r k--r

Ei ,= Jo Jo Ow OWq
Aw Awq dy dx

Lx L’ OF(x, y,w, a v)Aw dy dx,+
j-=l v--l j--r v--1 s=l OWs

where

(F(x, y, w, as,, v) f x, y, w, a,
T T

Analogously we find that

(2.7)

Az(x, y, Azi( x, O, o

Of(x, y, w, v) Aw dy --[- Ei[o,] + ,
s=l OWs v=l

Azv(x, y, o) Az.v(0, y, o)

f Of,(x, y, w, v)+ 0
if (x, y) G,k I,, where

E :IOLI_ F(x, y, w, a.., v)dy

Aw dx + Fo’[] + /
j---1

when

when

Xt x Xt+l T,

Xl+l--r " X Xl+l,
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IO when

f l fo’ 02fi(x,y,w "Jr" OAw, v,)
Ji

Ow, Ows,q=l_
YP OF.( x, y, w, ., v

yk < y < yk+l--v,

y+l-- -< y y+l,

Aws Awq dy

when x < x < X+l--r,

Aw. dy

when xz+ - -<_ x < xz+,

O2fi( x, y, w -i- OAw, v,

Ow Owq
Aw, Awq dx

when y < y < y+-r,

f __, OF( x, y, w, a., vL -t-
i=I Xj--T s==l OWs

From what we have proved earlier (see (1.46)) we can find a positive
number N such that Aw(x, y)[ =< Nr and, consequently,

and, uniformly in the x and y,

lim E_ lim E_ lim _F 0.
r0 T r->0 T 0 T

Making the substitutions (r x. x, vr y y and going to the
limit we obtain"

Rii,[x., y, o] lim !----v
r0 T

[f.i(xi, yv, w(x, y,), o,(, r f.i(xi, y, ’w(x, y)v)] d$ d/.

We can show that the collection of equations (2.5), (2.6) and (2.7) is
solvable and that for all (x, y) not lying on the mesh x x-, y y,,
the limits

lim
Az(x, y, o)

8zi,
T-0 T

lim
zXz(x, y, o)

r->0 T
lim Az(x, y, o)
r-’0 T
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exist and, moreover,

08z 08z8zx-
Ox 8z@- Oy"

Having divided these equations by T and by going to the limit as T - 0,
we find"

z(x, y, ) z(x, O, o) + z( O, y, o

k

s=l (Ws j=l .p=l

" Of(x, y, w, v)
(z x y, o zix x O, o +

,=1 -0 ws dy,

z@(x, y, o) z@(O, y, o) + Of(x, y, w, v)
---1 -0 iws dx

when. xz < x < xz+l X, yk < y < yk+l Y.
By the way in which the functions azi(x, 0, o) and fizz.(0, y, ) were

determined it follows that

z.(x, O, ) z(O, y, o) 0

when 0 -<_ x N Xl 0 =< y yl and, consequently, (2.8) implies that

z(x, y, ) z(x, y, o) z@(x, y, o) 0

when 0 =< z =< Xl, 0 __-- y --__ y. Further, from (2.4) and (2.8) we obtain

z(x,y,w) A,(x,x)Q,(x) +
=1 =1 OWs

Zix(X, y, ) s=l Ais(x, z1)Qs(XlWb) +
s=l

ws dy,

z,(x, y, ) Of(z, V)y,w,

= b w dx,

when xx < x < x, 0 < y < y. Solving this system, for example, by the
method of successive approximations, we get that the functions z have
the form

(z(x, y, ) A(x, y, x)Q(x ), x < x < x 0 -< y <= y

where A(x, y, xl) is a completely determinate function independent of
the choice of the functions a,/ nd ’s. By continuing this reasoning we
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determine"

zi(x, y, oo) _, A.(x, y, x)Q(x, b), 0 <= y <= yl,
(2.9) 8=1

x < x-< x+l X.

Analogously we find that

z(,,) Z: xBi8( y, y)Rs(y, ), 0 < x < x.
(2.10) 8=1 =

yk y -<_ yk+l Y.

From these relations it follows, in particular, that

z(x + O, y, ) z(x O, y, )

[d8(x + O, y, x)Qs(x ) A-i8 (x O, y, xt_l)Qs(x_. )],
8--1

fizz(x, y + 0, w) fizz(x, y 0, )

B(x, y + O, y)Rs(y, ) BTi(x, y O, y-I)R(y-I, w)].
s--l

Consequently, the functions z(x, y, o) defined by (2.9) and (2.10),
generally speaking, are discontinuous on the lines x x nd y y.

Continuing by analogous reasoning, we hve"

z,(x, , ) F [c,(x, ?, x, )(, ?, )
sl j=l pl

+ D8(x, y, x)Q(z, o) + F5(x, y, y)R(y, o) ],

x <: x <= x+ X, yk < y <= y+l Y.

Setting x X, y Y in this equality we finally obtain"

2.11 =1 ’=1

+ Di.(x)Q.(x, ) + FS(y)Rs(y, )],

where the constants C8, D8, Fi do not depend on the choice of

The point z(X, Y) W z(X, Y, w) corresponding to an arbitrary variation
, of control o, varies through a certain set II in the space of the vari-
ables zl, -.., z. By the same method as in [16] we can show that
II is convex and that none of its interior points can belong to the interior
of the set D-. Hence it follows that through the point z(X, Y) we can draw
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the plane

(2.12) a(z z(X, Y) O,

separating the sets II and D, and, moreover, the signs of the coefficients a
can be chosen so that II lies in the halfspace

Therefore, for any cob

a(z zi(X, Y) >= O.

az(X, Y, co) >__ 0,

lira
aiAzi(X, Y, co) >_ O.

0 T

We introduce the auxiliary functions u with the help of (1.5) and the
supplementary conditions:

ui(x, Y) OH(x, Y, p(x, Y), v)

(2.13)
u.(X, y) OH(X, y, v(X, y), v) u(X, Y) a

OZi

By the same method as was applied above we can obtain a formula for the
increment of the functional azi(X, Y) in the form (1.44) and,
consequently, by the same method show that the maximum condition
(1.39) is necessary in order for the admissible control co(x, y) to realize
the minimum of the functional . But attains its minimum by a control
which is min-optimal with respect to S.
Theorem 5 is completely proved.
It is obvious that the assertion that we have proved remains valid also

in the case when the controlled process is described by the boundary
value problem (1.1)-(1.2).
The following theorem is valid if the controlled process is described by

the linear boundary value problem (1.48)-(1.49)-(1.50).
THEOREM 0. Let z(x, y) be the solution of boundary value problem (1.48)-

(1.49)-(1.50), corresponding to the control o(x, y) and satisfying the condi-
tion z(X, Y) z. Then, if co(x, y) satisfies the naximum (minimum)
condition relative to the functions u(x, y) which take the boundary values

u(X, Y) -A- tzBi(zl), iz O, } > O,
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where B(z1) are the coordinates of the normal to the support hyperplane of D,
then the control o(x, y) is min-optimal with respect to the functional

Y).
The proof of this theorem almost literally coincides with the proof of

the corresponding theorem (see [16, Theorem 4]) for ordinary differential
equations.

2.2. Application of Theorem 5 to the solution of some actual problems.
Generally speaking, the results obtained do not give us a means for con-
structing the vector u(x, y). However, this problem may be solved in a
number of special cases. Let us consider some of them.

(1) The poiIt z(X, Y) is located inside the region D. Then a A since
any plane, except the plane (2.12), passing through the point z(X, Y)
intersects the region D- and, consequently, cannot separate D- and II.

(2) The point z(X, Y) lies on the boundary of the region D, which is
given by the inequality F(z) <= O. Then, the boundary is given by the
equation F(z) O. If the function F(z) is differentiable, the equation of
the tangent plane at the point z(X, Y) is

B(zi z,(X, Y) ) =0, B

Since the plane a(z z(X, Y)) 0 also passes through the poiut
z(X, Y),

a kA tBi,

where without loss of generality we can take >= 0, >= 0 (2 -t-2 # 0).
Since the a are determined up to a constant factor, only one of the quan-
tities k and t is independent. Since according to (2.13), u(X, Y) ai

while F(z(X, Y) 0, we obtain m + 1 relations

(2.14) u(X, Y) -kA tB, F(z(Z, Y) O, i 1,..., m,

for the determination of the u(X, Y) and of one of the quantities and
Adding the conditions (1.37) onto (2.14) we obtain 2m boundary conditions
for the 2m functions zl, zm, u,, urn. These conditions together
with (1.1), (1.5), (1.36), (1.39) and (2.13) form a "complete" system of
relations for the determination of the optimal control and of the vector-
functions z(x, y) and u(x, y) corresponding to it.
For example, let it be required to determine the minimum of the func-

tional
x Y

fo(x, y, z, zx z v) dy dx
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under the condition that the function z(x, y) is a solution of the boundary
value problem (1.1)-(1.2), while the point z(X, Y) belongs to a certain
convex region D in the space of the variables zl, z,. By introducing
the auxiliary function z0 by means of (1.4) we reduce the problem to seeking
the minimum of the functional S z0(X, Y) under the condition that the
point

Z(X, Y) (z0(X, Y), zl(X, Y), z(X, Y))

lie on cylinder with xis pmllel to the z0-xis. Since the vrible zo
does not enter into the right-hand side of 1.1 nd (1.4), B0 0 in (2.14).
For the functional being considered, A A 0, A0 1, nd
hence from (1.5) nd (1.6) it follows that u0(x, y) -1. Thus, for the
problem being considered the differential equations Id the boundary
conditions tke the form of the relations

OH
z Ou

z(O, y) (y), z(x, O)

u,
Oz, g- ui(x, Y)

OZiy

u X, y) OH u,(X, Y) --0, H- u,f, fo,
OZix x=X i=1

from which the auxiliary equality (1.4) is eliminated.

2.3. Generalization to the case of an arbitrary aumber of iadepeadeat
variables. The formula for the increment of functional S and its corollaries
can be generalized to the case when the controlled process is described by
a Goursat problem with un arbitrary number of independent variables (see
[18]). However, so as not to burden the formulas with unnecessary details
we shall assume that the number of independent variables equMs three.

Thus, let the functions z(x), x (xl x2 x), i 1, m, be given
by the equations

(2.15) OxOx.Ox

i 1, ..-,m, 0 =< xk _-< Xk, / 1,2, 3,

and the supplementary conditions

(2.16)

where the functions fi contain the mixed derivatives of the variables z-
of order not exceeding two. These functions are twice continuously dif-
ferentiable with respect to the set of ll the arguments. The control parm-
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eters are subject to the same conditions as before. The functions ek are
twice piecewise-continuously differentiable with respect to their own argu-
ments and satisfy the natural conditions of coniugacy. Just as before we
assume that to each admissible control there corresponds a class of func-
tions in which the boundary value Goursat problem which is posed is
solvable uniquely.
As the optimality criterion we select the functional

(2.17) S Az(Xl, X, Xa),

where the A are given real numbers.
We introduce the auxiliary variables u and the function H(x, w, v)
=1 uf, where

is a vector, the number of whose components we shall denote by N. The
functions u(x) are determined with the help of the equations

OxOxOxa Ozi OxjOxl

i- 1,...,m,
and the supplementary conditions:

Ou OH 0 (OH)

0 u OH 0 OH
Ox Ox -Oz + }

0 (0tt
Ou OH

when x X, xa Xa,
OX OZxax

(2.20) 0u OH
when xa Xa, x, X1,

OX2

Ou OH
when x X,, z= X,

OXa OZixl.=

(.) u(X, x, x) -A,, i 1, ..., m.

X3 X3

x. X.,

Xl X1,
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Equations (2.20) are equations in ordinary derivatives. Therefore, for
every admissible control they, together with conditions (2.21), uniquely
determine the functions ui(x: X X3), ui( X: x. X3) and u(X: X x).
Let us now solve (2.19) with the supplementary conditions

Ui(Xl X2 X3) lXl=X1 ui(Xi X2, X3),} when xau(x x X) = u(x X X)

u(x X xa) ]=x u(X X, xa), when X2 Xu(x X x) =. u(x X X)

ui(X x xa) = ui(X X xa), when X1.u(X x x) = u(X x, X)

By virtue of the assumptions made above, the functions u,:(x, x, X),
u(x, X, xa) nd u(X, x, x) re determined uniquely. Thus, the
final count the problem is reduced to the Goursat problem" find the solu-
tion of (2.18) in the region 0 x X, which satisfies the boundary
conditions"

u(x, x, x) = u(x, X, x),

(.) u(, x, x) I= u(, x, x),

u(x x, x) =. u(X x, x), i 1, 2, m.

Here we shou].d keep in mind that in (2.18) and (2.19) the functions
OH/Ow are differcntiable with respect to x, x: nd x. Thus, if it is assumed
that the class of admissible controls consists of piecewise-continuous
functions, it is necessary to satisfy the condition" the right-hand sides of
these equations are independent of the derivatives of the functions v and
of z, z, z. However, if the right-hand sides of (2.18) nd (2.19)
do depend on these quantities, then s the class of dmissible controls we
should choose the functions v(x) having piecewise-continuous derivatives.
Assuming that these conditions re satisfied, by the sme method which

was used above we can obtain formul for the increment of the functional

&S [tt(x, w, v + av) tt(z, w, v)] dx dx dx

where +w,

OH(x’ v’ v)l AWi dX3 dX. dXl
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W. - OWi OWki,k-i

OH(x, w 4" O hw, v 4- Av) Aw dxa dx dXl
Ow Ow 1

From this formula we can derive the optimality conditions which may be
formulated in the form of Theorems 1 and 2. If it is proposed to realize the
control with the aid of boundary conditions, then we can obtain results
analogous to Theorems 3 and 4.

2.4. Control of a process with the aid of "point steering". In all the
problems considered above it was assumed that ll the components of the
vector v(x, y) were functions of two variables: x and y. However, the pro-
posed method llows us to solve the problem when all the admissible con-
trols v(x, y) can be represented in the form

v(x, y) (vl(x), v2(x, y), v3(y) ).

(Some components of this vector are functions of only one independent
variable x or y.)
For the sake of definiteness let us consider the problem of minimizing

(1.3) when the process is described by the boundary value problem
(1.1)-(1.2). Formula (1.21) for the increment of the functional remains
wfiid also in this case. The estimate (1.29) of the remainder term in this
formula is also valid. Therefore, by the same method we prove Theorem 1’.
THEOREM 1’. In order that the admissible control v(x, y) (vl(x),

v2(x, y), v3(y) in the boundary value problem (1.1)-(1.2) be rain-optimal
with respect to functional (1.3), it is necessary that the condition

ff [H(x, y, p(x, y), v(x, y) + Av)
(2.23)

H(x, y, p(x, y), v(x, y)] dx dy <= 0

be fulfilled for any admissible increment Av, where p(x, y) is a vector cor-
responding to the control v(x, y) and is determined from (1.1) and (1.5) and
the supplementary conditions (1.2) and (1.6).
In particular, if the admissible controls depend on only one variable (say,

x) and if
fi(x, y, z, zx zy v) f(x, y, z, z zy) - f,(x, v)

in (1.1), then (2.23) talces the form

ffo" ui(x, y)[f(x, v(x) + Av) f(x, v)] dx dy <= O.
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By introducing the notation
Y

H(x, u(x), v) = fl(x, v) fo u(x, y) dy,

we obtain the optimality condition in the following form.
THEOREm 1". In order that an admissible control v(x) in the boundary

value problem (1.1)-(1.2) be mien-optimal (among the controls depending
only on x) with respect to functional (1.3), it is necessary that

Hi(x, u(x), v(x) (=) sup Hi(x, u(x), v),

where the symbol denotes equality which is valid for almost all x in the
interval 0 <= x <= X.

3. Calculus of variations and optimal control problems. The problems
considered in the present paper re essentiully problems in the calculus of
vuriations. However, the classical methods are inupplicable here since,
generally speaking, the control parameters may take values from a closed
region. In the cse where the range of the control prameters is open, from
the maximum principle we obtain the necessary conditions of the classical
calculus of variations for functionals with partial derivatives.
Let it be required to find the minimum of the functional

X Y

I: I ] f(x, y, z, Zx Zy V) dy dx,
d0 0

which is defined on the functions z (Zl Zm) given by the relations

ziz.(x, y) vi, v (Vl, "’", Vm),

z(O, y) (y), z(x, O) (x), i 1,..., m,

where the control parameters v are chosen in the el.ass of all piecewise-
continuous vector-functions.
By an optimal control we shall mean an admissible control by which, the

functional I attains its minimum among the functions lying in a small
neighborhood of the function z(x, y) corresponding to this control. It is
obvious that the optimal control defined in such a way is a special case of
the optimal control in the previous sense. Therefore, the maximum prin-
ciple remains in force and every optimal control is an extremal one. The
converse is also valid" every extremal solution is an optimal solution.
To seek such a solution we introduce the auxiliry variable z0

zo.,,. f(x, y, z, z. z, v) ,,(x, 0) ,,(o, y) o,
and we construct the function H"

H uof + v.
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Then the auxiliary functions ui(x, y) are determined with the aid of the
boundary value problem

(3.1)

Uixy =o-
,(x, Y)= -[
u(x,)

Olyy
tOlxX

uo),

ui(X, Y) O, i 1, m, Uo(X, y) --1.

Hence we find that H u,v, f. Since the function H ttains its
maximum by the optimal control v(x, y),

OH Of()=(, (u
Consequently, uixy d(Of/OZcx)/dx dy, and by virtue of (3.1) we find
that the solution z(x, y) of the optimal problem posed satisfies the system
of Ostrogradskii-Euler equations (for example, see [32, p. 122]).

By ssumption the function f hs continuous second derivatives with.
respect to the variables v, v. Since the control, v(x, y) realizes the
mtximum of the function H, the quadratic form

Ov Ov ’. = Ov Ov

is nonpositive. Therefore, from the maximum condition (1.7) it follows
that everywhere in the region G, 0 x X, 0 y Y, with the possible
exception of points lying on finite number of lines with zero rea, the
following inequality (he Legendre condition) is satisfied"

(.) f(x’v’z’’z"’z) o, o,

which is a necessary condition for the function z(x, y) to be n extremal
which minimizes the functional I.

In the cse when the range of the control parameter is closed, the deriva-
tives OH/Ov may not vanish on the optimal trajectory z(x, y) and, con-
sequently, (3.2) my not be satisfied. As confirmation of wht we have
said we consider the simplest example.



640 A.i. EGOROV

Let the controlled process be described by the boundary value problem

z(x, O) z(O,y) O, 0 < x, y < 1,Zxy V

where v is the control parameter, ]v[ -<_ 1. As the optimality criterion we
shall take the functional

S z dx dy -z(1, 1), (f(x, y, z, z, z, v) = ).

It is easily shown that the control which is rain-optimal with respect to
D will be v(x, y) 1 and, consequently, at this control

O2f < O,
Ov

and (3.2) is not satisfied.

4. Optimal processes in systems whose behaviour is described by
parabolic equations.

4.1. Statement of the problem. The Maximum Principle. Let E be the
Euclidean space of the vectors x (xl, x), let G be a bounded
region in E with boundary F of class A() (see [33, p. 10]), and let Xi(x)
be direction cosines of the outward normal to the boundary F.

Further, in the region G let an elliptic operator L
be defined by the formula

1 ipO2yp(4.1) L, y a
ipwhere the functions a (x.., x) in the region G + F are of class C(’).

We denote by M (M, M) the operator defined by the formula

v=li,k=l lj ZV m,oxU
), i

where

lv

_
Oav

A direct verification can convince us of the validity of the following
equality"

(zLiy-- yMz) dx

i,p=l d=:l k=l OXki
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By the same method which is used for a single equation of elliptic type,
this formula can be transformed to the form"

(4.2) 2
i=l

where

zi Li y y Mi z dx zi P y y Q z) de,

(4.3) Piy= a -t- bpyp Q z V1 ax,i dz,

In (4.3) the paths l are chosen arbitrarily except that cos (n, l) > 0
(n is the outward normal to F), and their direction cosines belong to class
C(1) on F. The paths .i are chosen as functions of l.,.
We assume that the coefficients in operator L still depend on t, 0 =< =<- T,

and we shall study the controlled system whose behavior is described by a
system of equations of the parabolic type

(4.4)
Li y f(t, x, y, y, u), O=<t__<T, xG,

L O--i-

where the function f (f, ..., f,) is continuous in and twice con-
tinuously differentiable in the remaining arguments, while the parameter
u takes values from some convex (open or closed) region U of p-dimensional
Euclidean space.
We further assume that the function y(t, x) (yt, y,), determined

by (4.4), satisfies the conditions

P( t, x)y ( t, x, y, v), x F,

y(O, x) a(x), x G,

0 <= <:= T,

where the operators P are determined by (4.3) in which the functions
ale(t, x), bi.(t, x) nd a(x) are continuous, and the i satisfy the same
conditions as the f, while the parameter v takes values from a convex
(open or closed) region V of a q-dimensional Euclidean space.
We shall call the function 0(t, x) (u(t, x), v(t, x) an admissible con-

trol if all its components are piecewise continuous and u(t, x) and v(t, x)
take values from the regions U and V, respectively. Moreover, we shall
assume that the surfaces of discontinuity of the admissible controls are
smooth and each of them either is orthogonal to the t-axis or in the neigh-
borhood of any point in it we can carry out the nonsingular transformation
of coordinates

r t, (t, x), i 1, ,n,

so that the surface of discontinuity becomes a piece of the plane ( 0.
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If the discontinuities of a certain admissible control satisfy the first
condition, then the boundary value problem (4.4)-(4.5) corresponding
to this control splits up into several problems of the same kind but in
regions which abut on each other along the surfaces of discontinuity of
the control. In this case the problem (4.4)-(4.5) has a unique continuous
solution (for example, see [34]) and, moreover, this solution is not subject
to any supplementary smoothness conditions on the surfaces of discon-
tinuity of the control.
However, if these surfaces satisfy the second condition, then by . solu-

tion of problem (4.4)-(4.5) we shall mean the vector-function y(t, x)
which satisfies (4.4), (4.5), and certain smoothness conditions on the
surfaces of discontinuity of the control. Apparently, this problem has not
been studied in its general form; hovevcr, special cases of it have been con-
sidered in a number of papers (for example, see [35]-[40]) where various
theorems on the existence and uniqueness of the solutions are obtained.
Therefore, everywhere in the following we shall assume that the given
functions in (4.4) and (4.5) satisfy, in addition to the properties listed
above, further conditions under which a unique solution of problem (4.4)-
(4.5) corresponds to each admissible control.
Let 0(t, x) be some admissible control while y(t, x) is the solution of

problem (4.4)-(4.5) corresponding to it, nd let there be given the func-
tional

s
i=1

(4..s)

/o"/o /o"/,, ]d- fl(t, x)y(t, x) dx dt d- (t, x)y(t, x) d(r dt

where a, fl nd , re given continuous functions.
We pose the problem: mong 11 the dmissible controls find the control

co(t, x) (if it exists) such that the solution of problem (4.4)-(4.5) cor-
responding to it realizes the minimum of functional S.
The dmissible control 0(t, x) t which the functional S ttins its

mximl (minimal) vlue will be clled mx-optiml (min-optiml) with
respect to S. Functionls of more general form will be considered in the
final section.
As ws noted bove, the problem of optimal control of processes de-

scribed by prbolic eqtmtions is of definite theoretical nd practical in-
terest. A nulnber of p<npers (see [5], [6], [11]) hve considered certain
problems when the control is effected with the help of initial or boundary
conditions nd s the optimality criterion is chosen time-optimality or
functional of the form

I [u(T, x) Uo(X)] dx + , p(t) dt,



OPTIMAL PROCESSES AND INVARIANCE THEORY 643

where Uo(X) is a given function from L.(O, 1), p(t) is the control, and , is a
nonnegati.vc constant, ttere we still consider the problem when. the control
of the process can be effc(ted simultaneously with the help of controls
occurring both in the equation and in the boundary eondition.s. It is ob-
vious that the functional

S (t, x)yi(t,x) + a(t, x) Oy
=1 = + (t’ x) dx dr,

where a and are continuously differentiable functions, can be brought
to the form (4.6).

In order to formulate the optimality conditions we introduce the auxiliary
function z(t, x) (zi, z) with the aid of the boundary value prob-
lem "adjoint" to (4.4)-(4.5)

M z
oL(t,x,y,y.,u) z

(4.7)
.= Oy,

Q(t, x)z = [o(t, x, y,

(4.s) + oL(t,x,y,y,v) X(x)z (t,x), x r,
=
z(T,x) -a(x), x G, i 1, ,m,

where Mitz (Ozi/Ot) Miz, the Q are defined by (4.3), the functions
a, and 7 occur in the definition of functional S, and the X(x) are the
direction cosines of the normal to the boundary r external to G. In order
that the boundary value problem (4.7)-(4.8) be solvable it is necessary
that the functions a and 7 be connected by consistency relations. In
what follows it is assumed that these relations are fulfilled.
We introduce the nottion:

p (Zl, "’", Zm, Yl, "’’, Y,), H(t, x, w, u) zifi(t, x, y, y ,u),
i=1

h(t, x, p, v) E z,,(t, x, y, v).
i--=l

Then the boundary value problems (4.4)-(4.5) and (4.7)-(4.8) can be
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written in the following form"

OH(t,x,w,u)
Lit y

(4.9)
P y

Oz

yi(O, x) a(x), x G,

(4.10)

Mit z OH(t,x,w, u)
_

d (OH(t, x, w, u)) + (t, x),
=1 -- Oyi

z( T, x) .(x),

Oh(t, x, p, v) + - OH(t x w, u)
Qiz Xk(x) 3,(t, X) X F.

Oy k=l OYxk
By using (4.2) it is easy to establish that the Ostrogradskii-Green

formula,

(z Lit y - y Mt z) dx dt
i-=1

(zPy yQz) ddt- yz dx

is valid for any twice piecewise-continuously differentiable functions y.(t, x)
and z(t, x). Let co(t, x) (u(t, x), v(t, x)) be some admissible control
and let y(t, x) and z(t, x) be the solutions of boundary value problems
(4.9) and (4.10) corresponding to it. We shall say that the admissible con-
trol o(t, x) satisfies the maximum condition if

H(t,x,w(t,x),u(t,x))((=))supH(t,x,w(t,x),u), x G, O<-_t<= T,
uU

h(t,x, p(t, x), v(t,x)) (=) suph(t,x,p(t,x),v), x F, 0 <-_ <= T,

where the symbol (( )) denotes equality valid everywhere in the region
C, 0 =< _-< T, x G, with the possible exception of points lying on a finite
number of n-dimensional surfaces whose (n + 1)-dimensional volumes
are zero. The symbol (=) is defined analogously, only instead of n and G
we should choose n 1 and F, respectively. The minimum condition is
defined analogously.
THEOREM 7. (The Maximum Principle). In order that the admissible

control (t, x) (u(t, x), v(t, x)) be rain-optimal (max-optimal) with
respect to S, it is necessary that it satisfy the maximum (minimum) condition.

This theorem, although it does not give sufficient conditions for opti-
mality, can still serve as a practical means for the determination of the op-
timal controls and of the solutions of boundary value problem (4.4)-
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(4.5) corresponding to them. We can convince ourselves of this by repeating
the reasoning carried out in 1.

4.2. Formula for the increment of functional S. Proof of Theorem 7.
Let co(t, x) be an arbitrary admissible control and let y(t, x) and z(t, x) be
the solutions of boundary value problems (4.9) and (4.10) corresponding
to it. Then

- zPy h(t,x,p,v(t,x)) dz O,
i=l

whereC (0 <= <<- T,x G),(r (0 <= <= T,x F).Weshalltakea
certain admissible increment A (Au, Av) of the control 0(t, x) and
denote by y Ay and z + Az the solutions of the same problems (4.9) and
(4.10) but corresponding to the control Ao. Then

(4.1)

AI I[w - Aw, oo + Ao] I[w, o]

and the functions Ay and Az i 1,
tively, of the boundary value problems"

m, form the solutions, respec-

(4.13)
Lit Ay A OH(t,ozX, w, u) Ayi(0, x) 0, x G,1
p Ay A Oh(t,ozX, p, v)

x F,

(4.14)

( )Mt Az -A OH(t, x, w, u) + d OH(t, x, w, u)
Oy =1 " A

Oy

/z(T,x) 0, x G,

Q z oh(t,x,p,v) + oH(t,x,w,u) X,(x), x r,
Oy = Oy )
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where

A Oh OH(t, x, w -- Aw, u + Au) OH(t, x, w, u)
Owk Owk Ow

A
Oh Oh(t, x, p -[- Ap, v -[- Av) Oh(t, x, p, v).
Op Op

We transform (4.12) with the aid of (4.11). Since the functions Ay nd
Az re, respectively, the solutions of boundary vlue problems (4.13) nd
(4.14),

Azi Lit Ay dx dt L Azi Pi Ay daI. A OH(t,x,w,u) Ay- E d
i= Oy = - A

d- A
Oh(t,x,p,v)

4 A(9y =

OH(t,oyiX,w,u))Ayl dx dt

OH(t, x, w, v)X(x)1 Ay da}Oy

OH(t, x, w, u)
Ay + A OH(t, x, w, u) Ay

Oy k= cgYix

On the other hand

Azi Lit Ay dx dt -[-
i=1

Consequently,

(.1

dx dt

Oh( t, x, p, v)+ / Oy

Azi P Ay dzJ
= A

OH
Azi dx dt --[- L

Lit Ay dx dt L AZi Pi Ay dzI
A--OH Awi dx dt + A Ap dz
Owi i=1 Opi

where N 2m d- nm is the dimension of the vector w.
Analogously, we find:

E Azi Lit y dx (It -[- Az.i P y do
i-l

(4.16)

=
Az, dx dt + Az, d
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E Zi Lit Ay dx dt "k" z P Ay do"
i=1

a(x)ny( T, z) dx + (t, x)Ay(t, x) dx dt
i=l

(4.17)

+ 1(t,x)Ay,(t,x)dz

The first sum on the right-hand side of (4.17) is the increment AS of (4.6)
when the control w(t, x) goes over to the control w(t, x) + Aw. Therefore,
from (4.12), (4.15), (4.16) nd (4.17), it follows that

OH 1 OH
+A Aw dxdt

( 1 0)
_

0 + d.

Applying aylor’s formula o he functions h, H, OH/O and Oh/Op, and
restricting ourselves o he seeon.d-order erms in he expansions, we ob-
tain, in us he same way as

[g(, dz d

(.)

where m+n,

I
i=l

l(Oh(t,x,p,v+Av) Oh(t,x,p,v))Apd+ = Op Op

(4..9)
dt

Ow Ow
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+ fIOh(t.x.p+0Ap.v+ Av)
.k=l Opi Opk

02h(t, x, p + 04 Ap, v + Av) 1 Ap Apk dz.
Op

To obtain the necessary estimates of the remMnder term in (4.18)
we reduce the boundary vMue problem to system of integro-differentiM
equations (for example, see [34, pp. 90-96])

Ay(t, x) Kn(t, x, r, )A
OH
d dr

(4.20)

+
0 dr

(4.21)

where

A - A-- A A-- A A
Oh

Oz -- Oz Oz’ -0--/’
and Kik is a matrix of the Green type. By inserting the values of 6(t, X)
obtained from (4.21) into the right-hand side of the same relation and by
successively repeating this operation, we get:

Oh fo,fo OHh(t. X) --A + K(t. X. r. n)A -ff d, dr

(4.22) + fo K(t, X, , )7(, ) d, r dr

_, K’(t, X, r, n)A - d dr,
i=0

where

K,(,X,r,n) K-(,X,r,n) + K,-(,X,a,)K.(o,,

Kn(t. X. . n) K-l(t. X. a. fl)K(a, t5. r. v) da a da.

K K,Ko KI, n- 1 2

The number n is chosen so large that the kernel K is bounded. This can
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be done by virtue of the known estimates for the Green matrix and its
derivatives (for example, see [34, p. 92]). Then from (4.22) we have:

w(t) <- P w(r) dr + Q,(t, , n) A- dn dr

-+- fot fr R,,(t, r, n)

where P is specific positive constant,

Oh

n--1

R, E K(t,X,r,v)l d.

We introduce he notations"

fo  o(t) w(t),

.t

(4.24) Q" J0 Q"-(t’ r, n) dr, Q,0 Q,,

R, = R,,-(t, r, n) dr, R,=R,(t,r,n)+l, k=2,3,-...

By sequentially integrating (.23) we find:

ddr.

We choose ghe number so large ghag ghe functions Q and R are
bounded when 0 N r N N T, z G, and we seg

(t) max Q(0, r,n) dndr,
OONt

R() dr max R(O, r, n) d.
ooNt

Then, when 0 N 0 N t, from (t.2g) we have:

(0) N P (0) dO+ () + R(t).

Hence, by a well-known lemma (see [a0, p. 19]) we geg ghag

wk(O) <= A[Q(t) + R(t)]
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when 0 =< 0 =< -<_ T nd, consequently,

wl:(t) <= A[Q(t) + R(t)],

where A is specific positive constant. Therefore, from (4.23), (4.24) and
(4.25) it follows that

(4.26) wk(t) <= fo dr Ml(t, ’, 7) OH
d + frN(t, r, 7)

whereM and N are functions of the same type as Q and R, respectively.
Since the number n is chosen sufficiently large, from (4.22) and (4.26)

we have"

(t’ X)l <= fo dr M(t, r, X,/) A- dn

+ N(t, r,X,v) -where M and N are scalar functions of the Green function type.
The functions OH/Oz and Oh/Oz are continuous in and twice continuously

differentiable in the rest of the arguments. Therefore, under every ad-
missible control we can differentiate (4.20) with respect to x, x and
by the method set forth above obtain the inequality:

where

q

+ N(t, x, ’, v) Av(r, v)l d,., a,
’=1

g Y’’"’Y’’Ox’"’’Ox,/’ x G, 0 <- t<= T.

Since the functions Az( t, x), i 1, m, form the solution of boundary
value problem (4.14), analogously we find that

Az,(t, x) <- fc M4(t, x, ’r, ’q) Au,,("r, ’q)! d’q d’r

(4.29) +f N4(t.x.
0__<t=<T, i=l,...,m.

By virtue of these inequalities, from (4.19) we have"
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(4.30)

where the B are positive constants, Mu Ma -t- M, NI, Na -t- N.
Since OH/OwiOwi and Oh/OpOp are bounded by hypoghesis,

Ba [ Mn(t, x, r,) = Au dr d

+ Nn(t,x,r,v) Avd..,z dxdt

(4.31.)

+ Nl (t, x,

If we consider

fol u (,,x) , k ,",
k= =

then from (4.30) and (4.31) i will follow that the esgimate

(4.32)
q- Q( t, x, r, 7 k kv d., dx dt

+ f P(t, x, r,r)=iAu dr drt

q- Q(t,x,r,n) iAvld.,, dt,..o’,
5=1

where the functions P and Q are of the same type as Mn and Nn, is valid
for the remainder term r in (4.18).
Formula (4.18) and (4.32) are analogous to the corresponding relations

in 1. Therefore, the proof of Theorem 7 coincides almost word for word
with the proof of Theorem 1.
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If (4.4) is linear and has lhe form

(4.33) Ly d(t, x)y + f(v), i 1, m,
kl

nd if the boundary conditions are given as

P,(t, x)y c,(t, x)y + (v),
(4.34)

x F, y(O, x) a(x), x G,

then the following theorem is valid.
TItEOREM 8. If tO eery admissible control there corresponds a unique solution

of the boundary value problem (4.33)-(4.34), then in order that the control
o( t, x) u( t, x v( t, x) be min-optimal (max-optimal) with respect to
functional (4.6), it is necessary and sucient that it satisfy the maximum
(minimum) conditions.
The proof of this theorem follows immediately from the fact that in the

case being considered formula (4.18) for the increment of functional S takes
the form

.f [H(t, x, w, u A" Au) H(t, x, w, uAS )] dx dt

(.3)

J [h(t, x, p, v -t- Av) h(t, z, p, v )] dz.

4.3. Problems with other optimality criteria. The results we have ob-
tained can be used to solve optimal control problems with other optimality
criteria.
For example, let the controlled process be described by the boundary

value problem (4.4)-(4.5) in which the region G is the rectangle 0 -< x -<_ X
and in which the optimality criterion is chosen to be the functional

(4.36) S fo( t, x, y, y u) dx dx dt.

We introduce the auxiliary variable yo by means of the relations

O’Y fo(t, x, y, y, u), yo(x x. O) yo(x O, t) yo(O, x, t) O.
Ox Ox Ot

Then the problem reduces to a search for the minimum of the functional
S yo(X, X, T). We construct the function/:

I(t,x,w,u) zf(t,x,y,y,u) - zofo(t,x,y,y,u).
i=l
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The functions zi(t, x) are determined from the equations

OI--I

OaZo =0
Oxi Ox. Ot

and from the subsidiary conditions (see (2.19) and (4.10))"

Oh(t,x,p,v)
Qit z - OH(t, x, w, u)+ Xk(x),

Oyi ;=i OYixk

(Zo
0 when x X, x X,

0t

(Z0
0 when 7’, x2 X2,

Oxi

0 when T, x X1,
Ox,2

Ozo
Oxx Ox2

02Zowhen T, 0
Ox Ot

Oz -0 when xl X1,
Ox2 0t

Zo(X1, X2 T) 1, z(x, x, T) 0,

when x. X.,

i= 1,...,m.

Thus, zo(x, x, t) -1, and the function/ takes the form

where

t--I H(t, x, w, u) fo( t, x, y, y, u),

H z,f,(t, x, .., ., u).

Consider the function,l

fTfXlfX2[ ]OYoI zLty -- Zo I--l(t, x w, u) dx dx dt
o 0 o =i OxiOxOt

+ zPy-- h(t,x,p,v) ddt I +I,
Li=

where

Ii ziLity H(t, x, w, u) dx. dxi dt
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-4- ziPs(t, x)y h(t, x, p, v) do. dt,
i=l

io LI. Zo fo(t, x, y, y u) dx dx dt.
o o 0xOx0xa

By transforming integrals 11 and [2 in the same way as we did in 1 and 4,
we obtain the formula for the increment of (4.36) in the following form:

AS [(t, x, w, u d- Au) /(t, x, w, u)] dx. dxl dt
0 ’0

[h(t, x, p, v zc Av) h(t, x, p, v)] do- dt v,

where the remainder term r is determined by formulas analogous to (4.19).
Consequently, the necessary conditions for optimality in the problem

being considered can be formulated as Theorem 7 where the function H is
replaced by/-I in the maximum (minimum) conditions.
By using the results of 1 we can study, analogously, other optimal

process control problems when as optimality criteria we choose various non-
linear funetionals. In particular, the results obtained can be applied to the
investigation of the problems treated in references [5], [6].

4.4. Optimal problems in the theory of elliptic systems. Control prob-
lems analogous to those we have considered above arise during the study
of diffusion processes (see [3], [8]). However here we have to consider
boundary value problems for elliptic equations. Problems of the same type
arise in the investigation of the optimal distribution of thermal and elec-
tromagnetic fields in various power installations.
In this subsection we briefly state the minimax problem for elliptic

systems and obtain a formula for the increment of the functional, with the
aid of which we find the optimality conditions.

Thus, let there be given the elliptic system of equations

(4..37) Ly f(x, y, yz, u), x= (x,...,x) G,

where the operator L is defined by (4.1) and the function f (fl, fro)
is twice continuously differentiable in all its arguments. The control param-
eter u takes values from a bounded region U (closed or open) of an r-di-
mensional Euclidean space.

Further, let the function y(x) satisfy the boundary conditions

(4.38) Pi(z)y i(x, y, v), i 1,... m, x F,

where the i satisfy the very same conditions as the f, and the parameter v
takes values from a bounded region V of a q-dimensional Euclidean space.
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The admissible control (x) (u(x), v(x)) is defined in the same way
as in 4.1, and we shall assume that the desired function satisfies certain
smoothness conditions on the surfaces of discontinuity of the control (see
[35]). We shall assume that in addition to the conditions listed above, some
other constraints are imposed on the known functions in the boundary value
problem, under which a unique solution of this problem corresponds to each
dmissible control.
We pose the problem: among all the admissible controls determine the

control (x) (if it exists) such that the solution of boundary value problem
(4.37)-(4.38) corresponding to it realizes the minimum (maximum) of
the functional

(4.39) S a(x)y(x) dx + 7(x)y(x) dz
i=l

where a(x) and (x) are given continuous functions.
We introduce the functions H zf and h z. The functions

z(x) are determined as the solution of the boundary value problem

(the operators/1I and Q were defined at the beginning of the section). If
it happens that the right-hand side of (4.40) contains the derivatives
vxl(x), vx(x), then we should require that the admissible controls
have piecewise-continuous derivatives with sufficiently smooth discon-
tinuity boundaries. Then, the boundary value problem (4.40)-(4.41) has a
unique solution for each admissible control.
By the same method as was used above we can obtain the formula for the

increment of (4.39) in the following form"

(4.42)
AS fo [H(x, w, u - Au) H(x, w, u)] dx

fr [h(x, p, v - Av) h(x, p, v)] dz ,
where the remainder term r/is determined by formulas analogous to (4.19).
If boundary value problem (4.37)--(4.38) is linear, r/= 0 and, consequently,
the following theorem is valid.
THEORE 9. In order that an admissible control be locally rain-optimal (max-

optimal) with respect to functional (4.39) in the linear boundary value problem
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(4.37)-(4.38) (the functions f and are linear in y and y), it is necessary
and sujcient that this control satisfy the maximum (minimum) conditions.
In conclusion let us remark that analogous problems can be considered

(with. analogous results) also for systems of hyperbolic equations with
initial and boundary conditions.

5. Certain problems in invariance theory. Let the controlled process be
described by a system of partial differential equations

(5.1) A Z f(Xl Xk Z, U),

where A is a linear differential operator of the parabolic, elliptic or hyper-
bolic type, z (zl, z) is a vector characterizing the state of the con-
trolled system, and u is a vector characterizing the external excitations. Let
there also be given subsidiary conditions in which the vector v, determining
the external excitations on the system, occurs. It is assumed that the vector
0 (u, v) is subject to the same conditions as the admissible control in the
optimal control problems considered above and to subsidiary conditions
such that to each vector o there corresponds a unique solution of (5.1) with
these subsidiary conditions.

Further, let there be given a certain functional I[z], defined on the so-
lutions of (5.1). The fundamental problem in invariance theory consists of
tinding the conditions which when satisfied make the functional I inde-
pendent of the external excitation. In. [17] it was shown that the invari-
ance problem can be studied by the methods of the calculus of variations
in the case when the controlled process was described by ordinary differ-
ential equations. Analogously, we can study the invariance problem also
for systems with distributed parameters.

Let us consider the control system whose behavior is described by
boundary value problem (4.9) with certain smoothness conditions on the
surfaces of discontinuity of the function u(t, x). We shall assume that to
every admissible vector 0(t, x) (u(t, x), v(t, x)) there corresponds a
unique solution of this boundary value problem, and that

f(t, x, y, y u) d(t, x)y 5- gi(t, x)u,
(5.2) =

(t, x, y, v) p(t, x),

where for the sake of simplifying the succeeding formulas, u and v are taken
to be scalar quantities.
As the functional I we shall take (4.6) in which the time T and the region

G are taken as fixed. In this case the "adjoint" boundary value problem
(4.10) will have the form:
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(5.3)
M,z -_, dz + (t, x), z( T. x) --.(x). c G.

Qz -’i(t, x), x I’.

Formula (4.35) for the increment of (4.6) takes the form"

AS Au giz dx dt Av

_
pz

\i=:1

Consequently, if

(5.4)

_, g( t, x)z( t, x) o, x G,

pi(t, x)zi(t, x) =- O, x F, 0 <= <= T,

the functional S is independent of the external excitation c0(t, x). By the
method of contradiction it is easy to establish that these conditions are also
necessary for the functional to be independent of o (for example, see [17]).
To check (5.4) we must find the solution of boundary value problem (5.3).
However, for the special case presented below we can successfully obtain
the necessary and sufficient invariance conditions expressed in terms of the
coefficients of the equations of boundary value problem (4.9).
Let the controlled process be described by the equations

Ly, dik yk + g,iu

with the subsidiary conditions

(5.6) y(0, x) a(x), x G, Py g,(t, x), x F;

here P is a linear differential operator defined on the boundary I’, where the
differentiation is carried out in the direction external relative to G.

Consider the functional

(5.7) S _, a(x)yi(T, x) dx + i(t, x)y(t, x) d(r dt
i=1

Then, the functions z(t, x) occurring in (5.4) are determined from the
equations
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Mz

_
dz

Mz - -k

with the subsidiary conditions

z,(T, x) -(x), x G,
(5.9)

(, ) -(, ), r, 0 ,
where, in accordance with (4.3), the operator is defined as the adjoin.t
to P.
By D and D* we denote the matrix of coecients and the matrix

adoint to it, and by (, ), the scalar product of the vectors and . Since
in the problem being considered the boundary conditions (5.6) do not con-
tain , (5.4) can be written as

R(,z) (,) =0, z , 0 .
Applying operaor to ths equality and taking into account that

satisfies (5.8), we have"

(, ) (, ) -(*, ) (, ) 0.

Analogously we find that

(5.m) M’(, )%, ’) 0, 0, 1, ..., .
Hence, by virtue of (5.9) it follows that

(5.) M(’, ) -(-)’((),’ 0, 0, 1, ,- .
Assuming in (5.10) that z F and applying operator , wth due regard
to conditions (5.9), we obtain"

’(, ) (-)(e, -(-)’((, ),’ 0,
(5.2)

0, , ..., .
Conditions (5.11) and (5.12) are necessary for the invariance of (5.7)

relative to the external excitation u in boundary value problem 5.5)-(5.6).
Let us show that hese conditions are also sucient.
Snce by hypothesis at least one of the vectors a (, a) and

7 (7, %) s nonzero, there exist numbers 0, - such that

0

Multiplying the lth eq.ualty n (5.10) by 1)k and summing over all
we obtain"
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(-1)khM1R(t, x) O, x G, 0 <= <= T.

By introducing the notation R MR, l 0, 1,..., m 2, from this
equation and from (5.10) and (5.11)we obtain a homogeneous boundary
value problem ior the determination of R

-1 )’-I,_IMR,_. + 1 )’-2,,_.R,_ + IR- ),oRo O,

R,_:(T, x) O, x G; QR,_(t, x) 0, x F,

(5.13) MR,_- R_. 0, R,_( T, x) 0, x G;

QR,_(t, x) O, x I’,

MRo R., =0, Ro( T, x) =0, x G; QRo( t, x) =0, x F.

Since it is assumed that the coefficients of operators M and Q are suifi-
ciently smooth, boundary value problem (5.13) has only the trivial solution
(for example, see [34, pp. 97-103])"

R,_(t, x) R,_(t, x) Ro(t, x) =- O,

and hence ollows the fulfillment of the condition

g(t, x)z(t, x) o, x G.
i1

By the same token we have proved Theorem 10.
THEOREY[ 10. For the invariance o-f (5.7) relative to the external excitation

u in boundary value problem (5.5)-(5.6), it is necessary and sucient that the
following conditions be satisfied"

((x), D’g} o, x G,

(,( t, x), Dg} O, x F,

0 <= <= T, l O, 1,..., m 1.

:From. the method by which this theorem ws proved it is seen that
analogous results can be obtained for the boundary wlue problems which
were studied in 1. In prticulr, for boundary value problem (1.33) we
should make use of (1.35) for the increment of (1.3), where the functions
u are determied with the id of bomdtry wlue problem (1.34).
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ON THE OPTIMALITY OF A TOTALLY SINGULAR VECTOR
CONTROL" AN EXTENSION OF THE GREEN’S THEOREM

APPROACH TO HIGHER DIMENSIONS*

GEORGE W. HAYNES
1. Introduction. We are concerned with the optimality of totally singular

vector controls governing dynamical systems of the form

(1.1) 23 As(x) A-B,r(x)ur, a 1,...,n, r 1,..., (n-- 1),

and the extension of the Green’s theorem approach [1], [2] to higher di-
mensions to evaluate the optimality of such totally singular vector controls.
Adopting the definition due to Hermes [3] a vector control is said to be
totally singular when the maximum principle yields no information in the
time optimal problem for any components of the optimal control. The usual
summation convention on repeated indices is used. Greek letters will as-
sume the values i to n, and Roman letters 1 to (n 1); the exceptions to
this rule are noted where they occur.
The problem of defining a control set for the dynamical system (1.1) is

of paramount importance, because the singularity of a control is an inherent
feature of the dynamical system and the function or functional to be ex-
tremized, and not the control set per se. It is not the intent here to rule out
a singular control because of the limitations on the control imposed by a
given control set. Therefore, the maximal control set which overcomes these
limitations must necessarily include distributions. It should be noted that
Kreindler [4] and Neustadt [5] have considered such control sets in their
treatment of linear systems. I-Iowever, for the nonlinear system considered,
we shall effectively circumvent a difficult problem by replacing the dynami-
cal system (1.1) by the equivalent pfaffian system

(1.2) dxs As(x) dt -4- Bsr(X) dyr,

where the control has the representation ur dyr/dt when it exists. The
solutions to the pfaffian system (1..2) will be parameterized by x(q), y(z)
and t(a) with t(z) monotone such that

(1.3) dx,(z) - As(x(r) dr(z) - Bsr(x(z)) dy(().

It is assumed that the vector x(z) has values confined to some simply con-
nected region D R=, also As(x) and B,r(x) are twice continuously differ-
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National Aeronautics and Space Administration, Ames Research Center, under
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entiable in D. Furthermore, it is assumed that the system (1.1) is control-
lable, which implies that there does not exist a scalar function W(t, x) such
that the hypersurface W(t, x) const, contains all the solutions to the
system (1.1) independent of the controls. From this can be inferred [6] that
the system of n partial differential equations

ow(t, x) + oW(t, x) A.(x) O,
Ot

(.4)
ow(t, x) B.(x) O,

0X,

is not complete, so that another independent partial differential equation
can be determined by the Poisson operator to yield the nonexistence of a
nontrivial W(t, x), namely [OW(t, x)]/0t [OW(t, x)]/Ox, O.
The problem posed is to determine the control which steers the state

from some initial point x to some final point x in minimum time. We shall
now state a further condition which in essence is the sine qua non of the
Green’s theorem approach to higher dimensions.
CONDiTiON A. For each x, the columns of the B,(x) matrix are (n 1)

linearly independent tangent vectors; furthermore the system of partial differ-
ential equations.formed with the tangent vectors

(1.5) ov(x) B.(x) 0
Oxa

is a complete system of order n 1).
This condition has three important implications which will be developed

in detail in later sections; however, for the purposes of motivation we shall
briefly describe what these implications are.

(1) Condition A guarantees the existence of a single unique pfafiian to
system 1.1 ).

(2) It provides a necessary condition for the existence of an optimal
totally singular vector control. The sufficiency condition for the existence
of an optimal totally singular vector control follows from the Green’s
theorem application.

(3) On applying the n-dimensional Green’s theorem to the single pfaitian,
there result [n(n 1)]/2 hypersurfaces whose interpretation as singular
hypersurfaces (assuming an analogy with the 2-dimensional Green’s
theorem approach) is doubtful since we need only (n 1) such hyper-
surfaces to specify the totally singular vector control. However, Condition A
enables an inegrability argu,nent to be invoked, and from this it can be
shown that no more than (n 1) hypersurfaces are obtained which can
then be interpreted as singular hypersurfaces.
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2. Existence of a totally singular vector control. Let .(x) be a nonzero
vector orthogonal to the columns of B.r(x); that is,

(2.1) ,(x)B,(x) O.

Hence the pfattian system (1.2) can be expressed as a single pfattian, which
is unique to within an arbitrary multiplieative factor by virtue of the linear
independence of the columns of B.r(x):

,(x) dx b,(x)A,(x) dr.

Let x ’(t), [to, tf], represent parametrically a totally singular arc in
state space satisfying (1.1), which transfers the state from x 4’(t0) to
xf ’(t.). This singular arc automatically satisfies the pfaffian (2.2); in
fact, any solution of the dynamical system (1.1) satisfies the pfaffian (2.2).
The question now arises whether it is possible to obtain a parametric repre-
sentation in state space of the same transfer (but not necessarily the same
arc) by x x(a), a [0, ] and const., which satisfies the pfaffian

(2.3) .(x()) dx.() 0

with x x(a0) and x] x(a). If this is possible, then the totally singular
vector control will not be optimum, since the transfer of the state vector
from x to xs can be synthesized by suitable impulses to achieve the transfer
in zero time. Therefore, the problem resolves down to the question of accessi-
bility of points by trajectories satisfying the pfaffian

(2.4) ,(x) dx, O.

The resolution of this question leads to the following lemma.
ILEMMA 2.1. A necessary condition that an optimal totally singular vector

control exists is that the pfaan b.( x) dx. 0 be integrable.
Proof. The proof makes use of the following theorem [7] and its contra-

positive which we shall state formally.
THEOREM (Caratht!odory). If a pfafian ,(x) dx 0 has the property

that in every arbitrarily close neighborhood of a given point there exist points
which are inaccessible frown 2 by trajectories satisfying the pfafian, then the
pfaflau is inlegrable.

CONTRAPOSITIVE. If the pfajan b,( x dx, 0 is not integrable, then there
exists some neighborhood of a given point in which all points are accessible by
trajectories satisfying the pfa2an.
The following concise form of the proof is due to the referee.
Proof. Assuming the pfafiian is not integrable, then with each point

’(t) of the singular arc we can associate an open neighborhood of accessi-
bility 9(O’(t) ). This gives an open cover of the compact arc; by the Heine-
Borel theorem there is a finite subcover. Let [(O’(t0)), (O’(h)),
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(O’(tk),’.., ("(ts))} be the finite subeover, and assume without loss
of generality that to < tl < < tl < < ts. Now the point x ’(t0)
can be joined to a point 2 in (’(t0)) l 9(4)"(tl)) by an arc satisfying
,(x) dx, 0. Then 2 can be joined to x 4)’(tl) by an arc satisfying
,.(x) dx, 0. Continuing this procedure we can construct a zero time
"polygonal" arc joining x and xs, which completes the proof of thelemma.

If the pfaffian ,(x) dx 0 is integrable, then there exist a nonzero
integrating factor t(x) and a function V(x) such that

(2.5) OV(x)

Therefore from (2.1) we have

(2.6) OV(x) B,r(x) 0;

and by Condition A we are assured that such a V(x) exists, so that the
pfaffian ,(x) dx. 0 is integrable. It should be noted that the pfaffian

.(x) dx. (x)A(x) dt 0

is not integrable [3]; otherwise this would contradict the assumption that
the system (1.1) is controllable.

3. Generalized Green’s theorem. The problem of extremizing two-dimen-
sional line integrals of the form

x"
(3.1) I _/o [al(x x:) dx -- a(x x) dx]

is a fairly simple one, since the relative optimality of two distinct trajectories
may be compared directly under certain smoothness conditions by an ap-
plication of Green’s theorem. The unique feature of this approach when
applied to two-dimensional nonlinear systems [2] in which the control
(single component) appear linearly and the cost functional can be given
the representation (3.1) is that the projection of the singular arc in state
space is obtained immediately by (xl, x) 0, where

(3.2) w(x, x) Oa(x x.) Oa(x x)
Ox

Since only simple algebraic manipulations are required to generate w(x, x.),
the utility of the method is immediately obvious and motivates this ex-
tension to higher dimensions. Before describing the Green’s theorem ap-
proach to the problem posed, we shall briefly review the extension of Green’s
theorem to higher dimensions pertinent to the problem. Stoke’s theorem in
particular is the extension of Green’s theorem from two to three dimensions;
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and from the theory of exterior calculus [8], [9], [10], Stoke’s theorem has
been generalized to higher dimensions. Specializing the form of Stoke’s
theorem [8, Theorem 9.50] to our purpose we have the following theorem.
THEOREM 3.1. Let be an orientable two-surface of class C" in an open

set D c R; also let the edge or boundary of be a Jordan curse P. If
as(x) dx is a pfaan (or one-form) of class C’ in D, then

(3.3)

where d- is called the exterior derivative of - and is defined to be the two-form

(3.4) dr
Oa,( x

dx dx,

Here we have adopted the notation due to Flanders [9] in omitting the
exterior multiplication sign. Since the integrals (3.3) are oriented integrals,
the multiplication of differentials satisfies the rules

dx, dx; --dx dx
so that

dx dx 0 (no sum).

Hence the exterior derivative of

d- o,dxdx,, a 1, (n 1), (a - 1), n,

(3.6) o
Oa(x Oa(x
Ox

The proof of (3.3) may be found in such standard texts as Rudin [8],
Flanders [9] and Guggenheim [10]. However, we shall sketch one method of
proof, since the construction employed therein is essentially the procedure
we shall adopt for applying Green’s theorem to the control problem stated.

Let f denote a smooth mapping of P c R into S D R, so that P,
which is described by coordinates (z, z), is the parameter domain of the
two-surface S. Using f* to denote the induced mpping of the differentiM
forms from S to P then the line integral appearing in (3.3) can be trans-
formed into

(3.7)

where B is so defined that F is the image of B under f. Sincef* is pfffin
in z and z, then P B is a region to which Green’s theorem applies. On

(3.5)

where
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applying Green’s theorem there results

where/ c P is the parameter domain of the wo-surfaoe under the map-
ping f, and has B s is boundary. From he properties of he exterior deriva-
tive we have

(3.9) d(f*rr) f*(art)
and it should be noted that since r is a one-form and the dimension of P is
two, this is not a vacuous result.
Using (3.9) with (3.7) and (3.8) completes the proof, namely,

fr = f. f, d(f*r) fr, f*d(,)= f &r.

Having delineated in principle the manner in which Green’s theorem will
be applied to the control problem posed, we have to resolve the analogy
with the two-dimensional control problems of the projection of the singular
arc in state space. If we adopt the procedure of the two-dimensional Green’s
theorem approach and equate each coefficient of the basic two-forms of drr
to zero, then from (3.5) each w,(x) 0 would be interpreted as a singular
hypersurface. But there will exist [n(n 1)]/2 such hypersurfaces whereas
we need only (n 1) to determine the (n 1) components of the totally
singular control. When n is equal to two we obtain the required number of
hypersurfaces, while for n greater than two we obtain too many hyper-
surfaces; however, since for optimality it is necessary that the pfaffian
g,(x) dx 0 is integrable, it will be shown that this implies no more than
(n 1) of the [n(n 1)]/2 hypersurfaees 0 0 are independent.

4. On the optimality of a totally singular vector control. By virtue of
Condition A there exists a unique pfaffian to the control system (1.1)
which can be expressed as

(4..) ,t (x) dx
(x)A(z)

Equivalently the pfaffian could be expressed by (2.5) as

oV(z)

(4.2) dt= Ox.
o v()

However, the determination of V(x) is inconsequential to the analysis;
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what is important is to generate the pfaffian (4.1) from the system of
pfaffians (1.2) by the elimination of the differentials dyr.

It has been assumed in (4.1) that (x)A(x) 0 in D. From the con-
trollability requirements it is known that (x)A(x) 0 in D; otherwise
the hypersurface V(x) const, would contain all the solutions to (1.1)
independent of the controls.
By (4.1) the time required to transfer the state from x to x through

(1.1) can be expressed as a line integral by

,(z) dx,(4.3) I tf to-- (x)A(x)

We now perform the usual ritual of comparing two trajectories joining x to
x that project a Jordan curve F in state space.

It is assumed that the two trajectories bound an orientable two-surface.
Denoting by 11 and I. the respective costs to traverse the trajectories, and
accordingly associating a sense of direction to F, we have

11 I fr .(x) dx,

On applying the n-dimensional Green’s theorem we obtain

(4.4) 11- [. f o, dx, dx a 1,...,n-1, a + l,. .,n,

where

(4.5)

From the form of 0, we have the next lemma.
LEMMA 4.1. NO more than (n 1) of the [n(n 1)]/2 hypersurfaces

o,o(x) 0 are independent.
Proof. The proof follows directly from the following theorem [7].
THEOREM. A necessary and sucient condition that the pfaffian

a,( x) dx, 0 be integrable is

) a Oa,(x))(Oao(x) Oa,(x)a,(x) \o Ox, Ox \ -2 Ox

(Oa,(x) Oa(x)) O.+ a \ - ox.
Since the pfafl!ian .(x) dx. 0 is integrublc, the pfaffian

[,(x) dx,]/[(x)A(x)] 0 also is integrable. Applying the integrability
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test yields

(4.6) .(x)o(x) + (x)oo.(x) + (x),o.(x) o,
from which it follows that only (n 1) of the [n(n 1)]/2 hypersurfaces
o, 0 are independent.
The hypersurfaces o,a 0 can now be interpreted as singular hyper-

surfaces, since their common intersection (assuming it exists) yields the
totally singular arc. This relation is demonstrated in the next section. The
importance of the n-dimensional Green’s theorem approach is in the
simple algorithms it provides for the determination of the singular hyper-
surfaces and the totally singular arc. Once this has been accomplished, then
it is a relatively simple matter to construct a family of two surfaces as indi-
cated in 3, which contains the totally singular arc for some values of the
parameters, and then to use the two-dimensional Green’s theorem to
evaluate the optimality of the totally singular arc. Since we are primarily
interested in evaluating the optimality of the totally singular arc, it is
tacitly assumed that the singular hypersurfaces have a common inter-
section that can be represented in terms of a single parameter x x(a)
so that x,(x(a)) 0. We shall illustrate the method with an obvious ex-
ample. Consider the system

(4.7

the problem is to transfer the state from [0, 0, 1] to [0, 0, 2] in minimum time.
It is obvious that the system (1.5) of partial differential equations is a com-
plete system of order 2 thus satisfying Condition A. The line integral (4.3)
is

(4.s)
0,0,2

I=
.’to,oal

(x + x + xa) dxa,

so that wl. 0, ola 2xl, 0.a 2x.. The singular hypersurfaces are given
by the planes x 0, x. 0; and the singular arc can be parameterized by
x 0, x 0, xa a. Let the representation of the surface S (see Fig. 1)
containing the totally singular arc, in terms of the two parameters zl and
z2, be

Xl Zl COS )

(4.9) x zl sin , zl _>- 0,

X3 Z2

so that zl O, z r are the values of the parameters yielding the singular
re.
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x3z2

S

FG. 1

X1

Denoting by I8 the cost along the totally singular arc, and by I the
cost along any other arc contained in S, then

(4.10) I Xl + X2 + X; dx. (zl -[- z2 dz2

Hence applying the two-dimensional Green’s theorem yields

L fz 2z dS >= O,I

so that the totally singular arc is optimum relative to the comparison
trajectories contained in the family of surfaces givea by (4.9).
A more general family of surfaces, similar to (4.9), can be described in

terms of a vector valued parameter by

Xl Zlfl(Z2 t)),

(4.11) x2 zlf2(z2 ),

xa z2

where f and f are scalar functions of the vector b. Hence, for z -> 0 we
hve

I
r

2z(f(z ;) + A:(z ;)) dZ >= 0;
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and for Zl _-< O,

I--L=fr {z (f (z ;,) + A(z )) + z} z

2zl(fl:(z ;6) + f, (z ;)) dS >- O,

so that once again the totally singular arc is optimum relative to the com-
parison trajectories contained in the family of surfaces given by (4.11).
The existence and construction of a family of surfaces containing all possible
comparison trajectories will be left as an open question.

5. The relation between the hypersurfaces . 0 and the totally
singular problem. Treating the time optimal problem (1.1) by the conven-
tional methods of optimization [11], the Hamiltonian is

(5.1) H(x, p, u) 1 @ p.[A.(x) + B.r(x)ur],

where p is the co-state and is determined by the Euler-Lagrange equations:

(5.2) 15.
OH(x, p, u) [OAr(x)

The singular problem giving rise to the totally singular control ur’( t) occurs
when

(5.3) p.(t)B.(,p’(t)) 0

is satisfied together with

(5.4) d"(t) A.(’(t)) + B.r(’(t)) u’(t),
dt

(5.5) dp.(t)dt --p(t) [OA,(’(t) + B"((t) u"(t)l"
Furthermore, the Hamiltonian is a constant along the extremals, and this
constant is zero by virtue of the transversality condition to yield

(5.6) 1 + p.(t)A.(,p’(t) O.

Differentiating (5.3) with respect to time and using (5.4) and (5.5) to
simplify we obtain the following set of (n 1) equations, which also has
to be satisfied"

p.(t) [_[OA"(9"(t)) B,r(’(t) OB.(p’(t))Ox, A,(9"(t))] 0.
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It follows that the coefficients

[OA,(q(t)) B((t)) OB,((t) A(q,(t))1Ox Ox
are either zero or some linear combination of Br2((t)) otherwise
(5.3) and (5.7) would imply a trivial result for p(t). To demonstrate the
relation between the hypersurfaces 0 and the singular problem, we
shall for convenience take the pfaffian in the equivalent form (4.2),

oV(x)
dx,

(5.8) dt
OV(x) A(x)OX

and recall that V(x) satisfies the complete system of partial differential
equations

(5.9) OV(x). U,r(x) 0
OXa

of order (n 1). From the definition of the hypersurface , 0 we have
for the equivalent pfaffian form (5.8),

1
w,(’(t) [0V(-(t))0x A("(t))}’

(,5.10) .(0V(’p’(t))0x [.[0 V ’P"-- A ,p + OV ,p" OA ,p"
x, Ox,, )1

Ox, [_ Ox Ox Ox Ox
The factor 1/{[OV(,p’(t))/Ox,]A(,p’(t))] may be neglected since by as-
sumption

OV(x) A(x) O.
OX

(5.11) OV(’(t)) B,(p’(t)) O,

which can be identified with (5.3) by defining

(5.12) p,(t) ),(t) OV(’(t)),

From (5.9) we have
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where ),(t) is a nonzero multiplier that has to be determined. Substituting
(5.12) into the Euler-Lagrange equations (5.5) yields

d,(t) OV(,’(t)
dt

(5.13)
FO2V((t)) OV(’(t)) OA(’(t))1 O.

Using this result we find from (5.10) that

1
,(’(t)) OV(,(t)) AT(’(t))

OX._ OV(’(t)) OV(,’(t)) dh(t) 1

Ox Ox dt ,(t)

OV(o’(t) OV(o"(t) dX(t) 1 1+ Ox, Ox dt X(t)_
O.

This shows that "(t) totally singular implies w,(q"(t)) 0.
Some further consequences of this relationship are the derivation of (5.7)

and the first integral (5.6) as follows. Multiplying (5.13) by B, and sum-
ming and invoking (5.11) yields

[OV((t)) A,(’(t))B,(’(t))
L ox, ox

oV(’(t)) OA(’(t)) B,,(,’(t)) O.+ Ox Ox,

Differentiating (5.9), which is an identity in x, with respect to x and multi-
plying by Au(x) and summing gives

(5.15) O2V(x) B,(x)A(x) -t- OV(x__) OB.,(x) Au(x) O.
Ox, Ox Ox,, Ox

By virtue of this result, (5.14) becomes

(5.16)
h(t) OV(’(t) [OA(’(t) B,,(’(t))

OX
OB,( o* A.(o’(t))| O,

_l

which is easily recognized as (5.7).
Finally, to complete the equivalence, if we multiply (5.13) by A,((t))
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and sum, we obtain

O [A(’(t) )OV(’p’(t))] O.dh(t)dt OV(’(t))cOx, A,(q’(t)) + X(t)A,(’(t))-ff, Ox
Using (5.4) the above equation becomes

d I, cOV(’P(t)
d--t (t) A.(’(t)

Ox,

cO [ cOV(qg"(t))I 0h(t)B,,(’(t) )u,’(t) - A(,’(t)
Ox

However, the second term is zero by (5.14) so that the above equation cn
be integrated directly to yield

(t) OV(,p’(t)) A,(,p’(t)) const.
Ox,

This result is equivalent to (5.6), the constancy of the Hamiltonian, and
determines the multiplier k(t).

6. Minimization of a functional. The n-dimensionM Green’s theorem
approach described in the previous sections can be applied to minimizing
functionals of the form

(6.1) I L(x(t)) dr.

The problem is to determine a control Ur(t) which by (1.1) transfers the
state from x0 to x with no restrictions on t] (t free), such that I is mini-
mized.

Since there is no precise statement about the reachable set for the system
(1.1) given, some restrictions must be placed on L(x). This is necessary
because it could transpire that if for some u(t) the solution to (1.1) formed
a closed curve in a region of state space where L(x) is negative, then I could
assume any negative value whatsoever simply by traversing the closed
curve an arbitrary number of times. The existence theorem of Markus
and Lee [12] circumvents this problem by placing a restriction on t].
However, we cannot include such a restriction without destroying the
equivalence between the hypersurfaces ,(x) 0 and the singular prob-
lem. We shall assume that L(x) > 0 in D so that the problem becomes
equivalent to one of minimum time.
By use of the pfaffian (4.1), (6.1) can be expressed as

L(x)(x) dx(6.2)
/,(x)A,(x)
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For this form of the line integral the singular hypersurfaces are given by

and the arguments given in 4 regarding the number of hypersurfaces still
apply, since the pfaffian

L(x)(x)
(x)A(x)

dx, 0

is integrable.
Similarly, the equivalence between the hypersurfaces (x) 0 and

the singular problem follows from 5 with minor modifications. The totally
singular arc ’(t) with the totally singular control ur (t) satisfies

dt
A.(’(t)) + B.r(’(t))ur’(t),

dp.(t)dt --OL(’’(t))Ox. p(t) [_VOA(’(t))).-. + OB’(’(t))u’(t)l
p.(t)B.r(’(t) =-- O.

The Hamiltonian is a constant along the extremals, and the constant is
zero by virtue of the transversality condition and the final time t being
unspecified, so that

L(’(t)) -t-p.(t)A.(q’(t)) O.

From these equations it can be shown that

,.(,"( t) o,
and hence the methods described can be used to evaluate the optimality
of the totally singular arc.

7. Some examples. In applying the Green’s theorem technique to
specific example, it is not necessary to determine beforehand if the system
(1.1) is controllable, because if the system (1.1) is not controllable, then the
pfaffian (4.1) is integrable, and the integrbility conditions are given by

(7.1) .(x) O.

Consider the following system"

;1 Xl X2Ul

2 X2 XlUl .2f_ X32,

8 X3 X2U2.
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The system of partial differential equations (1.5) associated with (7.2),
namely,

OV OVx.-x-g- 0,

OV OV
x, x-g o,

is a complete system of order 2, thus satisfying Condition A. The correspond-
ing pfaffian (4.1) is

(7.3) dt Xl dxl A- x. dx.-t- xa dx3
x9. -1-- x x

and it is immediately obvious that 6019.(x) a(x) ==- 60a(x) ---= 0 so that
(7.3) is integrable. Therefore (7.2) is not controllable, since the hyper-
surface W(t, x) =- (x19. -4- x9.9. -4- x39.)e-2t const, contains all the solutions
independent of the controls.
On the other hand, it is most important to check whether Condition A

is satisfied before applying the Green’s theorem technique. It does not
follow that, if the required number of hypersurfaces are obtained, then
Condition A is automatically satisfied, as demonstrated by the following
counterexample. The system equations are

9. Xa - X2U2

and the pfaffian (4.1) is

dt
dx.

( + x,)
so that

6012 0

Xl(X22 -3I-- X32)

023

X2

X12(X22 t_ X32)

x. x -4- 2x xt

Therefore, it would appear that if Xx 0 and xa 0, then the singular
hypersurfaces are given by

X2 O
xa- 2xl O,
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thus yielding the correct number of hypersurfaces despite the fact that
Condition A is not satisfied. However, the fallacy of this result is readily
apparent, since the hypersurface x. 0 implies x3 0 thus contradicting
the requirement that x3 0.
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EXHAUSTIVE EQUIVALENCE CLASSES OF OPTIMAL SYSTEMS
WITH SEPARABLE CONTROLS*

RUEY-WEN LIU AND R. JEFFREY LEAKE
Abstract. For a given optimal feedback control problem two systems which have

the same optimal feedback control laws and have identical Hamilton-Jacobi equa-
tions are said to be equivalent.. A necessary and sufficient condition for the equiva-
lence of two systems with separable controls is obtained; with this condition, one
can generate exhaustive equivalence classes of optimal systems.

1. Introduction. It is well known that u wide variety of optimal feed-
back control problems can be reduced to solving a Hamilton-Jacobi par-
tial differential equation. However, very few solutions of optimal control
problems are known. Those who doubt this may try to solve the minimum
time problem for the following simple linear system"

2 x -t-u,
] 2y --l- u,

where u + u _<_ 1. Therefore, any broadening of the class of solvable
optimal control problems should be worthwhile.
One way of improving the situation is to make the best use of known

results. More specifically, if the solution of a particular Hamilton-Jacobi
cqmtion is known, one might tttem.pt to establish a procedure for generat-
ig tll other optimal control problems having the same Hamilton-Jacobi
equ.tion, and thus the same solutions.
Aother related approach consists of formulating an inverse problem by

choosing a suitable function V(z, t) and directbg attention toward a search
for all optimal control problems having V(x, t) as a solution of their respec-
tire ttamilton-Jacobi equations.

This paper gives positive information to each of the above-mentioned
approaches, and the final results are given in 5. Applications and examples
are given in 6. In. 4 two important lemmas on inner products are
presented.

2. Formulation of the optimal feedback control problem [1]. Let G be a
region of R N R, and S G a closed n-dimensional smooth manifold
called the target set. Consider the dynamical system with separable con-
trols

() f(z, t) + (u),
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where the n-vector x is the plant state, f and g are continuously differentiable
n-vector functions, and

(2) u (x, t)

is a continuously differentiable m-vector function (rn _-< n) from R X R
to Rm. For each u let 0H(t) (t; x0, to, u) be the unique solution of (1)
satisfying the initial condition O(t0) x0 when (2) is substituted into
(1); and let u(t) lc(4(t), t). The function /c(x, t) will be called an
admissible feedback control law if"
(i) k" R X R -- R is continuously differentiable;
(ii) its values lie in a set U R’;
(iii) given any (z0, to) G, when (2) is substituted into (1) the motion
(O(t), t) becomes a member of S for some -> to; let t be the first
such instant. Further, (0H(t), t) G for all [to, t.].
The system performance index is

tl

(3) J(xo, to S, u) X(u(h), h) - L((t), u(t), t) dt,

where L and X are continuously differentiable scalar functions. The optimal
feedback control problem is to find a particular admissible feedback control
law such that the functional (3) assumes its infimum over the class of
admissible feedback control laws for every initial phase (Xo, to) G.

3. The Hamilton-Jacobi equation. Subject to certain smoothness con-
ditions, it is possible to solve optimal feedback control problems by find-
ing an appropriate solution of the related Hamilton-Jacobi equation. Fol-
lowing Kalman [1], a formulation of this approach is summarized below.
In addition, it is shown that although the solution, of the Hamilton-Jacobi
equation may not be unique, there is at most one solution which leads to
an admissible feedback control law. As such, sufficiency conditions can be
stated in a manner which does not require uniqueness of the solution of
the Hamilton-Jacobi equation itself.

Define the scalar function H by

(4) H(x, p, t, u) L(x, u, t) -t- (f(x, t), p) -t- (g(u),

Assume that for every x, p and t, H has a unique absolute minimum with
respect to u U and let the associated value of u be denoted as u

c(z, p, t). Assume further that the function c is unique and continu-
ously differentiable in each argument. Define the Hamiltonian H as

_H(x, p, t) min H(x, p, t, u)
uU

L(x,c(x, p, t),t) + :f((x, t), p) + (g(c(x, p, t)),



6S0 RUEY-WEN LIU AND R. JEFFREY LEAKE

Let there exist a function V(x, t) X(x, t) on S, which in addition
satisfies the Hamilton-Jacobi equation

(6) (f(x, t), V}
or

(7) Vt / H(x, V, t) O,

for all (x, t) G. Then if c(x, V,, t) is an admissible feedback control law
(with emphasis on condition (iii)), the lemma of Carath6odory [1] may
be applied to Vt + H(x, V, t), yielding" V(xo to) =J(xo to, S; u)

J(xo, to, S; u) for all admissible controlsu andfor all (xo,to) G. Thus,
if V*(x, t) is any other twice continuously differentiable solution of (7),
if V*(x, t) X(x, t) o S and c(x, V,*, t) is admissible, repeated applica-
tion of Carath6odory’s lemma shows that V*(x, t) <= V(x, t) and thus
V*(, t) V(, t) on G.
To summurize, for given optiml feedback control problem, if one can

find function V(x, t) which stisfies the stated boundary and smoothness
conditions, which is a solution of (7), and for which c(x, V, t) is admissible,
then he hs t once a solution to the optimal feedback control problem.

4. Two lemmas on inner products. It is noted that the inner products
of vector functi.ons are essential elements of the Hamilton-Jacobi equation
(6). Two lemmas on inner products given here will be employed in the
next section. Although the results presented seem to be classical in nature,
the uthors have been able to find neither these lemmas nor any of their
direct applications to engineering problems in the literature.
LEMMA 1. Let y and z be any two real r-vectors and assume y O. Then z

satisfies the condition (z, y} 0 if and only if there exists a real, skew-sym-
metric, r }( r matrix A, such that z Ay.

Proof. Sufficiency is trivial. To show necessity, let B be rel r X r
orthogonal matrix and be a column vector such that By

col (IlY]],0, ...,0).Let Bz col (, ...,,),where,isthe
ith component of 2. Since B is orthogonl we hve (z, y} (2, } 0,
which implies that 2 0. Now let

Q= 0 0 0

0 0 0

and define A BrQB/Ilyl]. Since Q + Qr 0, we have A + Ar
Br(Q / Qr)B/I y O. Furthermore, Y Ay BrQBy BrQ
Br Y Y BrBz Y z. Thus, A is a skew-symmetric r X r

matrix such that Ay z.
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LEVIMX 2. Let y and z be any two real r-vectors and assume y O. If
a is any scalar, then (z, y} a if and only if there exists a real, sew-symmetric,
r X r matrix A such that z 3[ - A]y, where a/i y and I is the
unit matrix.

Proof. As ia Lemma 1, the sufficiency condition follows by direct evalua-
tion. To show the condition is necessary, let z be decomposed as z z + zb,
where (z, y} 0 and z /y, with , being some scalar. Since (z, y} a

(z, Y) 7 Y 2, it follows that , a/] y I12 ft. ]?urthermore, Lemma
1 implies z Ay, where A is a skew-symmetric r X r matrix, so
z I + A]y.
The lemmas give explicit (non-unique) solutions of the implicit algebraic

equation (z, y) a for y 0. When y 0, a must be zero for a solution to
exist and z is arbitrary in this case. Of course, A is not unique.

5. Exhaustive equivalence classes. Let P be the set (g, U, J, S, G) where
all quantities are defined ia 2. Note that for any given pair (f, P) a specific
optimal feedback control problem is defined. Assume henceforth that all
of the stated continuity aId differentiability requirements are satisfied.
Because of the separable control, observe that the expression of c(x, p, t)
and thus that of the right-hand side of the Hamilton-Jacobi equation (6)
is completely determined by a give P. Further, for any P, in order that a
scalar functiouW(x, t) is a solution of (6) and satisfies the boundary
condition, it is necessary that W(x, t) (x, t) ou S, and W(x, t)

L(x, c(x, O, ), t) on the set {(x, t) (x, t) G, W(x, t) 0}. We will
suy that a scalar function W(x, t) is compatible with P if it satisfies the above
two conditions. If W is compatible with P, f(x, ) is said to be of class
(W, P) if by substituting W for V, (6) is satisfied for all (x, t) G and
c(x, W, t) is an admissible control law for system (1). Cosequently,
W(x, t) is the solution of (6) for ll f (W, P) and c(x, W, t) is the
admissible control, thus, the optimal feedback control law for the entire
class (W, P). For the sake of uotational convenience, henceforth we will
use V instead of W.

DEFINITION 1. Given P and a compatible function V(x, t), f(x, t) and
f*(x, ) are said to be equivalent if they belong to the same class (V, P).
The following theorem gives an explicit expression for ull f ((V, P).

In this sense, the formulation of the equivalence class is exhaustive. Let D
be the subset of G on which V(x, t) O.
THEOREM 1. Given P and a compatible function V(x, t), then f ( V, P)

if and only if c(x, V t) is an admissible feedbactc control law for f, and there
exists a skew-symmetric n X n matrix A x, t) such that

(8) f(x, t) Iv(x, t)I zr- A(x, t)lV.(x, t), (x, t) D,
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where

V(x, t) -[Vt(x, t) -- L(x, c(x, Vt),t) + (g(c(x, V, t)), V(x,t)}]

Proof. The assertion follows directly from (6) and Lemma 2.
THEOREM 2. Given P and a conpatible function V(x, t), let f* ( V, P).

Then f and f* are equivalent if and only if c(x, V,, t) is an admissible con-
trol law for f, and there exists a slcew-synmetric n X n matrix A(x, t) such
that

(9) f(x, t) f*(x, t) + A(x, t)V.(x, t), (x, t) D.

Proof. Iff and f* are equivalent, Theorem 1 implies that f* [7I + B*] V,
f [7I + B]V, on D, where B and B* are skew-symmetric. Equation (9)
follows by subtracting f* from f and letting A B B*. Sufficiency follows
by tking the inner product of Vx with (9), applying Lemma 1, and noting
that V 0 for (x, t) ( D. Thus, one obtains (f, V} (f*, V} for
(x, t) G. Therefore, f and f* yield the same Hamilton-Jacobi equation
(6). Since c(x, V,, t) is admissible forf, f e(V, P).

Consequently, for any P and compatible V, one may formulate the in-
verse problem by specifying the form of all possible system functions

f (V, P). Also, if a particular problem is solved, the equivalence class
may be generated using the algorithm (9).

In order that c(x, V,, t) be admissible forthe class (V, P), one has to
show that with the control u c all motions (,(t), t) initiated in G will
reach S for every system with f (V, P). The following result can be
easily proved by use of (6) and is useflfl in this respect.
PROPERTY 1. Given P and a compatible V(x, t), let u c(x, V, t). Then

the Eulerian derivative of V is given by ? -L(x, c(x, V t), t) for all f
defined by (8) or (9).
Thus if one can conclude from the pair V and that all motions initiated

from G will reach S in a finite time (see Example 6.2), then this is true for
all f defined by (8) or (9).

6. Examples.

6.1. Linear regulator problem [1], [3]. The purpose of this example is to
demonstrate an extension of the well-known linear regulator theory to a
broader class of (possibly nonlinear) systems. Consider the system

(10) 2 Fx + Gu,

where F is an n X n matrix, G is an n )< n matrix, and the performance index
is specified by L Hx ]] + u ]]2, , x If,, where Q, R are positive
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definite symmetric, B is nomegative definite symmetric. Let S R X tl},
G (x, t)l =< tl}; then it is known that the unique solution of Hamilton-
Jacobi equation is W(x, t) 1/2 x ) (where P(t) satisfies a Ricatti
equation), P(tx) B, and c(x, V. t) 1/2R-Gtp(t)x. By Theorem 2, all
systems 2 f(x, t) -t- Gu with

(11) f(x, t) Fx + A(x, t)P(t)x, A + At= 0,

are equivalent to (10), provided that A is sufficiently well-behaved to e1-

sure that the smoothness requirements on f are satisfied and a finite escape
time condition is not present in the interval to < =< h.

6.2. lorm invariant systems [4]. In this example it is shown how proper-
ties of norm invariant systems may be derived from the study of trivial
problem. Consider the simple system 2 u, u -<-- 1, and the associated
optimization problem vith G {(x, t)l x => a}, S /(x, t)[ x a},
L 1, 0, where a is "small" positive scalar. The Hmi|ton-Jacobi

equation for this problem is

(12) Vt- llvll -t- 1 o, v(x,t) 0 for Ilxll a.

Possible solutions are V(x) 4- {]l x a}. From 2, there is only one
solution which leads to an admissible control law, and this is evidently
V(x) x a, with c (x, Vx, t) x/l x 11. By Theorem 2, all systems
in the associated equivalence class must be of the form a? f(x, t) -t- u,
where

(13) f(x, t) B(x, t)x, B -t- B O.

Since I 1 in G S, c is admissible for all such f if B is smooth enough.
Lemma 1 further implies that all norm invriant systems must be expres-
sible in the form 2 B(x, t)x, B - Br 0, a fact which is not in greement
with the corresponding statement of Athans, Falb and Lacoss [4].
So fr, we have shown how an equivalence class can be generated from

kuowa solutions. Observing that (8) gives n explicit relation between the
Hamilton-Jacobi equation solution d system function, one may pproach
the optimal feedback cotrol problem from another (inverse) viewpoint.

6.3. An inverse asymptotic problem [5]. Starting with a prespecified
function V(x, t) it is demonstrated here how one might proceed to find a

meaningful class of systems for which V is the solution. Consider the system

2 f(x) + bu,

where b is an n-vector and u a scalar. Let

J fo (L(x) -t-u) dr.
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If the problem is meaningful, it is easily shown formally that

t) --1/2(b,V) nd V, O.u c(x,V,

Therefore, the Hamilton-Jacobi equation has the forIn

(f, V} l(b, V} L(x).

Consequently, any given V(x) will satisfy this equation if

(4) /(x) [(z) + A(x)IV(x),

where

n(x) [(b,V}- L(x)]/]]V[ nd A +Ar 0.

In fact, f may be a function of both x and since the exhaustive equivalence
class will be of the form

f(x, t) [v(x)I + A(x, t)lV,(x).

If L(x) l(b, V), then (14) reduces tof(x) A(x)V,, or by Lemma
1, (f(x), V(x)) 0. The insight gained here leads to the following example.

6.4. Systems with a own tegral. Let an integral $(x) of the system

(15) f(x, t)

be known, i.e., (f(x, t), ,(x)} 0. Consequently, all solutions are on a
constant 4(x) surface. For example, if (15) is a conservative system, then
4(x) may be the total system energy; or if (15) is norm invariant
(x) x [I is an integral.
Now consider the optimal control problem

=f(x,t) +bu, J (b, 4}+u dr.

Then by simple verification, a solution of the Hamilton-Jacobi equation is
V(x) (x) and the corresponding control law is

(6) (x, t) -(b, x).

Thus, we use the information from the inverse problem of 6.3 to obtain a
formal solution of the Hamilton-Jacobi equation of 6.4. In order that this
solution give the optimal feedback control law, other problems have to be
studied, such as the conditions on P and the admissibility of the control
law. Furthermore, questions of controllability and convergence would hve
to be investigated on a separate basis due to the asymptotic nature of the
problem [5]. We will not attempt to solve these problems here.

Finally, we note that one of the major restrictions of these results is the
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differentiability requirement of V(x, t), the solution of the Hamilton-Jacobi
equation1, because it excludes a class of interesting problems which require
discontinuous controls. However, Hermes [6] has shown that a class of
optimal feedback coItrol problems with discontinuous optimal controls
can be approximated arbitrarily closely by other problems with contin-
uous optimal controls. Therefore, the results obtained in this paper may
be applied to the latter approximate systems.

Acknowledgment. The authors wish to express their thanks for the
constructive suggestions from the referee.
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SOME REMARKS ON COMPLETE CONTROLLABILITY*

H. O. FATTORINI
1. Introduction. The aim of this paper is to generalize a well-known

criterion for complete controllability of the finite-dimensional linear con-
trol system u’ Au - Bf (as in [1, p. 201]) to a class of control systems
in Banach space that includes, among others, the case where A is an
elliptic partial differential operator in a bounded domain of Euclidean
space.
A similar generalization was considered in [6] for the case where A is a

self-adjoint operator in a separable Hilbert space.

2. Notations and preliminary results. Throughout this paper E, F will
be complex Banach spaces; the norm in any of them will be written i" l.
If E is any Banach space and u* G E*, the dual space of E, we shall denote
by (u*, u) or (u, u*) the value of the functional u* at the point u E.
IfN

_
E, we defineN" {u* E*[(u*, u) 0 for allu N}. It is

easy to see that N" is a closed subspace of E*. If N is a subspace of E
then, by the Hahn-Banach theorem N is dense in E if and only if N" {0}.
We shall consider the linear control system

’((2.1) u t) Au( t) - Bf( t),

and various other systems derived from it. The E-valued function u(.
is the output of the system; the F-valued function f(. ), the input or control,
determines in some sense its behavior. We shall assume the closed linear
operator A with dense domain D(A E to be the infinitesimal generator
of a strongly continuous semigroup T(t), _>- 0, in the space E [2, Chap.
VIII]; B will be a linear bounded operator from F to E. We shall always
denote by L the control system (2.1).

If f is sufficiently smooth in [0, ), for instance continuously (strongly)
differentiable, then (2.1) has a solution. That is, there exists an E-valued
function u(t), .>= O, strongly continuously differentiable and such that

* Received by the editors December 3, 1965, and in revised form April 4, 1966.
Consejo Nacional de Investigaciones Cientfficas y T(cnicas and Departamento

de Matematicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, Buenos Aires, Argentina.

This work was supported in part by a Ford Foundation Pre-Doctoral Fellowship
at the Courant Institute of Mathematical Sciences, New York University.

Adjoints of linear operators will be defined with respect to the bilinear form
(., ), except in the examples after Proposition 2.3 and Corollary 3.2, where E is a Hil-
bert space and we use instead the corresponding scalar product.

See [6], [7] for further details.
We can weaken somewhat the requirements on f; however, for the purposes of

this paper we can consider f as smooth as we please.

686
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u(t) D(A) and (2.1) is satisfied for all _>_ 0. Moreover, we can assume
u(0) u, where u is any element in D(A ). With this initial condition the
solution is unique and given by

(2.2) u(t) T(t)u + Jo T(t- s)Bf(s) ds,

[4, especially pp. 215-218].
As in [6], we shall say that the control system L is completely controllable

for f in a given linear class of controls defined in [0, oo if, given u E
and an arbitrarily small number e > 0, there exists f such that the
solution of (2.1) with initial condition u(0) 0 satisfies

lu(to) -ul <= ,
for some to _-> 0, depending in general on u, e. If to can be chosen independ-
ently of u, e, we shall say that L is completely controllable in time to .

Let us denote by Kt0 the subspace ofE consisting of the values (for t0)
of all solutions of (2.1) with u(0) 0 and f . Then it is clear that L
will be completely controllable if and only if C1K E, where K [J t>0 Kt,
it will be completely controllable in time to if and only if C1 Kto E.
Sometimes we shall write Kt(L) or K(L) to emphasize dependence on the
system L. If 0 =< to =< tl we have Kt0

___
Ktl K. Thus complete control-

lability in time to implies complete controllability in time tl, which in turn
implies complete controllability. The reverse implications are in general
false. (See [6] for a class of systems where all three notions coincide.)

In the remainder of this paper, we shall assume to be the class of all
F-valued functions defined for => 0 and continuously strongly differentiable
there. (The results do not change if we consider, for instance, the functional
classes used in [7], and change conveniently the meaning of "solution".)
For the sake of simplicity we shall assume E to be reflexive. Then the ad-
joint semigroup T*( is strongly continuous and has A* as an infinitesimal
generator. If E is not reflexive our results still hold" we only have to re-
place E*, A*, T*(.) by the Phillips adjoints E, A, T(-). (See [5, XIV]
for details on these adjoints.)
Our first result is a slight modification of Proposition 1 in [6].
PROPOSITION 2.1. U* K(L)’(Kt(L)’) if and only if B*T*(s)u* O,

o <= s, (O <= s <= t).
Proof. It is easy to deduce from (2.2) by means of elementary computa-

tions that u* K(L) if and only if

fo (B*T*(s)u*,f(s)) ds O,

Or null controllable to emphasize the fact that we start at u 0 for 0.
See [8], where a problem similar to ours is formulated, as well as other control

problems in Banach space.
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for all ->- 0, f . If a(. is any scalar-valued, differentiable function de-
fined for => 0 and u is any element of F, f(. a(. )u 3. Then

fo (B*T*( )u*, u)a(s) ds O.8

Since a(. is arbitrary, (B*T*(s)u*, u) 0 for s _-> 0, which implies the
desired result. The proof is similar for

Recall that, since A is the infinitesimal generator of a strongly continuous
semigroup T(-), a(A), the spectrum of A, is contained in the halfplane
Re ), -< o0, where

oo lim U log T(t)l < o,

[2, Chap. VII, 1.11]. Le o(A (he resolven se of A be he complemen
of r(A and call 0(A he connected componen of p(A ha contains he
halfplane Re X > o0. We now have he following corollary.

COlOLrArtr 2.2. Let u* K( L)’. Then

B*R(X;A*)"u* B*(I A*)-"u* O, X po(A), n O, 1,....

Conversely, assume B*R(X; A*)u Ofor k po(A). Then u* K(L)’.
Proof. Assume u* K(L)’. Then by Proposition 2.1, B*T*(s)u* O,

s _>- 0. By the formula

(2.3) R(); A*)’u* 1 fo t-%-XT*(t)u* dt,
(n 1)!

Re > 0, n= 1,2,...

[2, Chp. VII, 1.12], B*R(,; A*)’u* 0 for Re > oo, nd thus, by
analytic continuation for k E po(A). The cse n 0 follows from
R(k; A*)0u* * *(u T 0)u*. Conversely, assume B*R(k; A*)u* 0 for
Re ), > o0. Applying B* to both sides of (2.3) and applying the functionals
thus obtained to any element u E, we obtain

e-Xt(B*T*(t)u*, u) dt O,

for Re k > 0. By uniqueness of Laplace transforms, (B*T*(t)u*, u) 0
for _-> 0; since u is arbitrary, B*T*(t)u* O, >= O. By Proposition 2.1,
u K(L) which ends the proof.
The following result, which will not be used in the sequel, shows that as

far as complete controllability is concerned, we only need to consider the
case where A is bounded.
PROPOSITION 2.3. Let o po(A and let Lx0 be the linear control system

u’(t) R(ko A)u(t) - Bf(t).
Then C1 K(L) C1 K(Lx0).
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Proof. Clearly we only have to prove that K(L) K(Lxo) in E*. As-
sume u K(L) Then, by Corollary 2.2,

B*R(M A*)nu* B*R(,o A)*’u* O, n O, 1, 2, -...

This and the series representation for the exponential function imply

B*exp (sR(),o ;A)*)u* 0, -oo < s < oo,

thus u* K(Lx0)’. Conversely, assume B*exp (sR(ho A*))u* 0. Dif-
ferentiating this last expression repeatedly and setting s 0 we see that

B*R( ), A *)’u* O, n O, 1, ....
Now if I ),01 < R(0 ;A*)1-1, then ) p(A), a fortiori k po(A),
nd

R(},; A*) (M ),) nR(M A*)n+l,
n0

A*[2, Chap. VII, 3], which shows that B*R(h; )u 0 for k near M and
thus, by analytic continuation for all h p0(A ). An application of Corollary
2.2 then proves our assertion.
Remarl. If we replace p0(A by p(A ), then the conclusion of Proposition

2.3 (and thus also that of Corollary 2.2) may become false. For instance,
let E be the space ft(0, 27r), the interval (0, 2r) endowed with ordinary
Lebesgue measure, and let A be the (unitary) operator Au(x) e-iXu(x).
It is easy to see that

ll 1},

{xi Ixi >
A *u(x) ei*u(x),

R(),; A*)u(x) (. e’X)-lu(x).
Let now B be any bounded operator with range in E such that the nullspace
H of B* is given by

{H u L21u, a,ein

If u H2, then R(),; A*)u H for IX[ > 1. But if R(},; A*)u H for

Remark. The conclusion of Proposition 2.3 cannot be improved, in general,
to K(L) K(Lx0).

3. Complete controllability and spectral sets. Recall [2, Chap. VIII,
3.7] that a spectral set in z(A is any subset z0 of a(A which is both open
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and closed in z(A). Let zo be a bounded spectral set in z(A and consider
the (bounded) operator

(3.1) Po R(x; A) dx,

where C consists of a finite number of smooth curves, boundary of an open
set V such that zo

_
V, and V l (a(A) ao) 2. Then, Po is a projector

[2, Chap. VII, 9], i.e.,

(3.2) PoPo Po

(We shall sometimes write P0 P(zo; A) to indicate explicitly the de-
pendence of P on A and z0 .) The equality (3.2) implies that the subspace

Eo PoE u E lPou u}

is closed. It is easy to see that

Eo

_
D(A), m 1, 2,

and that A’Eo Eo moreover the restriction of A to Eo is a bounded
operator. Let us call A0 the restriction of A to Eo. We have a(A0) ao
[2, Chap. VII, 3.2]; in particular, if ), p(A), R(k; Ao) is the restriction of
R(k; A) to E0. As for T(t), the semigroup generated by A, we have

T( t)Uo exp (tAo)uo, uo Eo
Let us observe next that, as a(A a(A *), ao is also a spectral set in a(A*)
and all the preceding considerations apply. We have

P(ao ;A*) P(ao ;A)*.
The space Eo*, dual of Eo, is isometrically isomorphic to the quotient

space E*/Eo’; let us write u* -t- Eo" for the equivalence classes in this space.
If Uo Eo,

(Po*u* u*, uo) (u* u*, uo) 0,

then

* *U*u Eo Po -{- Eo’.
If v*, w* Po*E*, v* w* Eo", then

* Pou) 0(* * u) (v*

for all u E; and thus v* w*. Consequently, each equivalence class in
E*/Eo" contains a unique element of Po*E*, which allows us to identify,
at least algebraically, the dual space Eo* with Po*E*. Although we shall
make no use of this fact, let us observe that this identification is also topo-
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logic; in fact, the norm in E*/Eo" is equivalent to the norm that Po*E* in-
herits from E*.

Finally, let us state two identities concerning adjoints. We have
A0* A*lE0* (restriction ofA* to Eo*) Po*E*. If M is any bounded
operator with range in E, (PoM) * M* Eo* (restriction ofM* to E0*).
Our first result is the following proposition.
PROPOSITION 3.1. Let u* E* and let ao be a bounded spectral set in a(A

such that the set of curves C used to define Po in (3.1) can be chosen entirely
contained in po(A ). Assume u* K(L) ’. Then Po*u* K(Lo)’, where Lo is
the control system (in E0),

u’(t) Aou(t) + PoB:(t).

Proof. We shall use the characterization of elements of K(L) , K(Lo)
given by Corollary 2.2. Let lie in the halfplane Re t > 0 and outside the
contours C. Then, by the first resolvent equation and Cauchy’s theorem,

B*R(; A*)Po*u* B*R(; A*) A*

1 f B*R(h; A*)u*
dh.

As B’R(},; A*)u* 0 for C po(A),

B’R(#; A*)Po*u* B*R(#; Ao*)Po*u* O.

By analytic continuation, B*R(t; Ao*)Po*u* 0 for all t po(Ao).
COROLLARY 3.2. Let {an} be a family of bounded, pairwise disjoint spectral

sets in a(A )..Let P, be the projector associated with a,, defined by (3.1).
It is assumed that for each , the set C of curves used in (3.1) to define P, is
entirely contained in po(A ). Let E, PnE and A, be the restriction of A to
E,. Assume that the smallest closed subspace of E containing all the E
coincides with E. Then the linear control system L,

’(u t) Au(t) + Bf(t),

is completely controllable if and only if each of the linear control systems,

’(U t) Anu(t) -- PnBf(t),

is completely controllable.
Proof. The easily verifiable relation K(Ln) PK(L) shows that if

K(L) is dense in E then K(Ln) is dense in E. Conversely, assume that
each Ln is completely controllable and let, u* K(L). Then, by Proposi-
tion 3.1, P.,,*u* K(L) for all n. Since each L is completely controllable,
P,*u* 0. But this means that (u*, u) 0 for all u in the subspace gener-
ated by all the E, and thus u* O.
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Remarlc. If for some spectral set there does not exist a finite set C of
smooth curves which is contained in p0(A and which is the boundary of an
open set V such that an V and V (z(A) a) , then the con-
clusion of Corollary 3.2, and thus that of Proposition 3.1, may fail to hold.
In fact, let

E L2(0, 2r) @ L2(0, 2r) {[u(x), v(x)],...}

(orthogonal sum), let 0 <: r < 1, and let A be the (normal) operator

A[u(x), v(x)] [e-iu(x), re-i%(x)].
Plainly(A) C0 U Cl,whereC0 {)’1 i),l r} andC1 {] [[= 1};
both Co and C1 are spectral sets in a(A ), but for neither does there exist the
finite set of smooth curves entirely contained in p0(A to be used to defiue
the projections. The projections are Po[u, v] [u, 0] and P[u, v] [0, v].
Let N {[u, v] E such that u _,- aneinx and v - r’ane’}, and
let B be any operator with range in E such that the nullspace of B* is N.
Since the nullspace of (PB) * is N l E {0}, i 1, 2, it is easy to deduce
from Proposition 2.1 that both control systems u’(t) Au(t) -t- PBf(t)
are completely controllable. However, the control system u’(t) Au(t)
-t- Bf(t) is not completely controllable. For if we let [u, v] N, [u, v] 0,
we have

A*’[u, v] [e’u(x), r’ei’Xv(x)],

e’:"txu( x E an--menx,

r a,-me

then A*[u, v] N for all m >->- 0. But then exp (sA *)[u, v] N for all s,
which shows, in view of Proposition 2.1, that u Au Bf is not com-
pletely controllable.
Let us now consider the important particular case of Corollary 3.2 in

which each a reduces to a point and the corresponding subspaces E, are
finite-dimensional. Choose a basis in E* such that the matrix of A* has
Jordan canonical form, i.e., a basis

1,1 Ul,n(1) U2,1 U20n(2) Up,1 Up,n(p)

such that

A * * * 1’lk,l nUk,1

* * * 2 <j < n(k), 1 < k < p.An Uk,i nZt,i -}- koj--1

Assume thatB* * B* * B* *u,, u,, u, are linearly independent in F*.
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Now let u* Z: () *
=1 a.u, be any nonzero element of E* such that

B*T*(s)u* O, s >-_ O. By Corollary 2.2, B*R(k; A,.*)u* 0 for
p0(A) p(A); thus B*f(An*)U* 0 for any function f defined and

analytic in a neighborhood of .
If no max In(l), n(p) }, (),I A*)n 0, then there exists a

number m, 1 _-< m -_< no- 1, such that (I- A,*)’u* O,
(nI An*)’+lu* 0. Let us now taker(k) ( h). Plainly we have

(X.I A,*)f(A*)u* O,

thus
p p

f(A,,*)u* bkuk$.l, B*f(A,*)u* bB*u.l.
==1 k:=l

BUsing the assumption that the ui,1, i 1, p, are linearly inde-
pendent in F*, we get b b b 0, then (k,I A,*)’u* O,
which is impossible. Conversely, assume that the vectors B u,,
i 1, p, are not linearly independent in F*, and let b, b, b be
complex numbers, not all zero and such that = * *bB u.i 0. Then it is
easy to see that B’T*(s)u* 0, where u* bu*.. O. Consequently
we have the following corollary.
COIOLLAnY 3.3. Let ., be a sequence of isolated points in r(A

such that the spectral sets {1}, 2}, satisfy the assumptions in Corol-
lary 3.2. Assume moreover that E, PnE is finite-dimensional for all n. Then
the linear control system

u’(t) Au(t) + Bf(t)

is completely controllable if and only if B* is one-to-one in all the subspaces
D,* E* of eigenvectors of A* corresponding to each eigenvalue ,

Let us say, as in [6], that A is m-controllable if there exists an m-dimen-
sional space F and a bounded operator B:F -- E such. that u’(t) An(t)
+ Bf(t) is completely controllable. It follows from Corollary 3.3 that A can-
not be m-controllable unless sup dim D* =< m, i.e., unless the multiplicity
of each eigenwlue of A * (of A does not exceed m. On the other hand, it is
esy to see that if sup dim Dn* <= m then A is m-controllable.

Let us now apply our results to a concrete example. Let

r a(x)O

be a real, negative elliptic formal partial differential operator of order 2p
defined in a bounded domain I of Euclidean n-space E. (For notations and
definitions see [3, Chap. XIV, especially 2 and 6.1].) Assume I is smoothly
bounded and let V be the operator in E L(I) obtained from r by impo-
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sition of the boundary conditions u Ou 0p-1 0 at the
boundary of I, 0 is the normal derivative. Then, by [3, Chap. XIV, 3.1],
V is the infinitesimal generator of a strongly continuous semigroup. The
spectrum z(V) of V consists of a countable set of points with no finite ac-
cumulation point [3, Chap. XIV, 6.23]; if X p(V), then R(X; V) is a
compact operator, which shows that the subspaces En P,E correspond-
ing to each eigenwlue are finite-dimensional. The fact that the E span the
entire space E follows from the Browder completeness theorem [3, Chap.
XIV, 6.23]. Consequently all the assumptions required in Corollary 3.3
are satisfied, furnishing us with a criterion for complete controllability
of the parabolic equation u’(t) Vu(t) + Bf(t). If n 1, it follows from
the theory of ordinary differential equations that V cannot have more than
p linearly independent eigenfunctions corresponding to a given eigenvalue.
Then V is p-controllable. This is in general false if n > 1.(See the cor-
responding example in [6].)
Let us observe that in most applications the spaces E, F are real Banach

spaces. In this case we embed E, F into complex Banach spaces in the
customary manner (in symbols, E E (3 iE, F F @ iF) and extend
A, B to the .new spaces

A(u + iv) Au + lAy,

B(u q-iv) Bu -k ibm.

If L is the control system obtained in this way from L, K(L) K(L)
@ iK(L), K(L) K(L) @ iKt(L), thus L is completely controllable if
and only if L is, allowing us to apply our result also to the real case.
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ADDENDUM: ON EXPONENTIAL STABILITY OF LINEAR
DIFFERENTIAL SYSTEMS*

NAM P. BHATIA

The proof of Lemma 2.1 in [1] is incorrect. In fact, the lemma is false
except in the trivial case n 1, as may easily be seen. This was pointed
out to us by Dr. K. M. Das, to whom the author wishes to express his
sincere thanks.
The purpose of this note is to provide correct proofs of Theorems 2.3,

2.4, and 2.5, which in [1] were made to depend on Lemma 2.1. As Theorem
2.5 is a restatement of Theorems 2.3 and 2.4, only the latter will be proved.
The same notation, definitions, and numbering as in [1] are used here.
LEMMA A. If X( t) is a fundamental matrix solution of (1.1) and if there

are functions a(r, t), fl(r, t) such that

a(r, t)x’x <= x’Y’(r, t)Y(r, t)x <-_ (r, t)xx,

where Y(r, t) X(r)X-l(t), and if a(r, t) and a(r, t) are the smallest and
largest eigenvalues of the matrix Y’Y for any r, t, then

(, t) _<_ x(, t) _< a(, t) _< (, t).

The truth of this lemma may be ascertained from the fact that for any
symmetric matrix B, if ), and A are the least and greatest characteristic
roots of B, then

infX’Bx md A supX’Bx
(See, for example, [3, p. 110].)
Proof of Theorem 2.3. Exponential decay of solutions of (1.1) means

that

x’x a exp [-(r t)] =< x’Y’(r, t)Y(r, t)x <= x’x a exp [-b(r t)]

holds for some positive constants a, b, a,/, and r => => 0. From Lemma A
we conclude that

a exp [-fl(r t)] -< X(r, t) =< A(r, t) =< a exp [--b(r t)].

)[det Y(r, t)]- exp 2 Tr A(s)ds det[Y’(r, t)Y(r, t)]

product of all characteristic roots of Y’Y.
* This Journal, 2(1964), pp. 181-191. Received by the editors My 20, 1966.
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Hence, as all characteristic roots of Y’(r, t)Y(r, t) are positive, we have

t)] < exp 2a exp [--n(- Tr A(s) ds) <= a exp nb - t) ],

which on integration yields

)--< exp 2 TrA(s) ds dr < a
nb’

which is (2.6) in [1], and the theorem is proved.
LEMMA B. If the solution x 0 of (1.1) is exponentially stable and X( t)

denotes any fundamental matrix solution of (1.1), then there is a positive
constant a such that

(*) 0 < x’Z’Zx <= ax x, x O, - >= >= O,

where Z =- Z(-, t) adj Y, Y Y(r, t) X(r)X-(t). Consequently,

(**) 1 x’Z’-Z-XX < X.
a

Proof. The matrix Y is nonsingular and therefore Z is nonsingular.
Hence for fixed r and t, y Zx 0 if and only if x 0. Thus
y’y x’Z’Zx > 0 if x 0. Now exponential stability implies that the co-
efficients of Y(r, t) are uniformly bounded in >= => 0. Since the coefS-
cients of Z(v, t) are sums of products of coefficients of Y(v, t), they are also
uniformly bounded. The characteristic roots of Z’Z are thus uniformly
bounded implying the existence of a positive constant a such that (*)
holds; see, for example, [3, p. 110].

Lastly, replacing x by Z-x in (*), we get (**). This proves the lemma.
Proof of Theorem 2.4 in [1]. Exponential stability of the solution x 0

of (1.1) in [1] means that there are positive constants a and such that

x(-)x-(t)z 11 x xp [-( t)], -_>_ t_>_ O.

Hence the quadratic form

satisfies

V <= -xx.
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Again

V x’ YYdr x x’

.>_ _1 x’ Y’Z’ZY dr x
a

=-x (det Y)’dr x
a

x’x exp 2 TrA(s) ds dr.

Y’Z’ Z’ )-Iz-1zY dT1

Thus, if (2.7) in [1] holds, V will stisfy property P. Since V(1.1)* --x!x,
i.e., -V’.) has property P, we conclude by Theorem 2.1 in [1] that the
solution of (1.1) decays exponentially. This completes the proof.
Remark. Theorem 2.4 is an improvement on the well-known Theorem

1.1 of Mlkin. For, notice that (2.7) is stisfied whenever the elements of
the mtrix A (t) re uniformly bounded. Our proof bove is really sire-
plification of the proof given by Malkin snd reproduced by Antosiewicz and
Davis [2].
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BOUNDED-INPUT BOUNDED-OUTPUT STABILITY OF NONLINEAR
TIME-VARYING DIFFERENTIAL SYSTEMS*

P. P. VARAIYA’f AND l. LIU:]:

The problem of boundedness of solutions of the differential equation

(1) 5c f(x, t)

has been studied by Yoshizawa [1]. He obtains necessary and sufficient
conditions for various kinds of stability of (1) using the techniques of the
Lyapunov direct method. We have extended the definitions and the meth-
ods of Yoshizawa to the study of the bounded-input bounded-output sta-
bility of the differential system

() f(x, u, t).

Here x R is the state of (S), u R is the input or control and I
[0, is the time. f:R R X I R is the instantaneous velocity

function which satisfies the following conditions" For fixed I, f is con-
tinuous in the pair (x, u), whereas for fixed (x, u) it is measurable in t.
Moreover, for bounded sets X R and U R there exist measurable
functions L(t) and M(t) (dependent on X, U) which are summable over
every finite interval and such that

(2) if(x, u, t) <= M(t)

and

X(3) If(x, u, t) f(x’, u, t) < L(t)l x I,
for every x, x’ in X and u in U. In general, x and u denote theEuclidean
norm of x and u, respectively. Also, if x(t) and u(t) are measurable func-
tions of time, then

x sup x(t) and u sup]u(t) [,

where the supremum is taken in each case over those values of for which

* Received by the editors February 8, 1966, and in final revised form June 22, 1966.
The research reported herein was supported in part by the National Aeronautics

and Space Administration under Grant NsG-354 (S-2) and by the Joint Services
Electronics Program (Air Force Office of Scientific Research, Army Research Office),
Office of Naval Research, under Grant AF-AFOSg-139-65.

Department of Electrical Engineering, College of Engineering, University of
California, Berkeley, California.

$ On leave of absence from the Department of Electrical Engineering, University
of Notre Dame, Notre Dame, Indiana.
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the function is defined. The solutions of (S) are to be interpreted in the
sense of Carathodory [2], [3]. Thus let u(t), I, be any bounded measur-
able function and let (x0, to) be any initial condition. Then a function

(4) x(r) x,(r; xo, to)

is solution of (S) if it is absolutely continuous in r, satisfies the initial
condition

(t0) t0) x0,

nd satisfies (S) almost everywhere in the domain of definition of (4).
Because of the conditions (2), (3) imposed on f, x(r) is defined on
nonvnishing interval containing t0 and furthermore it is unique [2], [3].
For each r 0 we define the set

(5) A,= {x’x Rn,]x a r}.

Following Yoshizaw [1] we shall need to consider Lyapunov functions
V(t, x) defined continuously on I X A for some r and such that
V C0(x). That is to say, for each a 0, there is a continuous function
L(t) L,(t) such that

(6) Iv(t, x) v(t, x’) L(t)[ x

for every x, x’ with norm less thn a. We lso say that V t, x) is absolutely
continuous in uniformly at a point (x0, t0) if there is a positive m;mber p

(dependg on x0, t0) such that for each e > 0 there is a number
(e) > 0 such that for every m,

v(t , x )l <

whenever

[t’-- t[ < , t0-- p h’ t t’ t r0+ p,

nd

[x- x0 < forechk.

We will lwys suppose that the Lypunov functions hve this property,
so that if x(t) is n bsolutely continuous function, V(t, x(t)) is lso b-
solutely continuous in neighborhood of t. Then corresponding to ech
bounded, mesumble function u(t), I, we cn define

V’(t, x) lira sup
o+

V(t + h, x + hf(x, u(t), t)) V(t, x)}.
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DEFINITION 1. The system (S) is bounded-input bounded-output stable
(BIBO) if for every a _-> 0, for every a _-> 0 there is a number fl fl(a, a)
such that

(7) Ix(r;x0,t0) --< $ forall r-> to,

for every initial condition (x0, to) with Ix01 =< a and every measurable
function u(t), I, with u -< a.

Remarks. Since (7) depends on the solution (4) to the system (S),
it is useful for a large class of dynamical systems. Of course the nature of
the results is such as to be prticularly useful for differential systems.

Various weaker notions of boundedness cn also be introduced. In some
cses nlogous results can be obtained. The reader is referred to Yoshizwa
[1] for a thorough discussion of the bchuvior of (1).
DEFINITION 2. We say that the Lypunov function V(t, x) hs property

A if there is a positive continuously increasing function a(r) such that
V(t, x) <= a([x]). It has property B if there is nonnegative continuously
increasing function b(r) with b(r) - as r
-<_ V(t, x).
A trivial refinement of the proof of Theorem 3 of Yoshizw [1] yields

Theorem 1.
THEOnEM 1. Suppose for each a >-- 0 there is a positive Lyapunov function

V( t, x) V( t, x), defined in A Ar(a), and possessing properties A and B.
Then, if
(s) w (t, ,) =<_ o

br (t, x) in A and br each measurable function u(t),

_
I, with u <= a,

the system (S) is BIBO stable.
The following lemma will be very useful to prove the converse of

Theorem 1.
LEM 1. Let (Xo, to) and (x t) be two initial conditions with to t

let u(t) be an arbitrary measurable function on I with u <= a. Suppose
that the two solutions

x Xo to) and xu

can be defined to the left over the interval t* <= <= to, t* <-_ <= tl (We assume
that 0 <= t*.) Also suppose that lx(t; Xo, to) and ]xu(t; x, t) are less
than a over these intervals. Then

Xu(t*; xo, to) Xu(t*; Xl tl)

<-- lx-- Xol + M(r) dT exp L(-)dt

where the functions L an, M are the same as those in (2) and (3).
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The proof of this lemma is very similar to the proof of the (generalized)
Gronwall’s lemma given in [2].
THEOREM 2. If (S) i8 BIBO stable, for each a >= 0 there is a Lyapunov

function V(t, x) Va(t, x) defined on A At(a) such that V has properties
A and B and V’ t, x <= O.

Proof. Fix a _>- 0. Since (S) is BIBO stable, for ech u with u =< a,
for each (Xo, to) with Ix0 a,

(10) x(r; Xo, to) -< (a) fl(a, a),

for all r => to. We can assume that fl is a continuous strictly monotonically
increasing function ad (a) -- as a -- . Hence the inverse function
a a() is defined for a _-> (0) and has the same properties as

Let r(a) (0). Let A /(a) Then, for each (xo, to) iu A X I and
each u with u --<: a, define

(11) K(to,xo) min/ix(r;Xo,to) i’0--< v_-< to},

where the region of is that for which the solution x(r; Xo, to) exists.
The required Lyapunov function is

(12) V(to, Xo) Va(to, Xo) inf {K(to, Xo)"

Clearly 0 _-< K(to, Xo) =< [xo[ so that

(13) V(to, xo) -<_

Hence V has the property A. We also claim that

(14) 0 , a(I xo I) <= V(to, Xo).

If this is ot the case, then there is a u, u -< a, such that for some Xo

K (to, Xo) <
Hence for some r, 0 __< r =< to, we must have

xo, to)

Therefore

(1 x(; x0, to) I) <
But (I xu(r; Xo, to) I) --> Xo I, which is a contradiction. Hence (14) is true,
so that V has property B. It remains to be shown that V has the required
smoothness properties.

Let (Xo, to) be ny element of A X I. Then, using the lemma, the same
arguments as in. the proof of Theorem 4 of Yoshizawa [1] yield

X XIKu(t,x) Ku(t’, )1 < A Ix- I- M(r) dt
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for every u, u -<- a, and every (x, t), (x’, t’) in some 8-neighborhood
N of (x0, to). Therefore by definition (12) of Va we have

X X(22) Y(t, x) Va(tt, )1 < A Ix + M(r) dt

in a ti-neighborhood N of (t0, Xo). Trivially from above V Co(x). Also
for every m, and

h’ _-< t -< -< t.’ __< t.,

and every x, x:, x, with (x, t) nd (x, t’) in N, we hve from
(22),

fttkYa(tk’, xk) Va(t, x) A M(- )dt.
k=l k=l

Since M(r) is a iategrable function, its indefinite integral is absolutely
continuous. Hence V(t, x) is absolutely continuous in uniformly at each
point. V therefore has the required smoothness properties. Also by defi-
nition (11) of K(t, x) we see that K(r; x(r; x, t) is nonincreasing in r.

Hence Va(t, x) is nonincreasing along every solution of (S) for each u
with u =< a. Therefore Va’(t, x) <= O. The theorem is proved.
A simple application. We dose this paper by a simple application of

Theorem 1. Let the differential system [4], [5] be given by

(15)
Ax + bf(),

d%- rf() + u,

where A is an n X n matrix with all its eigenvalues having negative real
parts, b, d and x are n-vectors whereas and u are scalars, f is a locally
integrable function of such that

Consider the function

V(x, ) ’ ’xQx-t- f( do"

where Q > 0. Clearly V(x, a) is positive for Ix A- a suiciently large,
and V enjoys properties A and B. Then, if y (x, f(a) ), we have

? --yrFy + f(a)u,

where F is an (n-F 1) (n-F 1)matrix with

where-G AQ + QA, -g Qb + 1/2d.
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The following result is a straightforward application of Theorem 1.
THEOREM 3. If F > O, then the system (15) is BIBO stable.
The previous example serves to illustrate the situation where, if the zero-

input system

(16) x f(x, O, t)

is uniformly asymptotically stable in the whole (u.a.s.w.), then the system
(S) is BIBO stable. In the remainder of this paper we exhibit a class of
systems which have this property.

First of all, we only consider systems (S) for which f is continuous in
(x, u, t) and for which there exists a constant/c such that

(17) If(x, u, t) f(x, O, t) lc u [,
for all u Rm. It is well known [6, p. 71] that if (16) is u.s.a.w., then there
exists a Lyapunov function V(t, x) possessing properties A and B and
such that 17 is negative definite. Next we show that if V satisfies an addi-
tional condition, then (S) is BIBO stable.
THEOREM 4. For the zero-input system (16), if there exists a Lyapunov

function V(x, t) possessing properties A and B, if is negative definite,
and in addition, if for every number b >=_ O, there exists a number M M(b)
such that

(18)

whenever Ix[ >= M, then (S) is BIBO stable.
Remark. Theorem 4 imposes conditions only on the zero-input system

(16) and not on (S) (except for the condition (17)).
Proof. Let 17, (VY, f(x, u, t)} + Yt and ? & (AV, f(x, O, t)} + Vt.

Then for every function u, u -< a, by (17) and (18), we see that

? (VV, f(x, u, t) f(x, O, t)} -t- l? _-< ta[VV + ? <= O,

for all x, xl >-_ M(ka). Hence, by Theorem 1, (S) is BIBO stable.
COROLLARY 1. Suppose that (S) satisfies (17) and that the zero-input

system is either homogeneous of rational order r > 0 [6, p. 90] or has intensive
behavior [6, p. 85]. Then, if the zero-input system is u.a.s.w., the system S)
is BIBO stable.

Proof. If (S) satisfies the hypothesis of the corollary, then the theorems
of Zubov [6, p. 91] and of Krasovskii [6, p. 86] assert the existence of a
Lyapunov function which satisfies the hypothesis of Theorem 4.
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A FIXED-POINT METHOD FOR A MINIMUM-NORM
CONTROL PROBLEM*

J. E. tUBIO
Abstract. A method for obtaining the control which minimizes the terminal value

of the norm of the state vector of a linear, time-varying system is presented. It is
shown that the control that minimizes the linear functional given by the inner product
(, x(t.)), with a fixed point of an operator L0 and x(t]) the terminal state vector,
also minimizes the norm of x(tl). The operator L0 maps vectors c of unity norm into
vectors x(t])/llx(t])ll, with x(t]) obtained by applying the control that minimizes
(c, t)).

This linear minimization problem is studied in detail, and existence conditions
for the optimum control are established. An iterative technique is given for the com-
putation of fixed points of L0 it is shown that the procedure converges. The method
is characterized by its comparatively modest computational requirements.

1. Introduction. The problem to be treated in this paper is the minimiza-
tion of the terminal value of the norm of the state vector of a linear, time-
varying system with control inputs bounded in magnitude. Let the sys-
tem be described by the following vector differential equation:

(1) A(t)x + B(t)u.

Here x is an n-dimensional state vector, u is an r-dimensional control
vector, A (t) is a real n X n matrix and B(t) is a real n X r matrix. The
control u is to belong to the class U of piecewise continuous controls with
components bounded in magnitude by u -< 1, lc 1, r. The system
of equations (1) is to satisfy the initial conditio x(t0) x0 0, and the
problem is to find a control vector u* U such that x(t, u)I], the state
vector norm at terminul time t when the control u hs been applied, is a
minimum; t is a givea number greter tha to. The usual Euclidean norm
will be used throughout; that is, x (x, x) = x,.

This problem has interest for two resons. Firstly, if x(t], u*)1] a,
it follows that x(t ,u*)l =< a, i 1, n; that is, all components of the
state vector at the terminal time re bounded in magnitude by the mini-
mum possible bound. The minimization of the terminal vlue of the norm
of the state vector is then way to keep rather efficient control over ll of
its components by using a sclr performance criterion. Besides, as pointed
out by Ho [1], the time-optimal problem can be solved by repeatedly
minimizing x(t, u)I] for different values of the terminal time t.
The application of the traditional optimization techniques to this prob-

* Received by the editors February 1, 1966.
Department of Electrical and Electronic Engineering, University of Leeds,

Leeds, England.
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lem does not seem conducive to much success. For instance, if Pontryagin’s
optimization procedure [2] is tried, the following differential equations are
readily obtained; here the p. are a set of auxiliary variables.

(2) (p 2xi)ai pj(t/) O, j 1, n,
i=1

* /= 1, r.u sgn bi(p,- 2xi), ...,
i=l

However, this system is not simple to study from a theoretical standpoint.
(That is, existence and uniqueness properties of the solutions seem quite
difficult to establish.) Nor is it simple to treat as a practical one: estimation
of these solutions by means of a computer appears as a cumbersome task,
involving a search ia n-dimensional space for the initial values p(to) that
will make the solutions satisfy the terminal boundary conditions.

It is not surprising, then, that several authors have developed other
methods to cope with this problem; the most significant contribution is by
Ho [1]; he presents an iterative procedure that he applies to time-invariant
systems. Recently, Fancher [3] has extended this procedure to normal [4],
time-varying systems, and has improved the computational aspects.
The procedure to be presented below is iterative in nature. It will be

proved that the optimal control u* that minimizes x(tf, u)I1 can be ob-
tained by means of a process tbat involves the successive minimizations of
linear functionals of the type S =1 cix(tf, u). This is quite fortunate,
because each of these problems can be studied quite thoroughly from a theo-
retical standpoint. Pontryagin’s equations are known to have a unique
solution under some conditions on the matrices A(t) and B(t); these
equations can also be handled numerically in quite a simple way, no search
being needed for the estimation of the solutions.

2. The fundamental theorem. For the system described by (1), with
u U, consider the problem of determining the optimum control uc* that
minimizes the following functional"

Zo(u) cx(t u) (c, x(t u)).
i=l

It will be assumed in what follows that c 2; ft is the set
ft {x III x 1}; c is the vector with components c, i 1,.-. ,n.

This problem has a unique solution under several restrictions on A(t)
and B(t); this solution will be studied in the next section. For the moment,
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it is sufficient to admit the existence of an optimal control uc* for any c
by means of which a global minimum is attained as indicated by (3) below.

Consider then the transformation L0 (the reson for the use of the sub-
script "0" will be apparent lter) that mps the vector c into the vector
x(t], u*)/ x(t], u*). Clearly, L0 maps l] into itself and is vell-defined
unless x(t, u*) equals zero. The following theorem is of great im-
portance.
THEOREM 1. If , a fixed point of the operator Lo, exists, and

minev x(tf u) is not zero, then the control u* that minimizes Sz also
minimizes x( t/ u

Proof. Since uz* minimizes

(3) S(u*) S(u) for all u U.

If is fixed point of Lo, aad x(t, uz*) is not zero (which certainly will
be the case, since minev x(t, u)]] is not zero), then 5 x(t, u*)/
x(t, u*)[I; thus

(4) x(t,

Using now (3), (4) and Schwarz’s inequality,

=llx(t,, )ll forth u<V.

Then, uz* minimizes x(t,, u).
COROauv. U a and b are fixed points of Lo, then x(t,, Ua*)]]

Proof. By applying (5) with a, it is concluded that

By applying (5) with 5 b, the reverse inequality follows. The corollary is
then proved.
Of course, the conclusions of this corollary can be extended to an arbi-

trary number of fixed points; this means that all the controls u;*, with 5 any
fixed point of i0, are equally effective in minimizing x(t,, u)]]. Then,
questions concerning uniqueness of fixed points of L0 are uninteresting for
the present purpose.
An iterative method will be presented below to obtain these fixed points

and at the same time construct approximations to the optimal control u
that minimizes x(t,, u) [. As a matter of fact, it will be proved that the
sequence c, Loc, Lo=c, ..., Loc, ..., with c but otherwise arbitrary,
converges to fixed point of L0, that is, to a solution 5 of the equation
Loy y. Approximations to u* are also obtained by this process, since the
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application of L0 to Lo%, say, involves the calculation of the optimal con-
trol uc*, with c’ =Loc.’
When minuev x(t], u) 0, the conclusions of Theorem 1 cannot be

applied; this case is considered in Appendix A.

3. The linear minimization problem. The problem of minimizing Sc will be
considered in detail now; expressions will be derived for the optimal con-
trol uc*, and existence conditions studied.
To minimize S, according to Pontryagin’s method [2], a Hamiltonian H

is to be constructed first:

H
i=l k=l i=l

The differentiM equations for p do not depend upon u, and therefore
can now be written:

(6) i5" aii(t)p pi(ts) --cj j 1, n.
i=l

This is of course the adjoint system to system 1 ). If the transition matrix
of (6) is I,(t, r), then the solution of (6) is

(7) p(c, t) -(t, t)c.
No search is necessary to compute the vector p, ud only the matrix

I,(t, ts) needs to be evaluated.
The control vector uc* that minimizes S, maximizes H. Define fl(c, t)= b(t)pi, 1, r. It is clear that if (c, [to, t] is

positive (negative) then * t’u( must take the value one (minus one) If
(c, ) is zero, then H does not depend on u, and the problem is one of
singular control [5].

Call E the set of points [to, t]] such that (c, t) 0,/ 1, r.
If the Lebesgue measure m(E) is zero, the vlue which is assigned to u
at E is of no importance. Conditions will be then assumed on A(t)
,nd B(t) such that m(E) 0,/ 1, r. A set of such conditions has
been derived by Poutryagin and his co-workers [2, Chap. III, Theorem 15]
in connection with the time-optimal problem"
(i) The functions aj(t) and b(t) are defined on an open interval (a, b)
that contains [to, tf]. They have over this interval respectively (n 2)
and (n 1) continuous derivatives.
(ii) The general position condition is satisfied [2, pp. 182-183].
These conditions will be assumed to be satisfied in what follows; then,

the values of u can be defined rbitrarily for E, and will be made
equal to zero. Then,

(8) u(t) sgn(c,t), / 1, ...,r,

with sgn), 0 if , 0.
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Due to the linearity of (1), Pontryagin’s maximum principle is known
to be a sufficient condition for optimality [5]; then, the control u* defined by
(8) satisfies (3).
Once u* is computed by means of (8), x(ts, uc*) can be obtained from

the well-known expression [6]:

(9) x(ts u*) (t] to)xo 5- ((t] ,)B(r)uc*(r) dr.

Here (t, r) is the transition matrix of the system 2 Ax. It is well-
known [6] that this matrix is related to (t, r) by the expression

(10) *(t, r) (r, t),
where I,*(t, r) is the adjoint matrix of I,(t,
The application of the operator L0 to a vector c can be summarized

by the following steps:
(i) The vector p (c, t) is computed by means of (7).
(ii) The optimal control uc* is obtained from (8).

(iii) The terminal state vector x(t, u*) is computed by means of (9).
(iv) The vector x(t], u*)/ll x(t, u*) Loc is computed if x(t, u*)
is not zero. Otherwise, L0 is not defined for that particular value of c.

This procedure is comparatively simple; only one of the matrices ,I, nd
needs to be computed because of (10). Several efficient numerical methods

exist for estimating the solutions of systems like (6) this needs to be done
only once during the iterativc procedure that was introduced in 2 for
obtaining the fixed points of L0.

4. The sequence {L’c}. It will be proven, now tiha the sequence
converges to solution of the equation Loy y for any initial vector
c . With this purpose in mind, it will prove convenient to introduce the
operator L,, defined as follows" to apply L to a vector c , the sequence
of operations (i) to (iv) of 3 is carried out without modification with the
exception of step (ii), where instead of using the control u* given by (8),
the following control u is applied"

u: 2G((c, t), z) 1, 1 1, r,

where G(y, ) is the cumulative Gussin distribution

G(y,a) 1 fv e- dz.

It is clear that lim,0 u u*, the optimal control. The operator L0
will be studied by introducing some properties of the operators L,

[0, ). Itwillbe ssumed ginthatmincv]]x(t, u)] d >0;
this implies that till tcrmimfi stte vc(tors resulting from the pplication
of controls u, for ll c ,td ll [0, ), will stisfy the relation

(11) x(t, u,) > 0.
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In Appendix A, a simple procedure to be used when minuev x(ts, u)
0 is presented; it is shown there that, by a simple change in the origin

of the state space, the general minimization method can be applied also in
this case.

It will be proved first that the sequence {L%} converges for large enough
values of a and all c E 2. This will be achieved by showing that L is a
contracting operator [7] for sufficiently large values of . Since L maps ,
a closed set, into itself, it will follow [7] that the sequence {L%}, c ,
converges for sufficiently large values of a.

THEOREM 2. There exists a o > 0 such that L is a contracting operator
for > o.

Proof. For c, c , it is to be proved [7] that

Lc Lc [I c c I1,
where < 1 should be iadependent of c, c.
Assuming 0,

k(Cl,t) e-z z
(1)

1,

Besides,

(c, t) (c, t) bi,(t)(pi(cl, t) pi(c., t))
i=1

(13)
s=

(cj cs) (= Xi(t, ts)b(t)

It= 1,-..,r, [to,t],

where the xq(t, t]) are the entries of the matrix ,I,(t, ts). Since, under the
conditions on A(t), they are bounded over the interval [to, ts], and since
the furmtions b(t) are continuous over this interval, a number M can be
found such that

(14)
-, X( t, t)b( t) < M for [to,t,],

From (13) and (14) and Schwarz’s inequality it can be inferred that

(15) e,(c, t) e,(c, t) c c IIN
with N / M, for [to, t]]. From (12) and (15) it follows that

0"
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If u:l and u:,. are applied to the system described by (1), and the final
values of the state vectors are called xsl and xs. respectively, then

xn x], {P(t r)B(r)(u:(r) u:,.(r)) dr.

Since the matrices (t], r) and B(r) have bounded components,
constant n can be found such that

()
v(t: to) max

[t0,t/]

The maxt0.t, u:,(t) u:=(t) exists because of the cominuity of
and u:=(t) over [t0, t]].
Then, since (15) holds for all [t0,

Without loss of generality, assume that xf= xf l]. Using then (11)
and (22) in Appendix B,

(17)

d

It is clear at last that a (l/a) (N/d) can be made less than unity
by choosing > o (d/N), and that a does not depend upon
c or c=. Theorem 2 is proved.
The fact that the sequence {Lc} is known to converge for a > a0 will be

used now to establish the convergence of this sequence for a [0, a0].
The following lemma will be useful.
LEMMA 1. The vector Lc is a continuous function of for any a [0, m

and any c .
Proof. (i) The continuity of L,c will be established first for a a # 0.

Take a 0; in a similar way as before,

lu u < e(c,,)

for all [*0, f], 1, r, c , # 0, = # 0. The last inequality
ws obtained by using (14) nd Schwra’s inequality in the expression for

5 c, t). Then,

for [o, l,

0, = # 0.
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Using (16) agai, and calling xfl and xf2 the values of the terminal state
vectors for Ol and o2, respectively,

Again, without loss of generality assume that x/1 tt => x II. Then, as
in (17),

Given n e > 0, a (e) < /2(daa/vN)e can be found such that, if
< .L :c < . Note that (e) does not depend on the

vector c.
(iN) Assume now that a 0. It is clear that, for any value of

fl(c, t) 0, u: cn be made as close to +1 (or to -1) as desired by
making a sufficiently smull, which will muke fl/a s lrge (small) as neces-
sary. If fl(c, t) 0, u 0 nd u 0; continuity is lso preserved in
this case.
TgEORE 3. The sequence Lc} converges for a [0, for any c .
Proof. (i) It will be proved first that, if {LYc} converges, {Lc} con-

verges if z ] is sufficiently small.
Since {Lc} converges, given un e > 0, n N(e) cn be found such that,

if p N(e) and q N(e), then Lc Lc < e for all c . Since
Lc is continuous with respect to , Lc nd Lqc are also continuous with
respect to this prameter; given e 0 nd es > 0, numbers 8(e) and
8(e) c be found such that, if z z < 8(e), ic Lc < ,
d if p N(e), q N(e), then

Thus the sequence {Lc} converges for all c 2 for sufficiently small
values of o o2 i, since it is a fundamental sequence and the Euclidean
n-space is complete [7].

(iN) The convergence of the sequence {L’c} will be established now or
o [0, o0] and c . Since it converges for (00, ), according to
part (i) of this proof it will converge for o o0, and for o o less than
o0 and sufficiently near to it. It will also converge for o2 < ol, and near
enough to it, etc.; in this way, the whole interval [0, 00] can be covered,
and Theorem 3 is proved. In particular, the convergence of the sequence
{L[’c} for any c is established.
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At last, it remains to be proved that the limit of the sequence Lo’c} is
a fixed point of the operator L0. A lemma will be proved beforehand.
LEMMA 2. The operator L is continuous at c c for [0, oo ).
Proof. If c and c are in , it has to be established that, given an e > 0,

a () can be found such that if c c < (), then Lc Lc < .
For 0, this follows from (17). For z 0, continuity can be proved in
the following way.

Since Lc is a continuous function of for any c , given e > 0 (e > 0),
a (a )can be found such that if < ( < ), Loc- Lc <
( Loc Lc < e). Since L is continuous at c c for 0, given
e > 0, a can be found such that if c c < , Lc Lc < .
Then

if < rain (x, ) and c tl < Then, L0 is continuous at any
c.
TnEO 4. The limit 6 of the se@ence {L0c}, with c , is a fixed poin

of he operator Lo that is, i satisfies the equality Lo6 6.
Proof. This theorem is a well-known [8] consequence of Lemma 2,

and its proof will be omitted.
The claims made in 2 have then been justified. Due to Theorem 1,

if a control exists that minimizes S;(u), with 6 a fixed point of the operator
L0, it also minimizes z(t, u)II. As was indicated in 3, this control
exists under the @propriate conditions on A(t) and B(t), and Theorem
4 indicates how to compute a fixed point 6 and then the control that mini-
mizes u)II. Existence properties for this control have then been
determined quite simply; the method is also characterized by its compara-
tively modest computational requirements.

Appendix A. A procedure to followwhea minev x(t, u)I[ d 0. If d
is zero, the sequence {Lc} might or might not converge. If it does not, and
since it converges for d 0, this situation can be diagnosed readily. If it
does converge to 6, it is not apparent that ua* is the optimum control, and
an alternative procedure is required. This situation can be diagnosed by
the small values that u)II kes after several iterations; this will
also be the case when d is not zero but very small; but it will also be con-
venient to apply the procedure to follow to avoid dividing very small numbers
by very small numbers when computing x(t], u)/ x(t, u)11 an ad-
vanced stage of the iteration.
The procedure consists of a change in the origin of the state space; put

z z + a with a a constant vector different from zero. Then, if II
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0 and since the optimal control u* does not change under the change in
the origin of the state space, minuez z(t:, u)]1 z(t:, u*)1[ a [[,
which can be made of a reasonable size.
The general procedure can be applied in this case, because (1) becomes

(21) A(t)z + B(t)u + f(t),

where f(t) -A(t)a; the conclusions of 3 remain unchanged, since (6)
and (7) do not vary, and the fact that m(Ek) equals zero, l 1, r,
remains true; for a system like (21) this will be the case if, besides satisfy-
ing conditions (i) and (ii) of 3, the functions f(t), i 1, n, have one
continuous derivative [2], which is true for system (21). The conclusions
of 4 are also valid when system 1 is replaced by system (21), since (16)
is maintained with a different meaning for the constant 7.

Appendix B. A useful inequality. It is clear that, for any two vectors
and xf. such that xl # 0, xf2 # 0,

1

where x/ II/l[ x: [[. Without loss of generality, assume that <= 1.
Then,

That is,

or

xs, ,,,,x:.

(1 ) x:. II" + 2(,,,, 1) (x::, xs)
__> 1 ,,,:)II :,. + 2,,,, 1)ll Xsl xs,.

--1) _>_ 0.

Xfl Xf2(22) : Xf2

1
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NECESSARY CONDITIONS FOR SINGULAR EXTREMALS
INVOLVING MULTIPLE CONTROL VARIABLES*

B. S. GOHf
Abstract. New necessary conditions are obtained from the second variation, via

a transformed accessory minimum problem, for an important class of singular Bolza
problems, which includes most of the singular optimal control problems that have
been studied in recent years. This set of necessary conditions is a generalization of the
classical Clebsch (Legendre) necessary condition. It is in a form easily used. For
problems with multiple control variables, it is required that a certain matrix be
symmetric; and if this symmetry property is satisfied, it then requires another
matrix to be positive semidefinite. The positive semidefiniteness of the diagonal terms
of the latter matrix imposes the same conditions as those obtained by other authors
(Kelley, Kopp and Moyer). Should this generalized Clebsch condition be satisfied
only in a semidefinite manner, then another similar set of necessary conditions can
deduced, and so on.

Three examples are studied. Firstly, we impose new necessary conditions on the
variable thrust arcs of a rocket moving in a resisting medium in a vertical plane of a
flat earth with two degrees of freedom, namely, the lift and thrust programs. Secondly,
the doubly singular arcs of a problem in interplanetary guidance, formulated by
Breakwell, are shown to be nonoptimal. Thirdly, a simple optimality condition is
deduced for a class of identically singular optimal control problems, certain members
of which were previously studied by Haynes, using an extension of the Green’s
Theorem approach to higher dimension.

1. Introduction. Recently this author [1] laid down a procedure by which
a generalized Clebsch necessary condition can be deduced for singular
arcs of the general Bolza problem as formulated by Bliss [2, p. 189]. In
this procedure we first eliminate some derivatives of variations from the
accessory minimum problem, so that the status of these variations can
be, and is, raised to that of derivatives. This is followed by the applica-
tion of the classical Clebsch condition to the transformed accessory mini-
mum problem, leading to a generalized Clebsch condition for the original
Bolza problem.
The repeated indices sunmation convention will be employed through-

out this paper, unless otherwise stated, and the following set of indices
will be used-

i,j 1,2,...,n; r,s 1,2,--.,m;

(1) a, fl 1,2, ,m* < m; p,v + 1, m + 2, m;

= 1,2,...,NGn+ 1.

* Received by the editors May 16, 1966, and in final form July 8, 1966.
Deprtment of Mathematics, University of Canterbury, Christchurch, New

Zealand.
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2. A class of Bolza problems. In current optimal rocket trajectories and
optimal control, problems the following Bolza problem is of fundamental
importance: Find the (ot,rol fmwtiots Ur(t) whi(’h mi.ninize the per-
formance index

(2) J g[x t tl] -- f x u, t) dt,

where the functions x(t), ur(t) re subject to the conditions

(3) , f(x, u, t),

(4) x(t0) x0 (constants),

(5) b"[x(h), tl] 0,

(6) a <--_ u <= b a,., b COItStaIttS).

However, unless otherwise stated we shall assume that the control vector
u belongs to an open region U, i.e.., a,. < u < br. After deriving the main
results we shall outline the necessary modifications to include the cases
where some of the u,.’s are equal to the corresponding a’s or br’s.

This problem becomes an equivalent Bolza problem as formulated by
Bliss [2] if we introduce m auxiliary variables Zr(t) and transform the prob-
lem by eliminating the u’s using the equations

(7) Uv r, Zr(to) O,

had letting z(h) be urbitrary. The initial vlues of z hve been put equal to
zero for definiteness and this step is of no consequence. Henceforth it will
be assumed that this transformation hs been carried out, but whenever
convenient we retain the use of the variables ur.
Assuming that the problem is normal, Bliss’s first order necessnry con-

ditions [2, p. 214] for an arc without corners to be minimizing are:
The Euler-Lagrange equations.

(8) X

(9) OH O,
Our

where

(10) H(t, x, u, X) f(x, u, t) + Xifi(x, u, t).

(11) dg - e" d" - H dh Xil dx 0

OH

(ii) The transversality condition.
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for all arbitrary values of dxl and dh. The constants e" are Lagrange mul-
tipliers.
(iii) The Weierstrass condition.

(12) tt(t, x, u*, X) => g(t, x, u, X)

for all admissible Ur*, i.e., (ur*) U, and for every element (t, x, u, X) of
the extremal under examination.
(iv) The classical Clebsch condition.

02H(13) OUrOUs T’r T’s . 0

for all arbitrary values of rr.
For this discussion it is important to consider this classical Clebsch con-

dition as a first order condition. It is in fact a direct consequence of the
Weierstrass condition [2, p. 224]. Originally this Clebsch condition was ob-
tained via the second variation. It would then be meaningless to apply the
Clebsch condition to the accessory minimum problem. The corner (junc-
tion) conditions do not arise because of the assumption that the reference
are is smooth.

3. The singular accessory minimum problem. Let the (n 4- m) functions
y(t), v(t) be the variations of x(t) and zr(t) along the minimizing arc. The
second variation of the functional J along the minimizing arc is expressible
in the form [2, p. 227]

(14) J. ---- 2,[(, y(h)] -t- 20(t, y, f)) dr,

in which 2,[1, y(tl)] is a homogenous quadratic form in its arguments and

OH O2H OH
(15) 2o

OUr OU
i) 20U OXi y -t

OX, OXi
y yi"

The equations of variation are

of of(16) -O-. y" 0,

(17) y(t0) 0, v(t0) 0,

(lS) I,"[(1, y(h)] O,

where the Vr(tl) are arbitrary and where the ,I,"[, y(h)] stand for N sets of
linear homogenous forms in its arguments.
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(19)

(20)

where

(21)

In matrix notation, 2 and the constraints in (16) have the forms

2o rR + 2rQ + vrP,
+o O,

and where R, Q, P are (n @ m) X (n -t- m) order matrices, , 0 are
n X (n + m) order matrices and the superscript T denotes matrix trans-
pose. Thus we have

where the/t- are the Kronecker deltas and where partition lines run be-
tween the nth and (n -t- 1 th rows/columns.

DEFINITION. An extremal arc of a Bolza problem is said to be singular if
the determinant

(27) A

for all elements (t, x, u, k) belonging to the extremal [2, p. 207].
With the matrices R, displayed in (22) and (25),

O2H
(2s) (-

This is easily seen by evaluating the determinant zX by the first n columns
followed by the first n rows. Hence for this class of Bolza problems we can
say that an extremal is singular if

02H(29)
Our Ou8

=- 0

along the extremM.
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An important class of singular Bolza problems consists of problems in
which one or more control variables appear linearly in both (2) and (3)
and in which the classical Clebsch condition is satisfied. Thus if the control
variable urn, say, appears linearly, we have

OZH(30)
Ou =- O.

The positive semidefiuiteness of the matrix (c32H/Ourc3Us), required by the
classical Clebsch condition, implies that all the 2 X 2 order determinants

(31)

02H 02H
OUs OUm OUs
O2H

0
OUm OUs

>= 0

for s 1, 2, m 1. Inequality (31) implies

_( OH(2) \o-u/ >= 0,

(33)
Ou Ou

O.

Hence the m m order matrix (o2H//0Ur0Us) has the form

where R is m (m 1) X (m 1) order matrix. Hence the extremal is
singular, from (29).

In a similar manner whe (m m*) control wribles appear linearly in
both (2) nd (3) nd when the classical Clebsch condition is satisfied, the
m X m order mtrix (0H/0u0u) is expressible in the form displayed in
(34), where R is then n m* X m* order mtrix. Most of the singular
Bolza problems of optimal rocket trajectories nd optimal control belong
to this important class.

For other singular extremls of the Bolz problems formulated in the lst
section we my first hve to subject the ccessory minimum problem to
certain regular linear transformation [1, (71)] in order to assume that the
m X m order matrix (02/0nWr0n+s) Call be partitioned thus:

where prtition lines run between the m*th nd (m* + 1)th rows/columns.
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The matrix R1 should be nonsingular or nonexisting so that we can deduce
the most effective generalized Clebseh condition. This can be brought about
by the preliminary linear transformation just mentioned.
Assuming that the partition displayed in (35) is valid for a Bolza prob-

lem, we have from (22)

(36) / ]1
0 0

where partition lines run between the nth and (n -t- 1 )th rows/columns and
the (n + m*)th and (n + m* -t- 1 )th rows/columns. The matrices Q, P, , 0
are then partitioned in a similar manner giving

(37)

(38)

[ 10 0 0
Q=-QO0,

Q 0 0

Pt 0 01P= 0 0 0
0 0 0

(39) [[ --B --B],

(40) 0 ----[--A 0 0].

We note that the zero submatrices in (37) to (40) occur because of the
form in which the Bolzt:t problem is formulated, namely the introduction of
control variables.
FUNDAMENTAL THEOREM. If the matrices R, Q, P, , 0 of an accessory

minimum problem can be partitioned in the manner displayed in (36) to (40),
then for each element of a minimizing singular extremal of the Bolza problem,
the following conditions are necessary:

The m m* X m m* order matrix QB must be identically
symmetric.
(ii) If QB is identically symmetric, then the matrix

(41) R. R.J R say,

must be positive semidefinite, where

(42) R =------- BrQr- Q B1,

T d T TB Q2,(43) Ra B: P B t QB QB

and

(44) Ba =- ABe.- B,z.
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Proof. We shall first prove condition (ii), that is, we first assume Q.B2 is
symmetric. As laid down in Goh [1, (75)] the variation vector v is sub-
jeered to the regular transformation

n V/,(45)

where

(46)

Under such a transformatiort 20 and the constraints (16) retain the forms
displayed in (19) and (20) but with

(47) /2 ----- R1
0

(48)
O 0 0

Q Q1 0 QB.
Q2 0 Q. BJ

(49)
P1 0 P1 B

P---- 0 0 0
T-- TB2 PB2 P 0 B2

(50) - [I --B 0],

(51) 0---- [--A 0 --AB2 + 3].

Let
T(52) .r [rr a Kr], say.

In the transformed accessory minimum problem the derivated function
p(t) occurs only in the bilinear forms

(53) 2krQ2r and 2krQ2B2K.

The assumption that Q2B2 is symmetric leads to

ft tl tl ftt d(54) " ’ ,2 Q B. dt Q B Q B) dr,
to t

and in general,

(55) . d
2 02 r dt 2 q r 2 t (02 r) dt.

to
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Employing the matrix equation (20) with the appropriate matrices dis-
played in (50) to (52), we have

d
-2KQr- ,z2/2r -t Q r

T(56) r 2 Q B-2 Q r

T T2 Q( ,).-2 Q2Ar AB2
Hence (54) to (56) permit the ko(t) terms to be completely eliminated from
the second variation. The equation of variation (20) with matrices , 0 dis-
played in (50) and (51), is also devoid of the terms k(t). Hence the
terms are completely eliminated from the accessory minimum problem.
Thus the status of the terms can be raised to that of derivatives; this step
is taken by replacing with ko*, say. Following this it is observed that the
terms io*(h) appear in

(57) 23,[1, r(tl), ko*(tl)] and ’I"[1, r.x(h),/p*(h)].
As shown in [1], the terms kp*(h) are treated like parameters such as ,
and henceforth we let represent ( and ks*(h).

After rearrangements, 2 and the differential constraints of the accessory
minimum problem remain in the forms displayed in (19) and (20) but with

0 0 0
(58) R R RJ

R. Ra

[o oo1(59) Q- Qt o 0
Qa o o

(60) P- 0 o
0 0

(61) -----[[ --B --B],

(62) 0 -----[-A 0 0],

where

(63) R-- BrQ1r- QBI,

B Q(64) R B PB.
T(65) Q =- B. P- Q.A

(66) B3 =- AB- ..
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Applying the classical Clebsch condition to the accessory extremM
0, v -= 0 of the transformed accessory minimum problem arrived at in

the last paragraph, we deduce the following necessary condition for the
original Bolza problem:Along a minimizing arc

(67) n’rRn _.-> 0

for all (n + m) X 1 order matrices r satisfying

(68) r O,

where the matrices R, are displayed in (58) and (61). Taking
+1, r+2, rn+, to be arbitrary, condition (67) subjected to (68) is
seen to imply that the m m order matrix

(6.) R R
must be positive semidefinite, along a minimizing singular arc. Hence we
have proved condition (ii) of the Fundamental Theorem.
We shall now prove condition (i) of the Fundamental Theorem. If

Q2B is not symmetric, we introduce new prtition lines running be-
tween the (n + n**)th and (n + m**

* ?75* *m < _-< m-- 1. Then

(70)

(71)

(72)

+ 1)th rows/columns where

0 0 0 0
0 R1 0 0R | 0 0 0 0
0 0 0 0

0 0 0 0 1Q 0 0 0
Q=-IQ* 0 0 OJ ’say’

LQ;* o o o
P 0 0 0 10 0 0 0

P--L o o o o,o o o o
**(73) [I -B --B2* --B2 ], say,

(74) 0--[-A 0 0 0].

As before partition lines run also between the nth and (n + 1)th rows/
columns.

Furthermore, m is chosen such that th.e (m m X (m m
order matrix Q2* .2 is symmetric and is of the highest possible order.
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With m** chosen in this manner, the nonsymmetry of QB2 implies that

) ** **TQ2*T(7,5) . B # o.
This is easily seen on examining

* Q. BQB. * **
** , ** **(76) QB LQ. B. Q B J

If Q.** * **rQ.,rB2 B2 0, then the order of the symmetric matrix
* **Q2 B2 can be increased by at least one. The reason for this is that the

** ** B2 and the cor-matrix consisting of u. -2 and any one column of Q.** *
r ** B2responding row of Q. : and the corresponding diagonal element of Q2* *

is symmetric Finally we note that if Q:** **B2 is a 1 X 1 order matrix it is
trivially symmetric.

** ,,
As 2 is symmetric, condition (ii) of the Fundamental Theorem is

applicable to the accessory minimum problem with matrices R, Q, P, ,I,, 0
partitioned in the manner displayed in (70) to (74). Thus we are led to the
condition that the matrix

R 0
R**’|(77) 0 0 R4, say,

R* R** R J
must be positive semidefinite where

**] **T T *T *[R2 R2 B2 [Q Q2 ]- Q. *[BB2*]
t,2 Q2 B1 B2 Q2 B2

Therefore

(78)

and

(79)

R2* **TQ1T" B2 Q2**B1,

2 2 Q2 B2

Now we shall show that R2** must be a zero matrix. The positive semi-
definiteness of the matrix R of (77) implies that all the 2 X 2 order determi-
nants of the form

0 (R.**)
80 R?* (R)
(p not summed) are greater than or equal to zero. Hence -(R2**) > 0:Pq

Therefore (R2**) 0, i.e.,

(81) R2** O.

But from (75) and (79), condition (81) is not satisfied. Hence matrix
Q2B. must be symmetric.
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COROLLARY 1. If the matrix Q2B2 is symmetric, then the positive semi-

definiteness of the matrix R4 of (41) implies that the diagonal terms of the
matrix R of (43) must be greater than or equal to zero.

It can be shown that these diagonal terms (r not summed) are

(R) =-
Ou Ox Ox u-- d-t " Ou/

(S)
(oz os, o

for r m -t- 1, nt- 2, m. This is equivalent to the result first ob-
tained by Kelley [], [4].
CoaoLIY 2. If Q2B2 is identicall smmetric and R 0, R 0, then

the followi condition are necessarg for each element of the singular eztremal
of the original Bolza problem"

*)(i) The (m m*) (m m order mariz QB mst be identically

smmetric. The matrices Qa and Ba are displaged in (65) and (66).
(ii) If QaBa is identically symmetric, the matriz

(83) R2,1 R3,

must be positive semidefinite, where
T T(84) R.,1 B Q1 Q B1,

(85)
dR,I BarPI B t Qa Ba) Qa B Br Qar,

(86) B ABa
There exists series of similar necessary conditions involving the sym-

metry of QB (k, not summed, k > 2) nd the positive semidefiniteness of

[R Rr,-1(87) R,- R,-’
where

(88) R,_ BrQr- QB,

(89)

(90)

(91)

assuming that R,_, Ra,-a vanish identically and Q_tB_ is symmetric.
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This is a generalization of the series of necessary conditions obtained by
Kopp nd Moyer [4], [5].

Proof. The matrices R, Q, P, , displayed in (58) to (62) re in the
sme form s the corresponding matrices displayed in (36) to (40) because
R, Ra vanish identically. Moreover the end variations appear in the trans-
formed accessory minimum problem in the same manner as they appeared
in the original accessory minimum problem. Hence Corollary 2 can be
proved employing the sme rguments us those used to prove the Fund-
mental Theorem. Repeating in this manner the series of necessary con-
ditions my be obtained.

Remarks.
1. In Corollary 2 we have limited ourselves to the special cases where the

mutrices R. and Ra vanish identically. The more general case where only
certain submatrices of R and Ra vanish identically could have been con-
sidered. However this requires introducing many new matrices.

2. The Fundamental Theorem and corollaries remain valid when the
control functions u(t) ure subjected to the inequalities displuyed in (6).
Using Valentine’s device [6], [7], the new multipliers can be absorbed into
the matrix R. Alternatively we let the vurition of any control function
Ur(t), attuining its bounds, be zero.

4. Applications.

4.1. Variable thrust arcs for rocket flight in a resisting medium. Consider
the extremal variable thrust arcs of a rocket moving in a resisting medium
and in a vertical plane of a flat earth. This problem has been studied ex-
tensively by Biele [8], [9]. We shall examine the simplified case where the
thrust direction is always tangential to the velocity vector and where there
are two degrees of freedom, namely, the lift program and the mass flow
program. The case of one further degree of freedom, namely, the thrust
direction program, becomes unmanageable analytically.

If X denotes a horizontal coordinate, h a vertical coordinate, V the magni-
tude of velocity, , the angle between the velocity vector and horizontal
direction, m the mass, g the acceleration of gravity, c the equivalent exit
velocity of the rocket engine, the mass flow, D the drag and L the lift, the
equations of motion of the rocket are:

(92) V cos

(93) h V sin

D c(94) ]Y --g sin

(95) #=
g cos v L
V /-’



728 . s. GOH

(96)

(97)

where

(98) D D(h,V,L) and g const.

The problem is to minimize a certain terminal performance index
G(X, h, V, , m, t) subject to conditions (92) to (97) and prescribed end
conditions. As only extremal variable thrust arcs are being examined, the
constraint (97) is ignored. The control variables are L and

Let 3‘1,3‘., 3‘ be the Lagrange multipliers defined in (10). Then the
Euler-Lagrange equations are

(99) },1 0,

(100) 3‘30D
mOh

(101)
}t3 )tl C08 "y 3‘2 sin , -t- 3‘3. OD

mOV

X g X L
.V--2 cos ’,/"-I-,

sin , ),2 V cos , -4- 3,3 g cos ",/

(102) X4 g
sin X,V

(103) ,5 --X3
D c 3‘4 L
m - m V

(104) X30D X4
toOL =0,mV

(105) cX3 X O.

Differentiating (105) with respect to time and using (96), 101 and (102),
we are led to

(106)
cos 3’ -I- X2 sin ,

X OD ( L )mVOL mgcos,+-c (V-c)

The Euler-Lagrange equations and (106) imply that the matrices
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R1, R2, R3 of the Fundamental Theorem re given by

(107) RI 3 02D1
c3 [ 02D I OD1(los) R= ra +
c X [OD 20D
m L + +

(109)
OD

mV OL
[2 mgc cos L(2c 2cV + V)].

The positive semidefiniteness of the 2 X 2 order mtrix R of (41)
implies

(0) R 0,

(11) R 0,

nd

(112) RR R O.

The inequality conditioa (110) is contained in the classical Clebsch neces-
sary condition. The inequality (111) can also be obtained by Kelley’s test
[3], [4]. Inequality (112) is new optimality condition. Note that the mtrix
corresponding to QB of the Fundamental Theorem is triviMly symmetric
because it is 1 X 1 order mtrix. In general, if singularity is due to only
one control vrible ppering linearly, the mtrix corresponding to QB is
triviMly symmetric.

4.2. A problem in optimal terplanetary guidance. We shll examine
singular Bolz problem which ws formulated by Brekwell [10]. The
statement of the problem is" Find control functions u(t) nd r(t) so s to
minize the performance index

T

(113) J [2u +ar]dt

with state wribles p(t), q(t) stisfying

(114) -2rup + raq,
(115) -raq,
where r T with T predetermined, a is specified constant nd a(t)
is known function. We shll not specify the end conditions of p nd q but
ssume that they re such that singular extremls my exist. We shll lso
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confine our attention to singular arcs involving intermediate levels of both
r(t) and u(t).
As displayed in (10), define

(116) H h(raq2- 2rup) ttraq -4- 2u%,/- + ar.

The Euler-Lagrange equations lead to

(117) 2ru u//,
(118) ti- 2(tt- )raq,

(119) Xr// 1,

(120) a- (- X)aq= O.

Using (119) and (120) the matrix corresponding to QB. of the Funda-
mental Theorem is given by

(121) Q B [2r 0 2aaq ];
and, in order that QB is identically symmetric,

(122) aq/- 0 implies q 0.

This rules out the doubly singular extremals involving intermediate levels
of both r(t) ad u(t).

4.3. A class of identically singular optimal control problems. We shall
examine a class of identically singular optimal, control problems, certain
members of which have been studied by Haynes [11], using an extension, of
the Green’s Theorem approach to higher dimension. The indices displayed
in (1) will be employed.
The statement of the problem is: Find control functions u(t) which

minimize the performance index

(123) J =-g [x(tl), tx] nt- L(x, t) dt

with the state variables x(t) satisfying the following system equations and
end conditions"

(124) 2 A(x, t) 4- B(x, t)u,

(125) x(t0) x,o, (constants),

(126) "[x(tl), tl] 0,

and the vector u U, an open region. Here L, A., B.r are functions of

x- and t. As displayed in (10) define

(127) H
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The Fundamental Theorem is applicable to the problem. Iu the notation
of the Fundamental Theorem the matrices R1, R2 do not occur and

(28) Q Lau ax.] xa
129 B Lau,j

[B,].

Therefore

OBr1(130) Q2 B2 X BiB -(_j [rs], say.

Thus condition (i) of the Fundamental Theorem requires that the m m
order matrix [r,] must be identically symmetric along the minimizing
singular extremals. This is a rather stringent condition and should be an
effective optimality condition for most problems. However if it is satisfied,
condition (ii) of the Fundamental Theorem is still available.
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ON STATIONARY POINTS OF NONLINEAR MAXIMUM-
PROBLEMS IN BANACH SPACES*

K. KIRCHGSSNER AND K. RITTER$

1. Introduction. In this paper various aspects of the nonlinear maxi-
mum-problem in a Banach space B are considered. A nonlinear functional
F has to be maximized on a bounded or unbounded convex polyhedral
region R in a Banach space.
The various types of "stationary points" are investigated and it will

be shown that the character of a stationary point depends only on the
local properties of the functional F in the intersection of those hyperplanes
in which the point lies. The results obtained are generalizations of theorems
proved in [6] for the finite-dimensional case, which could be used to develop
a method for the solution of the nonconcave quadratic maximum-problem
[7].
Some results have been obtained earlier in other connections. Thus M.

Altman [1] has given some properties of stationary points and L. Hurwicz
[4]. has proved the theorem of Kuhn and Tucker for locally convex linear
spaces. In this paper, however, this basic theorem is given in a form which
is analogous to the finite-dimensional case.
An example, given at the end of 6, shows that the results of this paper

may also be applied to problems of control theory.

2. Statement of the problem. The maximum-problem is considered on a
real Banach space B whose elements will be denoted by s, x, y. The ad-
joint space of the continuous linear functionals over B wil be denoted by
B* and its elements by l. Furthermore, F will denote a continuous generally
nonlinear functional defined over an open set 2 of B containing the domain
R which is defined as follows:

R {x: x B,lx <= fl, I},

where l, are elements of B*, are real numbers and I is a given finite set
of indices.
Throughout this paper it is assumed that the functional F is differen-

tiable in the sense of Frchet and that the linear operator F’ defines a
continuous mapping from B into B*.

* Received by the editors November 29, 1965, and in final revised form July 18,
1966.

Institut f(ir agewandte Mathematik und Mechanik der Deutschen Versuchs-
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Then the statement of the problem is us follows" An element Xo R has
to be determined such that F achieves its absolute maximum over R at xo that
is, F(Xo) >= F(x) for all x R.

3. Local maximum conditions. For the purpose of this paper an appro-
priate generalization of t.he Kuhn-Tucker theorem [6] will be needed which
is proved in this section. The proof is based on the following generaliza-
tion of Farkas’ lemma [3].
LEMMA (Farkas). Let B*, O, l B*, , I. Furthernore, let

lx <= 0 for all x [ where [ {x: x B, lx <= O, , I}. Then there exist
real numbers >= 0 such that

l.

A proof of this lemma for arbitrary linear spaces has been given by Fan
[2].
THEOREM (Kuhn-Tucker). (a) Let Xo R be a local maximum of F in R.

Then there exist real numbers X >- O, I, with

F’(xo) E O,
(3.1)

(lxo )X O, I.

(b) Let F be a concave functional on R and let Xo R, >= O, I, be a
solution of (3.1). Then F achieves its absolute maximum over R at Xo.

Proof.
(a) Let x0 be a relative maximum. If x0 is an interior point of R, i.e., if

lxo < , I, it follows easily that F’(x0) 0. Therefore with x x0
nd 0, I, the conditions (3.1) are satisfied.
Now suppose that

LXo for I,

where I . Furthermore, let s be an arbitrary element of B with the
properties

s 1, ls <= O, , I.
Then x Xo -I- rs, 0 <-_ r <- r, is an element of R if r > 0 is suffi-

ciently small. It tollows that

F(x) F(xo) + rF’(xo)s + Q(x., rs)

with

lim
i Q O.

r-*0 T



734 K. KIRCHGSSNER AND K. RITTER

Therefore F’(xo)s <= 0 is valid and the assertion of the theorem follows
from Farkas’ lemma.

(b) Let x0 R, X, -> 0, I, be a solution of (3.1). Assume F(x) to be
a concave functional over R. Then for all s B with ls <-_ O, I1, we
have

F(xo + s) F(xo) <-_ F’(xo)s.
Using (3.1) it follows that

F(xo - s) F(xo) <= Xl)s <= O.

4. lroperties of statioaary poiats. Since the conditions (3.1) are necessary
for an absolute maximum of F(x) in R, the set of solutions of the maxi-
mum-problem reduces from R to the set of elements satisfying (3.1).
These elements will be called stationary according to the following defi-
nition.

DEFINITION. Let x0 R and

lxo , , I
(4.1)

l,xo < , I- I.
Then x0 is called stationary if real numbers h >= 0, , I, exist such that

’(x0) : 0.

If I1 is the empty set, x0 is called a fl’ee stationary point.
If, for some, I, h 0 holds, it follows immediately from the above

definition that those equations in (4.1) corresponding to these values of
can be canceled without changing the stationary point x0, i.e., these hy-
perplanes, even though they are incident ia x0, do not determine the loca-
tion of the stationary point.

In order to simpliiy the following discussion of stationary points we
sume that the linear functionals l, , I, are linearly independent and
that }, > 0 for each, I. Without these assumptions, similar results to
those obta.ined in the following can be derived; but the presentation would
be somewhat tedious.

Generally, there my be several stationary points in the intersection of
the hyperplanes corresponding to the set I. A condition is easily derived
under which those stationary points are equivalent.

(1) Let L be the subspace of B* generated by the l’s, I I, x(t)
a Frchet-differentiable mapping of the real interal [a, b] into B with lx(t)

fly, , I1. Furthernore let

F’[x(r)] L1 for all r [a,b].
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Then

Fix(r)] const, for all r [a, b].

The proof follows immediately with the rule of implicit differentiation.
We have

dF[x(r )] F’[x(r )] dx(r
dr dr

On the other hand,

dx()
l

dr
0 for I1,

from which the assertion follows.
The following statement gives a sufficient criterion for a stationary point

to be isolated.
(2) Let Xo R be a stationary point with

lxo , 11, F’ Xo LI

where L1 is as in (1). If the functional F is twice differentiable in the sense of
Fr$chet and if the bilinear operator F" (xo) satisfies the condition

(4.2) I[F"Cx0)y]yi y , > 0,

then there exists a > 0 such that for all

y Ro {y: y B,ly O, I, ]y }
we have F’ xo y) L except for y O.
For the proof we assume that a sequence {x} exists converging to x0 with

lx, , F’(x) L, I.
Setting y Xo x yieldsly O, I Hence [F’(x) F’(x0)]y 0,
nd therefore

[F’(xn) F’(xo)]Yn IF" (xo)Yn]Yn [F" (XO)Yn]yn 0( y

But this is a contradiction to (4.2).
The section concludes with an illustrative interpretation of the "dual

variables" h.
(3) Let F be Fr$chet-dierentiable and Xo and L1 as in (2). For an arbi-

trary, but fixed I, and any y B with

l,y O, I ,
(4.3)

ly 1,
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we define x r) Xo + r K)y. Then

dF[x(K)]

To prove this statement we first remark that the linear independence of
the lv, I1, implies the existence of an element y of B such that (4.3) is
satisfied [8, p. 138, Theorem 3.5-C]. Now we hve

]im
F[x(r)] F[x()]

This completes the proof.

lim
F[xo + (" K)y] F(xo)

F’(Xo) 
,Eir

5. Classification of stationary points. The min result of this section is
the fct that the character of a stationry point depends only on the local
properties of the functional F(x) within the intersection of those hyper-
planes in which the stationry point is located. It will always be assumed
that F(x) is twice differentiable in the sense of Frchet. Then the following
statements are valid"

(1) Let the stationary point Xo R be a relative minimum of F(x) in R.
Then Xo is a free stationary point and [F" (xo)s]s <- 0 for all s B.

Proof. Let the stationary point x0 be a relative minimum of F(x) in R
with

lxo , , I, I1 .
If x0 is not a free stationry point there exists a X > 0, K I. As in 4,
statement (3), we set x x0 + (r )y so that for r ,

X, > O.
dr

Choosing x R with lx < , i.e., r < , and sufficiently small,
we have F(x) < F(x0) in contradiction to the assumption that x0 is a

relative minimum.
Hence, x0 is a free stationary point and F’(xo)s 0 for all s B. There-

fore, IF" (Xo) s]s >= 0 follows, i.e., F(x) is a convex functional in the neigh-
borhood of x0.

(2) The stationary point Xo satisfying the conditions

2, o,
’EI
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is a relative maximum of F(x) in R if for all s B with ls O, , 11, we
have [F" (xo) sis < O.

Proof. It is obvious that x0 is a relative maximum in the intersection of
the hyperplanes lx fl, 11. Let x R but not iu this intersection.
Let s x x0 then there exists at least one K 11 with 1Ks O. There-
fore

F(x) F(xo) F’(xo)s nu o(ll s II) [’ klls + o(ll s II),
11

from which the assertion follows.
On the other hand, the fact that a stationary point x0 is a relative maxi-

mum of F(x) in R implies IF" (Xo)S]s <= 0 for all s B satisfying ls <- O,

(3) The stationary point xo is a saddle-point if an sl B exists such that

lsl O, , 11 and [F" (Xo)Sl]Sl > O,

provided Xo is not a free stationary point.
This assertion follows immediately from the statements (1) and (2).

6. Applications to a quadratic maximum-problem. In this section we
assume that F(x) has the following special form:

F(x) lx 1/2(Ax)x,

where B* and A is a bounded linear operator mapping B into B* with
the property that

(Ax)x (Ax2)x for any pair xl, x B.

For this special case some of the results obtained above can be formulated
more completely. Furthermore, this case is of particular interest because
of its application to quadratic programming.
Because of statement (1) in 4 all stationary points located in the inter-

section of the same hyperplanes are equivalent in the sense described there.
Let x0 and xl be stationary points satisfying

l- Axo- )l O, o > O,
I1

l- Axl kll O, )1> O.

Forming the convex combination

x (1 r)x0 - TXl, 0 <= r <= 1,

= (1- )0+r, I,
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it becomes obvious that every x of this combination is a stationary point
so that the statement (1) in 4 yields

FIx(r) const.

Let. M be a subspace of B. We say A is positive in M if (Ax)x >= 0 for
any x M. If (Ax)x <= 0 for any x ff M, A is called negative. With this
notation the stationary points can be completely classified for the special
case considered in this section"

1 The stationary point Xo R is a relative minimum of F(x) if and only
if Xo is a free stationary point and the operator A is negative.

(2) Let Xo R be a stationary point satisfying the conditions

() -Axo= x, x>0,
(6.1) I1

() LXo , v I1 I.

The stationary point Xo is a relative maximum of F(x) in R if and only i]
the operator A is positive in the intersection of the hyperplanes LXo 0, v I1.

(3a) The stationary point Xo R satisfying conditions (6.1) is a saddle-
point of F(x) in R if and only if the operator A is not positive in the inter-
section of the hyperplanes Lxo O, v I1, provided I1 i.

(3b) If I , then xo is a saddle-point of F if and only if the operator A
is neither positive nor negative.
The proof of these statements ollows immediately from the correspond-

ing proofs in 5 invoking the fact that for M1 s B with

(As, s) O, Ls O, v I I,
F(so + s) F(xo)

for all real r.

The following example shows that the results of this paper may also be
applied to problems of control theory.

Let X be the space of all n-vector functions x(t) which are continuous
on the interval [0, T], and let U be the space of all m-vector functions u(t)
which are continuous on [0, T]. Consider the problem of maximizing

T

(6.2) ] g[x(t), u(t)] dt
J0

subject to

(6.3) 2 A(t)x(t) + B(t)u(t),
T

ax(t)dt <=(6.4)

T

b.’u(6.5 t) dt <= ,

(o) o,
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where g[x(t), u(t)] is a continuously differentiable function on E X E",
while A (t) and B (t) are n X n and n X m matrices whose components are
continuous functions of and a and b, are n- and m-vectors respectively.
Let (t) be a solution of 2 A (t)x(t) such that (0) I. Then the

system (6.3) of linear differential equations has the solution

(6.6) x(t) f (t)(s)-lB(s)u(s) ds (t) f C(s)u(s) ds.
Jo

If we introduce (6.6) into (6.2) nd (6.4) and use the abbreviations

[u(t)] g (t) C(s)u(s) ds, u(t)
N!a (t) a(t),

we obtain (6.2) and (6.4) in the following form:
T

(6.7) [u(t)] dt,
J0

T

(6.8) f f 5’(t)C(s)u(s) ds dt <-_ a, , 1,...,ml.

With the norm

OtT

(ll. I1, U w iCh
can be written in the form F(u), where F is a functional on U, while
each of the inequalities (6.5) and (6.8) is of the form lu <= a, where l is
a continuous linear functional on U.
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AN EXAMPLE CONCERNING ROCKETS CAPABLE OF IMPULSIVE
THRUST*

R. W. RISHEL]

Introduction. It is a widely held intuitive idea that properties of a rocket
capable of impulsive thrust are in some sense the limiting case of the prop-
erties of rockets with bounded thrust as the magnitude of the bound be-
comes infinite. The purpose of this paper is to show that if the impulsively
thrusting rocket is required to satisfy Newton’s laws, this intuitive idea
becomes questionable.
A rigorous derivation of the equations of motion for a rocket capable of

impulsive thrust which satisfies Newton’s laws of motion is given in the
proof of Theorem 1. Then it is shown, for a constant gravitational field,
that there is a solution of these equations which uses an amount of fuel
strictly less than the infimum of the amounts of fuel used by bounded thrust
rocket trajectories joining the same points.

Rigorous treatments of impulsive thrust rocket problems with different
formulations have been given by Ewig [1], Ewig and Haseltine [2], and
Neustadt [3].

Equations of Motion. Let the notation denote the integral over the

closed interval defined by the limits of integration and f denote the
r,t]

integral over a half-open interval. A rocket will be said to be capable of
impulsive thrust if the fuel used (mass expelled) by the rocket on the
closed interval [to, t] is given by the formula

(1) R(ds)
to

in which R is a positive measure.
Let m(t), x(t), v(t), u(t) denote the mass, position, velocity and exhaust

velocity of the rocket. Suppose the rocket is moving in a gravitational field
which causes an acceleration G(t, x) on the rocket. Consider the rocket as an
idealized point mass.
THEOREM 1. Let the velocity and exhaust velocity of a rocket be given by

locally integrable functions. Suppose that the motion of the roclet is such that
its velocity has a limit from the left v-(t) at each time t. Suppose the rocket is
capable of impulsive thrusting, that is, its mass is given by the formula

* Received by the editors October 20, 1965, and in revised form May 20, 1966.
Aero-Space Group, The Boeing Company, Seattle, Washington 98124.
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(2) ,(t) ,0 R(gs)

for some positive measure R. Then, if Newton’s laws are satisfied, there is a
measure A such that

(3)

and the equations

v(t) Vo -q- A(ds),

ftt ft ft(4) m(s)A(ds) m(s)G(s, x(s) ds u(s)R(ds),

(5) x(t) xo + v(s) ds

are satisfied at each time during the flight of the rocket.
Proof. Let X(t, r, x, v) and V(t, r, x, v) denote the position and velocity

at time of an object which was at position x with velocity v at time r ad
was acted upon by the gravitational field during the time from r to t. Then
the total momentum of the rocket and its expended fuel is given by

(6) m(t)v(t) -q- V(t, r,x(r),v-(r) -q- u(r))R(dr).
’0

The definition of V(t, r, x, v) implies that

v(t, , x(), -() + u()
(7)

v-() + u() + G(s, X(x, , x(), v-() + ())) .
Newton’s law sserts that the change in total momentum is the i’ntcgr-l

of the external forces applied. Hence,

m(t)v(t) - V(t, r,x(r), v-(r) -q- u(r))R(dr) movo

(8) m(s)G(s, x(s) s

+ G(s, X(s, r, x(r), v-(r) + u(r)))R(dr) ds.

After an interchange of order of integration, the last integral of (8) becomes

(9) G(s, X(s, r, x(r), v-(r) + u(r))) dsR(dr).
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Using (7) gives

(10) m(t)v(t) mo vo m(s)G(s,x(s)) ds (v-(r) + u(r))R(dr).

Equation (10) implies that re(t) v(t) is a function of bounded variation.
The mass re(t) is defined by (2) and m(t) > 0, hence re(t)-1 is of bounded
variation. Hence, v(t) is also of bounded variation. Reference [4, p. 54,
Theorem 11] implies that there is a measure A such that

(11) v(t) Vo + A(ds).

Consider the formula

(2) R(ds A ds R( ds )A (dr) + R(ds)A(dr).
r,t]

Interchanging the order of integration in the last integral of (12) and using
(2) and 11 gives

f(13) m( )y( v-( r )R( d- ).moo- ,

Substituting (13) in (10) gives

(14) m(s)A(ds) m(s)G(s, x(s) ds u(s)R(ds).

This completes the proof of Theorem 1.
The quantities mo, Vo, and x0 in (2), (3), and (5) are initial conditions

for the rocket. The rocket will be said to satisfy terminal conditions ml, vl,

xl at time t if m(t) ml, v(t) v, x(tl) xl.
Example. Consider the one-dimensional system whose equations are

(15) m(s)A(ds) --g m(s) dt -f- R(ds),

16 x(t) v(s) ds,

(17) v(t) A(ds),

(18) re(t) too-- R( ds

that is, a rocket in a field with constant gravity g, with unit exhaust velocity
in a direction opposite to the gravitational acceleration. Suppose it is de-
sired to guide this rocket from position and velocity (0; 0) at time zero, to
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position and velocity (X, V), in which X > 0, using a minimum amount of
fuel.

Consider the infimum of the fuel used in guiding the rocket when the
class of measures R is restricted to those given by bounded functions r(s)
for which the initial and terminal conditions are satisfied. This class of
measures satisfies the equation

(19) R(ds) r(s) ds

in which r(s) is a bounded positive function. This infimum is greater than
or equal to

(20) mo[1 e-(v’+x)].
This statement may be deduced from general theorems of [3]. A short

direct proof is given below.
If the measure R is of the form (19), equations (15) through (18) can be

differentiated with respect to to obtain the equations

(21) m) --mg -t- r,

(22) h --r,

(23) v.

For a given function r(s), let tl be the time at which the terminal conditions
are satisfied. Then integrating (21) with the integrating factor e+ be-
tween 0 and tl gives

(24) m(tl) moe-(

Since r(s) and m(s) are nonnegative, (21) implies

(25) +g=> o.
Hence, if s <- tl,

(26) V +g(t- s) _>- v(s)

and
1(27) Vs + gts -gs >= x( s).

Setting s t gives

>X.(28) Vt + -gt

The smallest value of t > 0 for which (28) holds is given by

(29) t- -g-i[v (V + 2gX)].
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Hence, (24) and (29) imply

(30) m0 re(t1) >_- m0[1

which is the assertion to be proved.
Consider the measure

(31) R(ds) mo(V + 2gX)1/2[1 + (V + 2gX)1/2]-18(8) ds,

in which 8(s) ds indicates the measure with mass one concentrated at time

ero. Since denotes ghe integral over the closed interval [0, 0], integrat-

ing (15) through (18) over the interval [0, O] gives

(32) m(O) mo- R(ds) too[1 - (V+ 2gX)]-1,

(33) v(O) m(O)-iR(ds) (V - 2gX) 1/2,

(34) x(0) 0.

Since R assigns measure zero to the open interval (0, ), it is seen that
the values of x(t) and v(t) on the iatervl [0, are given by

(35) x(t) -1/2gt + (V + 2gX)1/2t,

(36) v(t) -gt + (V + 2gX) -.
Equations (35) and (36) imply the terminal conditions are satisfied at
time

(37) t- --g-l[v (V -- 2gX)i].

(38) f0 tl

R(ds) mo(V + 2gX)[1 - (V + 2gX)]-1.

Now, (38) is strictly less than the lower bound (20). Hence, the measure
R defined by (31) uses an amount of fuel strictly less thn the infimum of
the fuel used by measures given by bounded functions.
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